#include <AdaptiveEstimator.h>
|
std::vector< double > | query (VectorXd q) |
|
void | setMedians (int l) |
|
|
virtual std::vector< double > | evaluateQuery (VectorXd q, int level)=0 |
|
|
int | numPoints |
|
double | gamma = 0.5 |
|
int | I |
|
int | L = 3 |
|
std::vector< double > | mui |
|
std::vector< int > | Mi |
|
std::vector< double > | ti |
|
std::vector< int > | ki |
|
std::vector< double > | wi |
|
double | r |
|
std::string | EXP_STR = "exp" |
|
Base class for the adaptive sampling procedure. Subclasses can be implemented via estimators like HBE and RS.
◆ evaluateQuery()
virtual std::vector<double> AdaptiveEstimator::evaluateQuery |
( |
VectorXd |
q, |
|
|
int |
level |
|
) |
| |
|
protectedpure virtual |
◆ query()
std::vector<double> AdaptiveEstimator::query |
( |
VectorXd |
q | ) |
|
|
inline |
Estimate density of query q via adaptively sampling.
◆ gamma
double AdaptiveEstimator::gamma = 0.5 |
|
protected |
decay rate of target density between each level
◆ ki
std::vector<int> AdaptiveEstimator::ki |
|
protected |
hashing scheme parameter for level i: # hash functions
int AdaptiveEstimator::L = 3 |
|
protected |
◆ Mi
std::vector<int> AdaptiveEstimator::Mi |
|
protected |
samples for level i
◆ mui
std::vector<double> AdaptiveEstimator::mui |
|
protected |
target density of the level i
double AdaptiveEstimator::r |
|
protected |
Effective diameter sqrt(log(1/ tau))
◆ wi
std::vector<double> AdaptiveEstimator::wi |
|
protected |
hashing scheme parameter for level i: binWidth
The documentation for this class was generated from the following file: