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Data preprocessing is an essential step in ML

• Raw data collected from data sources can rarely be used directly by ML models due
to the existence of data issues (e.g., data errors, different feature scales).

A Typical ML Workflow



Designing a data preprocessing pipeline is hard

• Data Preprocessing Pipeline is a sequence of operators, where each operator
tackles one specific data issue.

Impute MV
with mean imputation

Remove outliers
with Z-score

• Complex design decisions:
• Types: which type of transformations to use?
• Operators: which operator to use for each transformation?
• Order: which order of transformations to use?
• Feature-wise: different features may need different pipelines.

An example data preprocessing pipeline

Normalize data
with min-max scaling
Normalize data

with standardization
Normalize data

with standardization
Remove outliers
with Z-score



Limitations in Existing Methods

• ML Developers
• Use a default pipeline or trial-and-error methods.

• Traditional Data Cleaning Work
• Design pipelines that optimize data quality independently of ML.
• Data quality may not be accessible, and it may not lead to the optimal ML 

performance.
• Existing AutoML Systems

• Limited search space. 
• Train model multiple times.



Problem Definition

• Goal: automatically and efficiently select a data preprocessing pipeline from the
search space such that the model performance (validation accuracy) is maximized. 
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“Bi-level Optimization”

• Compared with existing AutoML systems:
• Explore the entire design space of data preprocessing pipelines (types, 

operators, order, feature-wise).
• Only need to train ML model once.

Outer level:

Inner level:



Gradient-based Bi-level Optimization

• Naive Approach:  we train a ML model with every possible pipeline and select 
the best one. --- Assume a pipeline contains s transformations and m choices for
each transformation. There are 𝑚𝑠𝑐 feature-wise pipelines for a dataset with c
features.

• Gradient-based approach: we alternatively and iteratively solve the outer-level
and inner-level optimization using gradient descent.

• Key issue: the search space of pipelines is discrete and non-differentiable.

Can we convert the discrete search space into a continuous and
differentiable space?



Step 1: Parameterization

• Goal: Represent each pipeline in the space using a set of parameters
• Let’s first assume we have a predefined order of transformations.
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Associate each operator with a 𝛽". ∈ {0,1}

Constraint: ∑. 𝛽". = 1
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Step 2: Relaxation

• To retain constraints ∑. 𝛽". = 1, use Softmax function, 𝜏". ∈ ℝ

𝜷: 𝛽". ∈ {0,1} 𝜷: 𝛽". ∈ [0,1]
Relax

We can now solve Bi-level optimization using gradient descent



Automate Order Selection 

• Question: How to determine the order of applying transformations (e.g., Outlier 
Removal, Discretization, Normalization)?

• Can we try all possible orders? --- The number of possible orders for feature-
wise pipelines are exponential to the number of features.

• Parameterization: Any order can be represented using a binary permutation 
matrix 𝛼

N O D

[O, D, N]

Constraints: ∑" 𝛼". = 1 ,∑. 𝛼". = 1



Automate Order Selection 

• Relaxation:

𝛂: 𝛼". ∈ {0,1} 𝛂: 𝛼". ∈ [0,1]
Relax

To retain constraints ∑" 𝛼". = 1 ,∑. 𝛼". = 1, use Sinkhorn normalization

We can now learn optimal order, choices of operators and the model simultaneously!

Row
Normalization

Column
Normalization

Non-negative
Squared Matrix 𝜽

Doubly Stochastic
Matrix 𝜶 with
∑! 𝛼!" = 1 ,∑" 𝛼!" = 1



Experiment Setup
• Datasets: 18 real-world datasets
• Model: Logistic regression
• Search Space: Missing value imputation, Outlier removal, Discretization,

Normalization
• Methods compared:

• Evaluation Metrics:
• Model accuracy
• Running time

Our methods Practical Methods AutoML Systems Advanced Data
Cleaning Methods

DiffPrep-Fix (DP-Fix)
DiffPrep-Flex (DP-Flex)

Default (DEF)
Random Search (RS)

AutoSklearn (AS) BoostClean (Clean)
Learn2Clean (LC)



Experiment Results

Our methods achieve the best test accuracy on 15 out of 18 datasets! 



Thank you!


