
Interactive Demonstration of EVA
Gaurav Tarlok Kakkar

Georgia Institute of Technology

gkakkar7@gatech.edu

Aryan Rajoria

Bennett University

e19cse319@bennett.edu.in

Myna Prasanna Kalluraya

Georgia Institute of Technology

mkalluraya6@gatech.edu

Ashmita Raju

Georgia Institute of Technology

ashmita.raju@gatech.edu

Jiashen Cao

Georgia Institute of Technology

jiashenc@gatech.edu

Kexin Rong

Georgia Institute of Technology

krong@gatech.edu

Joy Arulraj

Georgia Institute of Technology

arulraj@gatech.edu

ABSTRACT
In this demonstration, we will present EVA, an end-to-end AI-

Relational database management system. We will demonstrate the

capabilities and utility of EVA using three usage scenarios: (1) EVA

serves as a backend for an exploratory video analytics interface

developed using Streamlit and React, (2) EVA seamlessly inte-

grates with the Python and Data Science ecosystems by allowing

users to access EVA in a Python notebook alongside other popular

libraries such as Pandas andMatplotlib, and (3) EVA facilitates

bulk labeling with Label Studio, a widely-used labeling frame-

work. By optimizing complex vision queries, we illustrate how EVA

allows a wide range of application developers to harness the recent

advances in computer vision.

PVLDB Reference Format:
Gaurav Tarlok Kakkar, Aryan Rajoria, Myna Prasanna Kalluraya, Ashmita

Raju, Jiashen Cao, Kexin Rong, and Joy Arulraj. Interactive Demonstration

of EVA. PVLDB, 16(12): 4082 - 4085, 2023.

doi:10.14778/3611540.3611626

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/georgia-tech-db/evadb.

1 INTRODUCTION
Over the last decade, advances in computer vision [7, 17] have

sparked significant interest among domain scientists and indus-

try practitioners in integrating vision models into their applica-

tions. However, deploying vision pipelines in practice comes with

efficiency and usability challenges [19], such as the high compu-

tational cost of running deep learning models, and the need for

low-level imperative programming across multiple libraries (e.g.,
Pandas [14], OpenCV [3], PyTorch [15]). To address these chal-

lenges, researchers have proposed a wide range of video database

management systems (VDBMSs) [2, 6, 11, 12] that support declara-

tive SQL-like queries over videos.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.

doi:10.14778/3611540.3611626

/* Movie Emotion Analysis */
SELECT id, EmotionClassification(Crop(data , bbox))
FROM MOVIE SAMPLE "5s" CROSS APPLY

UNNEST(FaceDetection(data)) AS Face(bbox , conf)
WHERE id > 1000 AND conf > 0.8
ORDER BY Similarity(Feature("tom_cruise.png"),

Feature(Crop(data , Face.bbox))
LIMIT 10;

Listing 1: Illustrative EVAQL query

Limitations of Existing Systems. These systems have two key

limitations:

1. Usability. First, they have limited support for user-defined

functions (UDFs). Users cannot easily define custom UDFs that

wrap around deep learning models. Users also cannot compose

multiple UDFs in a single query to accomplish complex tasks.

Consider the query shown in Listing 1, where the user seeks

to examine the emotions of Tom Cruise in the latest Top Gun

movie. To achieve this, the user first applies a FaceDetection
UDF to extract the face from the video and then uses a Feature
UDF tomeasure similarity of the detected face against an image

of Tom Cruise. Finally, an EmotionClassification UDF is

used to classify the emotions. The user can also specify the

sampling rate of the video to apply the UDFs every 5 seconds.

We seek to support such complex queries in EVA [10].

2. Efficiency. Another limitation of existing VDBMSs is that

they primarily focus on optimizing individual queries in isola-

tion, which leads to missed optimization opportunities across

exploratory queries [19].

Our Approach. EVA [10] seeks to address these limitations by

simplifying the process of adding UDFs, supporting queries that in-

voke multiple UDFs, and optimizing exploratory query workloads.

EVA allows users to define bespoke UDFs based on their require-

ments, and compose them with existing UDFs and operators to

construct complex queries (§ 2.1). For example, the FaceDetec-

tion and EmotionClassificationmodels can be used to construct

an emotion detection query. Users may easily import third-party

Python packages in UDFs to support complex logic. This improves

the extensibility and usability of EVA.

To improve the efficiency of query execution,EVA uses a Cascades-

style query optimizer (§ 2.2) that jointly optimizes for accuracy and

4082

https://doi.org/10.14778/3611540.3611626
https://github.com/georgia-tech-db/evadb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611626
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Parser

(EVA Query Language)

Query Optimizer

(Cascades-style)

Execution Engine

(Derived Models, Ray, PyTorch, AQP)

Storage Engine

(Video + Derived Data Structures)

EVA

LOAD VIDEO “movies/*.mp4” INTO MOVIES;

SELECT id, FaceDetector(data).bboxes

FROM MOVIES;

Input Query Output

Figure 1: Architecture of EVA

cost. EVA also supports a distributed Execution Engine acrossmul-

tiple GPUs, powered by Ray, to reduce query processing time [10].

Usage Scenarios. To demonstrate the capabilities and utility of

EVA, we focus on three different scenarios in this demo:

1. EVA-UI. In the first scenario, we present EVA-UI, an easy-to-

use visual interface for performing exploratory video analytics.

EVA-UI allows users to explore visual data and gain insights

through an intuitive user interface. The EVA-UI frontend is

backed by the EVA backend.

2. Integration with Data Science Ecosystem. In the second

scenario, we illustrate how EVA seamlessly integrates with

the Python and Data Science (DS) ecosystems. We will demon-

strate how the Python APIs provided by EVA allow users to

access EVA in a Python notebook and use it alongside other

popular libraries such as Pandas and Matplotlib. This work-

flow empowers users to perform video analytics efficiently

and with ease.

3. Integration with LabelStudio. Lastly, we discuss how EVA

complements Label Studio, a widely-used labeling frame-

work. Through this integration, EVA reduces labeling time

by allowing users to label multiple frames at a time (i.e., bulk
labeling). EVA supports a similarity search UDF that allows

users to propagate one label to multiple similar images, there-

fore reducing the overall labeling time. We note that we make

no modifications in the Label Studio framework. This sce-

nario highlights how existing Python libraries may leverage a

VDBMS to take advantage of recent advances in the vision for

analyzing unstructured data.

In all of the scenarios, we will let the attendees modify queries,

UDFs, and observe the performance impact of using EVA.

2 SYSTEM OVERVIEW
In this section, we present an overview of the EVAVDBMS (Fig. 1).

EVA has four components : parser, optimizer, execution and storage

engine. The key design choice of EVA is to provide a SQL interface

to users, with a client-server architecture compliant with the DB-

API 2.0 specification [13]. The SQL interface is already widely used

by many other database systems and is easy to extend. It plays a

key role to allow users to integrate EVA with their applications in

different scenarios. We provide more details in § 2.1 about the SQL

interface. We also briefly describe the internals of the other three

components of the system in § 2.2.

2.1 EVA Query Language (EVAQL)
EVA’s parser supports a query language tailored for exploratory

video analytics, called EVAQL.

Loading Data. EVA allows users to load both unstructured data

(e.g., videos and images) and structured data. The following query

loads a video into EVA:

/* Loading a video into the table */
LOAD VIDEO "videos /*.mp4" INTO VIDEO_DATA;

This will automatically create a table named VIDEO_DATA, which

includes the following columns: (1) id, (2) data, (3) video_id, (4)

video_frame_id, and (5) video_name. These columns represent

the frame identifier, the frame’s content, and the video to which

the frame belongs.

User-Defined Functions. EVAQL is designed to simplify the pro-

cess of defining user-defined functions (UDFs) that cater to the

requirements of different applications in the VDBMS. It supports a

wide range of UDFs that take diverse types of inputs (e.g., video
meta-data or raw frames etc.) and outputs (e.g., labels, bounding
boxes, etc.).
Users have the option to import their own custom-built UDFs

from source, or quickly import an UDF that wraps around a deep

learningmodel fromwidely-used frameworks (e.g.,HuggingFace [18],
PyTorch). We next discuss these two options in more detail.

UDF from Source. EVA enables users to defineUDFs using Python

function decorators, allowing them to migrate their deep learning

models to EVA with minimal code changes.

Configuring a UDF with decorators
class ImageClassificationUDF:

@setup(cachable=True , batchable=True ,
udf_type="ImageClassification")

def setup(self): # prepare the UDF

@forward(
input_signatures =[PyTorchTensor(

type=NdArrayType.FLOAT32 ,
dimensions =(1 ,3 ,540 ,540))],

output_signatures =[PandasDataframe(
columns =["label"],
column_types =[NdArrayType.STR

])]
)
def forward(self): # do inference

Using the decorator-based syntax, users define the input and out-

put signatures of their models along with other properties of the

UDF. These properties include whether or not EVA should cache

the results of the UDF, or whether the UDF supports batch mode

execution. The following query registers the UDF in EVA:

/* Registering a User-Defined Function */
CREATE UDF ImageClassificationUDF
TYPE ImageClassification
IMPL '/udfs/image_classification.py'

Here, TYPE specifies the intended logical type of the UDF (e.g.,
ImageClassification or ObjectDetection). IMPL indicates the path

of the UDF implementation.

UDF from HuggingFace. EVA provides out-of-the-box support

for HuggingFace tasks and models. Users may quickly define such

UDFs using EVAQL, as illustrated in the following query:

/* Registering an ObjectDetectorModel */
CREATE UDF FbObjectDetector TYPE HuggingFace
PROPERTIES ('task'='object-detection ',

'model '='facebook/detr-resnet-50')

This command adds a UDF that performs object detection using

the facebook/detr-resnet-50 model.

4083

1

5

2

3

4 6

Figure 2: EVA-UI: A visual interface for exploratory video analytics backed by EVA.

2.2 Other Components
Query Optimizer. The EVA’s Optimizer is based on the Cas-

cades query optimization framework [9] and applies a series of

rules for rewriting the query and performs cost-based optimization

to generate a physical query plan. It focuses on minimizing query

processing time while meeting the accuracy constraint (which is

often not an option in a typical relational DBMS). To guide im-

portant optimization decisions, the Optimizer runs vision models

on a subset of frames while processing an ad-hoc query [4]. To

accelerate exploratory video analytics [19], EVA materializes the

results of the expensive UDFs and reuses them while processing

subsequent queries.

Execution Engine. The Execution Engine in EVA is responsible

for evaluating the query plan generated by the Optimizer, and it

leverages heterogeneous computational units such as CPUs and

GPUs. The Execution Engine relies on deep learning frameworks,

like PyTorch, for model inference. EVA leverages Ray to support

distributed query execution. It splits the video data into partitions

and uses multiple GPUs for model inference to reduce query pro-

cessing time. Additionally, EVA supports parallel processing of

complex query predicates.

Storage Engine. Lastly, the Storage Engine directly stores videos
and images in a compressed format. It manages structured data us-

ing Parquet [1] format on disk, and uses the Arrow [16] in-memory

columnar format for processing data.

3 DEMONSTRATION
We next describe the three scenarios in the EVA demo. The first

scenario presents EVA-UI that offers a user-friendly interface for

interactive exploration of video datasets (§ 3.1). In the second sce-

nario, we demonstrate how EVA can be easily used in data science

notebooks (§ 3.2). Lastly, in § 3.3, we demonstrate how EVA can

serve as a back-end database in other applications, such as La-

bel Studio (§ 3.3). We use the movie dataset [5], the cat and dog

dataset [8], and a video feed from a static camera to demonstrate

the capabilities of EVA. In each scenario, attendees will be given

the opportunity to modify the queries and UDFs.

Refining the predicate to get most relevant results
query = """SELECT * FROM LicensePlateVideo

JOIN LATERAL
LicensePlateExtractor(Crop(data, [250, 750, 750, 900])) AS X(label, x, y)

WHERE label LIKE "[A-Z]{1,3}[0-9]{1,2}[A-Z]{1,2}[0-9]{1,4}";
"""
cursor.execute(query)
res = cursor.fetch_all()
res.as_pandas()

Region of Interest

Fuzzy Match

Pandas Output

df = res.as_pandas()
annotate_license_video(df, "video.mp4")

Using Matplotlib to plot output from the EVA query

Figure 3: Integration with Data Science Ecosystem

3.1 Scenario 1: EVA-UI
We utilize Streamlit v1.14.0 and React v15.0 to design the user

interface of EVA-UI, which is depicted in Fig. 2. A typical workflow

involves six stages: 1 Uploading a video dataset in the form of an

mp4 directory on a local machine or AWS bucket and assigning

a name to it. 2 Selecting the desired dataset from the dropdown

menu. 3 Displaying all videos in the dataset in a panel for easy visu-

alization. The user can view the output by switching to the output
tab. 4 Choosing the desired task to perform, such as FaceDetec-

tion, with the ability to specify model parameters, including height,

width, and confidence. Users can also set a sampling rate (e.g., every
2 secs) to reduce computation. 5 Creating a multistage query, for

example by performing a similarity search on detected faces from

stage one. 6 Executing the query by clicking the Run button.

Using this intuitive visual interface, users can execute a complex

query, like the query in Listing 1, without learning EVAQL. We note

that the user can incrementally add the second stage after com-

pleting the first stage. EVA uses UDF caching [19] to automatically

utilize the materialized results from the first stage, avoiding the

need to rerun the model.

EVA-UI also supports two other workflows. First, users can select

a region of interest by drawing one or more bounding boxes over

the video frames before executing a task, further reducing the

computational cost. Users can also associate specific vision tasks

4084

Label Example Image1 Similarity Search2 Bulk Propogation3

Figure 4: Integration with Label Studio to facilitate bulk labeling

with each region. For example, in a video of a traffic camera, the user

can specify one region of interest for a crosswalk and one for the

road and detect persons on the crosswalk while a car is also on the

road. Second, EVA-UI supports semantic known entity search, where
users can logically provide the coordinates of different objects in

the query. For example, they may specify that they want to find a

car in the left half of the frame and a person in the right half. The

backend EVA runs object detection and uses spatial predicates to

locate the relevant frames in the dataset.

3.2 Scenario 2: Integration with DS Ecosystem
In their daily workflows, data scientists often need to store their

data in a data system and process it using custom UDFs. To sup-

port this workflow, EVA is available as a Python package in the

pip package repository. Data scientists can easily import the EVA

package in their data science notebooks.

EVA takes care of data storage and query execution, so that the

domain scientists may focus more on data analysis. EVA works

well with widely-used data science libraries (e.g., Pandas for post-
processing,Matplotlib for visualization, and deep learning frame-

works like HuggingFace and PyTorch).

To demonstrate the utility of EVA in this scenario, we will show-

case the following steps to the audience: 1 pip install EVA and

import it into the notebooks, 2 load unstructured data such as

videos or images from various sources (e.g., local filesystem, AWS,

or YouTube) into EVA in the notebook, 3 register a custom UDF

written in Python, or import models from popular libraries such as

HuggingFace or PyTorch, and 4 execute a query with multiple

UDFs, and obtain the query results as a Pandas dataframe, that is

subsequently visualized usingMatplotlib.

Fig. 3 illustrates this usage scenario of EVA. Here, EVA is being

used to extract the license plate information from a video feed

captured by a static camera at an intersection using an OCR model.

The user specifies a region of interest and performs fuzzy matching

against a target license plate to handle minor model errors.

3.3 Scenario 3: Integration with Label Studio
In the last scenario, we will focus on how EVA complements

Label Studio, a popular open-source data labeling framework that

enables users to create and manage high-quality labeled datasets

for training machine learning models. One of the main challenges

with data labeling is the manual effort involved, especially when it

comes to labeling large image or video datasets.

In this usage scenario, we illustrate how Label Studio may use

EVA as a backend data system for similarity search. This allows EVA

to power bulk label propagation in Label Studio, so that similar

images or objects can be labeled together to reduce human labeling

effort. EVA handles the storage and retrieval of labeled images,

while also supporting a similarity searchUDF for propagating labels

to similar images.

Fig. 4 illustrates the bulk labeling workflow enabled in Label

Studio, with EVA serving as the backend database system. This

example focuses on a labeling task for training an image classifica-

tion model (cats vs dogs). Images are pre-loaded into Label Studio.

Initially, 1 the user manually assigns a label to an image (e.g., user
labels a dog image). Subsequently, 2 the user utilizes a similarity

search UDF based on an off-the-shelf feature extractor (e.g., Resnet)
to find the top-K similar images (e.g., K = 10) using EVA. Finally,

3 the user propagates the label of the initial dog image to all the

similar images, using the Label Studio user-interface, thereby

saving labeling time.

REFERENCES
[1] 2022-07-01. Apache Parquet. https://parquet.apache.org/.
[2] Favyen Bastani and et al. 2020. MIRIS: Fast Object Track Queries in Video. In

SIGMOD. 1907–1921.
[3] Gary Bradski. 2000. The openCV library. Dr. Dobb’s Journal: Software Tools for

the Professional Programmer 25, 11 (2000), 120–123.
[4] Jiashen Cao et al. 2022. FiGO: Fine-Grained Query Optimization in Video Ana-

lytics. In SIGMOD. 559–572.
[5] Keith Curtis et al. 2020. HLVU: A New Challenge to Test Deep Understanding of

Movies the Way Humans do. In Proceedings of the 2020 International Conference
on Multimedia Retrieval. 355–361.

[6] Maureen Daum and et al. 2022. VOCAL: Video Organization and Interactive

Compositional AnaLytics. In CIDR.
[7] Jeff Dean et al. 2018. A new golden age in computer architecture: Empowering

the machine-learning revolution. MICRO 38, 2 (2018), 21–29. Publisher: IEEE.

[8] Jeremy Elson et al. 2007. Asirra: a CAPTCHA that exploits interest-aligned

manual image categorization. CCS 7, 366–374.
[9] G. Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data

Eng. Bull. 18, 3 (1995), 19–29.
[10] Gaurav Tarlok Kakkar et al. 2023. EVA: An End-to-End Exploratory Video

Analytics System. In Proceedings of the Seventh Workshop on Data Management
for End-to-End Machine Learning. 1–5.

[11] Daniel Kang et al. 2019. BlazeIt: Optimizing Declarative Aggregation and Limit

Queries for Neural Network-Based Video Analytics. Proc. VLDB Endow. 13 (2019),
533–546.

[12] Daniel Kang et al. 2022. VIVA: An End-to-End System for Interactive Video

Analytics. In CIDR.
[13] Marc-André Lemburg. 2001. Python Database API Specification v2.0. PEP 249.

https://peps.python.org/pep-0249/

[14] Pandas. 2020.pandas-dev/pandas: Pandas. https://doi.org/10.5281/zenodo.3509134
[15] Adam Paszke and et al. 2019. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. InNeurIPS.
[16] Neal Richardson and et al. 2022. arrow: Integration to Apache Arrow .

https://arrow.apache.org/docs/r/.

[17] Olga Russakovsky and et al. 2015. Imagenet large scale visual recognition

challenge. IJCV 115, 3 (2015), 211–252. Publisher: Springer.

[18] Thomas Wolf and et al. 2020. Transformers: State-of-the-art natural language

processing. In EMNLP. 38–45.
[19] Zhuangdi Xu et al. 2022. EVA: A Symbolic Approach to Accelerating Exploratory

Video Analytics with Materialized Views. In SIGMOD. 602–616.

4085

https://peps.python.org/pep-0249/
https://doi.org/10.5281/zenodo.3509134

	Abstract
	1 INTRODUCTION
	2 SYSTEM OVERVIEW
	2.1 EVA Query Language (EVAQL)
	2.2 Other Components

	3 DEMONSTRATION
	3.1 Scenario 1: EVA-UI
	3.2 Scenario 2: Integration with DS Ecosystem
	3.3 Scenario 3: Integration with Label Studio

	REFERENCES

