#include <AdaptiveRSDiag.h>
 | 
| 
  | AdaptiveRSDiag (shared_ptr< MatrixXd > data, shared_ptr< Kernel > k, double lb, double eps) | 
|   | 
| 
  | AdaptiveRSDiag (shared_ptr< MatrixXd > data, shared_ptr< Kernel > k, int samples, double lb, double eps) | 
|   | 
| int  | findActualLevel (VectorXd &q, double est, double eps) | 
|   | 
| void  | findRings (int strategy, double eps, VectorXd &q, int level) | 
|   | 
| 
void  | getConstants () | 
|   | Precompute. 
  | 
|   | 
| 
void  | clearSamples () | 
|   | 
| double  | vbRS () | 
|   | 
| double  | vbHBE () | 
|   | 
| std::vector< double >  | query (VectorXd q) | 
|   | 
| 
void  | setMedians (int l) | 
|   | 
 | 
| 
int  | numPoints | 
|   | 
| double  | gamma = 0.5 | 
|   | 
| int  | I | 
|   | 
| int  | L = 3 | 
|   | 
| std::vector< double >  | mui | 
|   | 
| std::vector< int >  | Mi | 
|   | 
| 
std::vector< double >  | ti | 
|   | 
| std::vector< int >  | ki | 
|   | 
| std::vector< double >  | wi | 
|   | 
| double  | r | 
|   | 
| 
std::string  | EXP_STR = "exp" | 
|   | 
Diagnostic procedure implemented via adaptive random sampling. 
 
◆ evaluateQuery()
  
  
      
        
          | std::vector< double > AdaptiveRSDiag::evaluateQuery  | 
          ( | 
          VectorXd  | 
          q,  | 
         
        
           | 
           | 
          int  | 
          level  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
protectedvirtual   | 
  
 
For subclasses to implement: evaluate density of query q at the given level. 
Implements AdaptiveEstimator.
 
 
◆ findActualLevel()
      
        
          | int AdaptiveRSDiag::findActualLevel  | 
          ( | 
          VectorXd &  | 
          q,  | 
        
        
           | 
           | 
          double  | 
          est,  | 
        
        
           | 
           | 
          double  | 
          eps  | 
        
        
           | 
          ) | 
           |  | 
        
      
 
- Parameters
 - 
  
    | q | query  | 
    | est | final estimate from adapative sampling  | 
    | eps | relative error  | 
  
   
- Returns
 - smallest level that we can get an esimate within (1+/-eps) of est 
 
 
 
◆ findRings()
      
        
          | void AdaptiveRSDiag::findRings  | 
          ( | 
          int  | 
          strategy,  | 
        
        
           | 
           | 
          double  | 
          eps,  | 
        
        
           | 
           | 
          VectorXd &  | 
          q,  | 
        
        
           | 
           | 
          int  | 
          level  | 
        
        
           | 
          ) | 
           |  | 
        
      
 
Set lambda and l according to different strategies 
- Parameters
 - 
  
    | strategy | 0: S2, S3 = {}; 1: Eq(9), (10)  | 
    | eps |  | 
    | q |  | 
    | level |  | 
  
   
 
 
◆ vbHBE()
      
        
          | double AdaptiveRSDiag::vbHBE  | 
          ( | 
           | ) | 
           | 
        
      
 
- Returns
 - variance upper bound for HBE 
 
 
 
◆ vbRS()
      
        
          | double AdaptiveRSDiag::vbRS  | 
          ( | 
           | ) | 
           | 
        
      
 
- Returns
 - variance upper bound for RS 
 
 
 
◆ contrib
      
        
          | vector<double> AdaptiveRSDiag::contrib | 
        
      
 
 
Eq (10) in the main paper. Used for visualization. 
 
 
◆ lambda
      
        
          | double AdaptiveRSDiag::lambda | 
        
      
 
Eq (9) in the main paper. Used for visualization. 
 
 
◆ samples
      
        
          | vector<int> AdaptiveRSDiag::samples | 
        
      
 
S0 in Algorithm 1, line 4 
 
 
The documentation for this class was generated from the following files: