#include <AdaptiveRSDiag.h>
|
| AdaptiveRSDiag (shared_ptr< MatrixXd > data, shared_ptr< Kernel > k, double lb, double eps) |
|
| AdaptiveRSDiag (shared_ptr< MatrixXd > data, shared_ptr< Kernel > k, int samples, double lb, double eps) |
|
int | findActualLevel (VectorXd &q, double est, double eps) |
|
void | findRings (int strategy, double eps, VectorXd &q, int level) |
|
void | getConstants () |
| Precompute.
|
|
void | clearSamples () |
|
double | vbRS () |
|
double | vbHBE () |
|
std::vector< double > | query (VectorXd q) |
|
void | setMedians (int l) |
|
|
int | numPoints |
|
double | gamma = 0.5 |
|
int | I |
|
int | L = 3 |
|
std::vector< double > | mui |
|
std::vector< int > | Mi |
|
std::vector< double > | ti |
|
std::vector< int > | ki |
|
std::vector< double > | wi |
|
double | r |
|
std::string | EXP_STR = "exp" |
|
Diagnostic procedure implemented via adaptive random sampling.
◆ evaluateQuery()
std::vector< double > AdaptiveRSDiag::evaluateQuery |
( |
VectorXd |
q, |
|
|
int |
level |
|
) |
| |
|
protectedvirtual |
For subclasses to implement: evaluate density of query q at the given level.
Implements AdaptiveEstimator.
◆ findActualLevel()
int AdaptiveRSDiag::findActualLevel |
( |
VectorXd & |
q, |
|
|
double |
est, |
|
|
double |
eps |
|
) |
| |
- Parameters
-
q | query |
est | final estimate from adapative sampling |
eps | relative error |
- Returns
- smallest level that we can get an esimate within (1+/-eps) of est
◆ findRings()
void AdaptiveRSDiag::findRings |
( |
int |
strategy, |
|
|
double |
eps, |
|
|
VectorXd & |
q, |
|
|
int |
level |
|
) |
| |
Set lambda and l according to different strategies
- Parameters
-
strategy | 0: S2, S3 = {}; 1: Eq(9), (10) |
eps | |
q | |
level | |
◆ vbHBE()
double AdaptiveRSDiag::vbHBE |
( |
| ) |
|
- Returns
- variance upper bound for HBE
◆ vbRS()
double AdaptiveRSDiag::vbRS |
( |
| ) |
|
- Returns
- variance upper bound for RS
◆ contrib
vector<double> AdaptiveRSDiag::contrib |
Eq (10) in the main paper. Used for visualization.
◆ lambda
double AdaptiveRSDiag::lambda |
Eq (9) in the main paper. Used for visualization.
◆ samples
vector<int> AdaptiveRSDiag::samples |
S0 in Algorithm 1, line 4
The documentation for this class was generated from the following files: