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ABSTRACT

In this demonstration, we present VCR, an automated slice discov-

ery method (SDM) for object detection models that helps practition-

ers identify and explain specific scenarios in which their models

exhibit systematic errors. VCR leverages the capabilities of vision

foundation models to generate segment-level visual concepts that

serve as interpretable explanation primitives. By integrating these

visual concepts with additional image metadata in a tabular format,

VCR uses a scalable frequent itemset mining-based technique to

identify common patterns associated with model performance. We

will demonstrate VCR’s capabilities through three usage scenarios.

First, users can explore the automatically extracted visual concepts

and their associated labels. Second, users can run slice finding on

a large object detection dataset and visually inspect the results

to discover systematic errors. Finally, users can iteratively refine

their slicing results by providing feedback on the granularity of

visual concepts and the quality of the generated labels. These sce-

narios will illustrate how VCR can aid practitioners in discovering

non-trivial gaps in their models’ performance, providing actionable

insights for model improvement.
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1 INTRODUCTION

As computer vision models continue to advance and are adopted, it

is increasingly important that practitioners vet their model’s perfor-

mance not only in the average case but also within specific subsets

(or slices) of settings. For example, variations in object recognition

accuracy of up to 20% have been observed between images taken
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in countries with different income levels, due to objects appearing

in different contexts [5]. As a result, identifying these problematic

data slices can help practitioners improve their training datasets,

fine-tune their models, and compare different types of models.

Identifyingmeaningful data slices in unstructured image datasets

is challenging, especially for object detection tasks. While tabu-

lar data slices are typically defined by attribute-value pairs (e.g.,

𝑎𝑔𝑒 < 20, 𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑀), such explicit attributes are absent in image

data. Although existing slice discovery methods (SDMs) can create

slices for image classification tasks without explicit attributes, they

face two key limitations when applied to object detection.

First, object detection requires a more fine-grained understand-

ing of images at the segment level, as nearby objects may affect

bounding box localization and classification more than remote ob-

jects. Several prior works [6, 8, 13] use Gaussian mixture models to

cluster image-level representations to create slices but do not gen-

eralize well to object detection tasks, which require explanations

for specific objects rather than entire images. Most similar to our

work, Dadvar et al. [4] explain CNN image classification models

with segment-level concepts but rely on the models’ internal acti-

vations to identify these concepts. Second, object detection tasks

offer rich metadata information, such as bounding box sizes and

locations that are not present in the image classification tasks. For

example, ground-truth bounding boxes that are small (size), unusu-

ally stretched/compressed in dimensions (aspect ratio), or overly

"crowded" with other detection results might negatively impact

prediction performance.

To address the above limitations, we introduce VCR, an auto-

mated, model-agnostic slice discovery framework that leverages

the fine-grained segment-level understanding and rich image meta-

data to discover human-interpretable slices where object detection

models struggle. VCR uses pre-trained vision foundation models to

extract visual concepts, such as objects and object parts, and com-

bines them with additional metadata in a unified tabular format. It

can then apply a frequent itemset mining-based method to identify

problematic data slices. In this demonstration, we will showcase

how practitioners may interact with VCR to uncover the various

concepts "hidden" in their datasets, identify problematic slices for

their models in terms of these concepts and additional metadata,

and iteratively refine their slice results by adjusting concept granu-

larities or relabeling the concepts.
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2 SYSTEM OVERVIEW

Given an input image dataset and model object detection results,

VCR processes the data in three main steps: 1 Concept Discovery,

2 Tabularization, and 3 Data Slicing.

2.1 Concept Discovery

Concept discovery aims to identify and group related objects or

attributes across images, allowing a collection of these objects to

represent a single concept. These visual concepts then form the

basis for interpretable explanations. This process is performed in

an unsupervised fashion to avoid constraints on a predefined label

set.

First, VCR breaks down images into finer-grained representa-

tions by using Meta’s Segment Anything Model (SAM) [10]. We

choose SAM because it can extract segments for various objects and

scenes, even for those unseen in training. To incorporate semantic

information into image segments, we use MaskCLIP [7], which

distills full-image representations to masked ones via masked self-

distillation. Next, we derive segment-level CLIP [14] embeddings

by averaging MaskCLIP’s pixel-level embeddings within each of

the segments produced by SAM.

Inspired by ACE [9], we run K-Means clustering over the seg-

ment embeddings to group semantically related segments into vi-

sual concept clusters such that each cluster represents a single

visual concept. For example, a concept of dogs may be formed

from the clustering of many segments of dogs across various im-

ages. Additionally, VCR leverages the multi-modal nature of the

embeddings to attach labels to concept clusters and further en-

hance interpretability. Given a list of predefined labels, which can

be sourced independently from the Internet or provided by the user

in an open vocabulary manner, we assign each cluster to the label

with the smallest embedding distance.

The quality of VCR depends on the quality of the segmentation

and embedding models used. For example, the smallest SAM model

(ViT-B) would produce less fine-grained, lower-quality segments.

Similarly, some of MaskCLIP’s pixel embeddings would be inac-

curate and create incoherent concepts. However, with the rapid

evolution of foundational models, we expect these models to im-

prove significantly over time.

2.2 Tabularization

Tabularization involves summarizing the interactions between the

visual concepts, image metadata, and the object detection model’s

bounding box predictions into a unified tabular format. This step

prepares the data for the subsequent tabular data mining process.

Before identifying the bounding box and concept interactions,

VCR performs bounding box matching by pairing the model’s

bounding box predictions with ground-truth bounding boxes. We

specifically employ a greedy matching algorithm that maximizes

prediction confidence followed by intersection over union score

(IoU), measuring how well pairs of boxes align. This is a necessary

step that allows us to identify false positives, false negatives, and

misaligned bounding boxes.

We then summarize the interactions between bounding boxes

and concepts using an interaction matrix 𝐼 . If a bounding box pair

"m" and an image segment belonging to concept cluster "n" have

overlapping area that is more than a threshold, we increment the

matrix 𝐼 [𝑚] [𝑛] to count the number of interactions between the

concept and bounding boxes that occurred. We also incorporate

image metadata to describe the bounding boxes themselves. Specif-

ically, we keep track of the bounding box size, aspect ratio, and the

number of overlapping bounding boxes, which we call "crowding."

As these interactions are limited in number, VCR utilizes sparse

matrices to store the interaction data efficiently.

2.3 Data Slicing

Finally, VCR integrates tabularized bounding box data with object

detection error metrics to identify problematic slices through fre-

quent itemset mining, pinpointing areas where the model excels

and falters. Object detection models can produce various errors [2],

including localization (correct class, incorrect position), classifi-

cation (correct position, incorrect class), false positives, and false

negatives errors. While VCR supports all these error types, our

demo focuses on localization errors using the IoU metric, measur-

ing how well predicted bounding boxes align with their ground

truth bounding boxes.

VCR employs the Apriori frequent pattern mining technique [1]

to identify problematic data slices, represented as "itemsets," by

iterating through various slice combinations and calculating their

error metrics. Itemsets describe how bounding boxes interact with

concepts and their metadata, with concept presences defined as hav-

ing a value greater than 0 and absences as having a value of 0. For

example, the itemset {person=3, car=0, crowding=[3-5]} represents
the subset of bounding boxes interacting with three segments of a

person concept and experiencing a "high" level of crowding with

the absence of a car concept. As each itemset represents a specific

data subset, VCR also reports metrics that describe the subset size

(support count), overall accuracy, and divergence in accuracy. The

divergence in accuracy follows that of [12], representing the devia-

tion from mean accuracy. VCR applies additional pruning rules to

improve mining efficiency.

3 DEMONSTRATION SCENARIOS

To motivate the use cases, imagine a user working with an object

detection model for autonomous driving. The model works with

particularly challenging data, featuring diverse settings and unique

objects that could be difficult to capture and summarize using tra-

ditional segmentation techniques. VCR addresses these challenges

through three key scenarios:

1. Visual Concept Exploration. The Explorer interface pro-

vides an interactive 2D visualization of the automatically gen-

erated visual concept clusters and their associated labels. Here,

users can analyze the various concepts embedded in their

dataset and identify potential relationshipswith specific classes.

2. Finding Problematic Data Slices. TheMiner interface al-

lows users to explore and "bookmark" problematic data slices

on which an object detection model exhibits poor performance.

This allows users to gain insights into the specific patterns

that contribute to the model’s systematic errors.

3. Concept Refinement. VCR allows users to interactively pro-

vide feedback to improve slice descriptions by adjusting con-

cept granularity and relabeling existing concepts.
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Figure 1: The Explorer page contains the concept embedding

overview, clustermodification tools, and concept visualization panel.

During the demo, we will showcase each of these scenarios using

one of two datasets: the COCO object detection 2014 validation

dataset [11] or a 10k subset of the BDD100k driving dataset [18].

For each dataset, we include detection results from two object

detection models provided by the MMDetection library [3]: Faster

R-CNN [16] and YOLOv3 [15].

3.1 Visual Concept Cluster Exploration

The Explorer page allows users to gain a better understanding of

the landscape of their data. By exploring visual concepts, users can

obtain an overview of the various objects present in the dataset

and identify potential diversity gaps where certain concepts may

be overrepresented, underrepresented, or entirely absent. Concept

clustering and exploration also serve as a necessary preprocessing

step before slice finding.

To start, the user will specify the number of concepts to be

formed via K-Means and click the "Run Clustering" button (Fig-

ure 1, section A). If the user is uncertain of how many clusters

to utilize, VCR offers an "Auto-Cluster" option that automatically

chooses the number of clusters using the elbow method based on

silhouette scores [17]. The clustering results will be displayed in a

plot illustrated in section B, where each point represents an image

segment’s CLIP embedding projected into 2D UMAP space. Dif-

ferent colors are used to represent distinct concept clusters, with

similar visual concepts positioned closer together and dissimilar

ones farther apart in this projected embedding space.

Users can interact with the visualization by clicking on any point

to reveal an image highlighting the corresponding segment. They

can then navigate through additional images in the same concept

cluster with the “Previous" and “Next" buttons shown in section D.

3.2 Finding Problematic Data Slices

After generating the concepts, the user can navigate to theMiner

interface as shown in Figure 2 to identify problematic data sub-

groups. As illustrated in section E of Figure 2, users may import the

concept-cluster settings generated previously in the Explorer page

with the "File" dropdown, pick their class label of interest, specify a

maximum slice length, specify the support level for pattern min-

ing, and limit the number of displayed result. Advanced settings

E

F

Figure 2: The Miner page displays the mining configurations and

mining results.

Figure 3: TheMiner visualization panel displays slice images and

their corresponding bounding boxes and visual concepts.

allow for result deduplication, concept interaction counting, and

inclusion of metadata such as crowding, bounding box area, and

aspect ratio.

These various knobs allow practitioners to tailor their mining

results to various scenarios. For instance, users can find rare sce-

narios where the model poorly detects the "car" class by setting

"Label" to "car" and support to a small value like "0.005" (0.5%).

Similarly, users interested in learning about errors that affect all

classes may set "Label" to "None" and toggle for additional metadata

with "crowding," "bbox-area," and "bbox-aspect-ratio." Once satisfied

with the parameter configuration, users initiate the mining process

by clicking the "Submit" button.

The mining results populate the table in section F, where users

can click different columns to sort the slicing results based on

support, accuracy, or accuracy divergence. Clicking on a specific

slice reveals sample images corresponding to that slice, as shown

in Figure 3. This visualization offers four perspectives for each
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Figure 4: Itemsets bookmarked by users will be displayed in a table

with class and slice data.

result: the original image, target bounding box pairs, relevant visual

concepts and labels, and a zoomed-in view of the concepts.

Users can keep track of their slices of interest with the bookmark-

ing button (Figure 2, section F), so that they may be reviewed later

in the Bookmarks Page shown in Figure 4. This feature enables

users to reinspect these slices and determine the most effective

approach to address them. For instance, some users might fine-tune

the model according to the slices. Alternatively, users may choose

to employ a different model for the dataset if they find it more

robust in handling the identified slice scenarios.

3.3 Concept Cluster Refinement

Slice results may not always be satisfactory for users, and additional

refinement may be needed. For example, domain experts may wish

to incorporate their own knowledge in the concept definitions.

As a result, VCR supports interactive refinement through concept

relabeling and concept cluster granularity adjustments.

Concept Relabeling. Visual concept labels generated via CLIP

(discussed in §2.1) can be noisy or incorrect. To correct for this and

improve user understanding, VCR supports relabeling, where users

may change labels to their liking. In addition to renaming cluster in

Explorer (Figure 1, section C), users can also perform relabeling

in theMiner while exploring data slices. In theMiner, users can

double-click on any slice to edit the label text. For example, users

may modify the label "pavement_3" to "sidewalk." Then, clicking

on the "Save Renaming" button will apply those changes. Addi-

tionally, VCR supports label conflict-handling and merging. When

practitioners rename a concept cluster to an existing label, VCR

notifies users about the conflict, allowing users to either merge the

existing visual concepts or propose a new label altogether, as seen

in Figure 5.

H

I

Figure 5: Conflicting labels will prompt users to either use a different

label or merge labels.

Adjusting Concept Cluster Granularity. Suppose users are un-

satisfied with their concept clusters. In that case, VCR allows users

to adjust concept granularity with the "Number of Centroids" pa-

rameter in Figure 1 section A, which affects all concept clusters

simultaneously. For instance, if users find that few or no slice results

appear after running data slicing, they may realize that their con-

cept clusters are too fine-grained. In such cases, users can navigate

back to the Explorer page, decrease the "Number of Centroids"

parameter, and re-run the slicing process. In the future, we also plan

to support mechanisms that can adjust individual clusters, such as

splitting a cluster into two.
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