#include <UniformHBE.h>
|
| UniformHBE (shared_ptr< MatrixXd > X, int M, double w, int k, shared_ptr< Kernel > ker, int subsample) |
|
double | query (VectorXd q, double lb, int m) |
|
◆ UniformHBE()
UniformHBE::UniformHBE |
( |
shared_ptr< MatrixXd > |
X, |
|
|
int |
M, |
|
|
double |
w, |
|
|
int |
k, |
|
|
shared_ptr< Kernel > |
ker, |
|
|
int |
subsample |
|
) |
| |
- Parameters
-
X | dataset |
M | number of samples |
w | bin width |
k | number of hash functions |
ker | kernel function |
subsample | build table on a random subsample number of points from the original dataset |
◆ evaluateQuery()
double UniformHBE::evaluateQuery |
( |
VectorXd |
query | ) |
|
|
protected |
Take a biased sample from a hash table via HBE.
- Parameters
-
- Returns
- normalized contribution of the biased sample
◆ MoM()
vector< double > UniformHBE::MoM |
( |
VectorXd |
q, |
|
|
int |
L, |
|
|
int |
m |
|
) |
| |
|
protectedvirtual |
- Parameters
-
q | query |
L | median of L means |
m | means of m samples |
- Returns
- : a vector of L elements, where each element is a sum of m samples
Implements MoMEstimator.
◆ tables
A collection of hash tables for HBE.
The documentation for this class was generated from the following files: