Renzhi Wu, Pramod Chunduri, Ali Payani, Xu Chu, Joy Arulraj, Kexin Rong
SIGMOD 2025.
2024
- Lotus: Characterize Architecture Level CPU-based Preprocessing in Machine Learning Pipelines
Rajveer Bachkaniwala, Harshith Lanka, Kexin Rong, Ada Gavrilovska
HotInfra (co-located with SOSP), 2024.
[Code] - Inshrinkerator: Compressing Deep Learning Training Checkpoints via Dynamic Quantization
Amey Agrawal, Sameer Reddy, Satwik Bhattamishra, Venkata Prabhakara Sarath Nookala, Vidushi Vashishth, Kexin Rong, Alexey Tumanov
SoCC 2024. - CanDE: A Lightweight Locality-Sensitive Hashing Add-on for Candidate-Based Distribution Estimation
Jingfan Meng, Huayi Wang, Kexin Rong, Jun Xu
To appear at IEEE BigData, 2024. - Lotus: Characterization of Machine Learning Preprocessing Pipelines via Framework and Hardware Profiling
Rajveer Bachkaniwala, Harshith Lanka, Kexin Rong, Ada Gavrilovska
IISWC 2024. (π Best Paper finalist)
[Artifact]: Available β
, Reviewed β
, Reproduced β
- SketchQL Demonstration: Zero-shot Video Moment Querying with Sketches
Renzhi Wu, Pramod Chunduri, Dristi Shah, Ashmitha Julius Aravind, Ali Payani, Xu Chu, Joy Arulraj, Kexin Rong
VLDB 2024 Demo. - Demonstration of VCR: A Tabular Data Slicing Approach to Understanding Object Detection Model Performance
Jie Jeff Xu, Saahir Dhanani, Jorge Piazentin Ono, Wenbin He, Liu Ren, Kexin Rong
VLDB 2024 Demo. - Dynamic Data Layout Optimization with Worst-case Guarantees
Kexin Rong, Paul Liu, Sarah Ashok Sonje, Moses Charikar
ICDE 2024. - FALCON: Fair Active Learning using Multi-armed Bandits
Ki Hyun Tae, Hantian Zhang, Jaeyoung Park, Kexin Rong, Steven Euijong Whang
VLDB 2024.
2023
- Scaling a Declarative Cluster Manager Architecture with Query Optimization Techniques
Kexin Rong, Mihai Budiu, Athinagoras Skiadopoulos, Lalith Suresh, Amy Tai
VLDB 2023. - Interactive Demonstration of EVA
Gaurav Tarlok Kakkar, Aryan Rajoria, Myna Prasanna Kalluraya, Ashmita Raju, Jiashen Cao, Kexin Rong, Joy Arulraj
VLDB 2023 Demo. - DiffPrep: Differentiable Data Preprocessing Pipeline Search for Learning over Tabular Data
Peng Li, Zhiyi Chen, Xu Chu, Kexin Rong
SIGMOD 2023.
2021
2020
2019
2018
- Locality-Sensitive Hashing for Earthquake Detection: A Case Study of Scaling Data-Driven Science
Kexin Rong, Clara Yoon, Karianne Bergen, Hashem Elezabi, Peter Bailis, Philip Levis, Gregory Beroza.
VLDB 2018. - MacroBase: Prioritizing Attention in Fast Data
Firas Abuzaid, Peter Bailis, Jialin Ding, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, Sahaana Suri.
ACM TODS 2018. (βBest of SIGMOD 2017β Special Issue.)
2017
- ASAP: Prioritizing Attention via Time Series Smoothing
Kexin Rong, Peter Bailis.
VLDB 2017 - Demonstration: MacroBase, A Fast Data Analysis Engine
Peter Bailis, Edward Gan, Kexin Rong, Sahaana Suri.
SIGMOD 2017 Demo. - Prioritizing Attention in Fast Data: Principles and Promise
Peter Bailis, Edward Gan, Kexin Rong, Sahaana Suri.
CIDR 2017. - MacroBase: Prioritizing Attention in Fast Data
Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, Sahaana Suri.
SIGMOD 2017. (Invited to ACM TODS βBest of SIGMOD 2017β Special Issue.)