
Scaling a Declarative Cluster 
Manager Architecture 

with Query Optimization Techniques
Kexin Rong1,2, Mihai Budiu3, Athinagoras Skiadopoulos4, 

Lalith Suresh3, Amy Tai5
1 Georgia Tech, 2 VMware Research, 3 Feldera*, 4 Stanford, 5 Google

*Work done while at VMware



Cluster managers distribute workloads to resources

Infrastructure

Training

Workloads Containerize Cluster Managers

Inference

Hard to build L
2



Pods

Nodes

3

Running example: kubernetes scheduler



Place us on the 
same rack!

Do NOT place us 
on the same rack!

POD
§ 2GB RAM
§ 16GB disk
§ 1 core

Distribute us evenly!

30 types of hard and 
soft constraints

NP-Hard 
Multi-dimensional 
bin-packing with 

constraints

Nodes

4



How are cluster managers built?

5

Scalability? Decision quality? Extensibility?

Custom best-effort
heuristics for decisions

Ad-hoc data 
structures for 
cluster states

+

Can miss feasible solutionsChallenging with complex 
constraints

Hard to add new policies
and features



Cluster state
Database

SQL-like 
Constraints

Constraint
Solver

6

Generated 
Code

Up to 2x faster (p95) pod
placement than 

Kubernetes Scheduler
(500 node scale)

DCM [HotOS’19, OSDI’20]
a declarative approach to cluster management
Developers specify what the cluster manager should achieve, not how



Cluster state
Database

SQL-like 
Constraints

Constraint
Solver

7

Generated 
Code

This work [VLDB’23]

C-SQL

From enterprise clusters (102-103 nodes) to hyperscale clusters (104 nodes) 

Optimizations inspired by QO:
• Incremental view maintenance
• Predicate Pushdown

With a formal language C-SQL and query-optimization techniques



C-SQL: SQL variant for constraint optimization 

Pod Node Node Mem Overload

@Variable

?
?
?

Foreign Key

Variable 
Columns False

True
False

8

Each row in the variable column is a 
variable in the constraint solver



C-SQL: SQL variant for constraint optimization 

Pod Node Node Mem Overload

@Variable

?
?
?

CREATE CONSTRAINT avoid_mem_overload AS
CHECK pods.node IN 
    (SELECT node 
     FROM nodes
     WHERE nodes.mem_overload = false)

FROM pods

Hard 
Constraints False

True
False

Constraint: conditions 
that each row satisfies

Relation: select some rows 9



Pod Node Node Mem Capacity

@Variable

?
?
?

16GB
16GB
16GB

CREATE CONSTRAINT load_balance AS

MAXIMIZE MIN(spare_mem_capacity)

FROM spare_capacity_by_node

Node Spare Mem Capacity

?
?
?

Soft 
Constraints

10

C-SQL: SQL variant for constraint optimization 



C-SQL: SQL variant for constraint optimization 

<checkOrOptimize> ::= CHECK <expr> | MAXIMIZE <expr>

<constraint> ::= CREATE CONSTRAINT identifier AS
          <checkOrOptimize> FROM <relation>

<problem> ::= <constraint> [ , <constraint> ]*

Boolean 

Constraint evaluation and relation evaluation are two bottlenecks
Will address with QO-inspired techniques  

Numeric

Standard 
SQL

11



100 101 102 103 104

DDtDEDse LDtenFy (ms)
0.0

0.2

0.4

0.6

0.8

1.0

(m
pL

rLF
Dl

 C
D

)   DC0 (10x)

#1 Optimizing relation evaluation with IVM 

12

<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

p95 latency >5 sec
(500 node cluster)

Goal: sub-second overall latency for 50K-node cluster 

Workload: 2019 Azure public trace, pod arrival rate sped up by 10x



#1 Optimizing relation evaluation with IVM 

13

<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

=> make the work proportional to size of the changes, not the size of the databases 

Opportunity: In a datacenter with O(100K) pods, a typical scheduling decision 
might only involve O(100) pods at a time, triggered by job arrivals or completions

Solution: Automatically incrementalize the computation with IVM engine DDlog[1]

[1] Differential Datalog: https://github.com/vmware/differential-datalog
[2] Code available at: https://github.com/vmware/differential-datalog/tree/master/sql

• Support SQL features such as joins, aggregates, GROUP BY, HAVING, OVER, and UNION
• Significant engineering efforts (11K LoC) to build a SQL-frontend and SQL-to-DDlog compiler [2] 

https://github.com/vmware/differential-datalog
https://github.com/vmware/differential-datalog/tree/master/sql


100 101 102 103 104

DDtDEDse LDtenFy (ms)
0.0

0.2

0.4

0.6

0.8

1.0

(m
pL

rLF
Dl

 C
D

)

  DC0 (10x)
 +Lvm (10x)

Evaluation #1: Improved Performance 
Workload: 2019 Azure public trace[1], pod arrival rate sped up by 10x
Environment: simulated cluster with 500 nodes
Result: p95 latency reduces from >5 seconds to 1.7ms (3000x speedup)

[1] https://github.com/Azure/AzurePublicDataset

p95 latency



NODES

PODS

POD LABELS

MATCH
EXPRESSIONS

PENDING
PODS VIEW

FIXED
PODS VIEW

POD ANTI-AFFINITY
MATCH EXPRESSIONS

⋈,⋃
σ, %

σ, %

σ, %

σ, %

MATCHING
PODS VIEW

INTER POD
ANTI-AFFINITY
MATCHES VIEW

⋈

σ

σ, %

σ, %

σ

Added benefit of IVM: code simplification 

15
~2.8× reduction in code size from ~185 lines per policy to ~64 lines

Before DDlog, users simulate IVM for performance via split views and triggers

pod_to_assign 
(dynamic)
assigned_pods 
(static) 

Baseline
split-view



#2 Optimizing constraint evaluation with pushdowns 
<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

Opportunity: Certain constraints can be moved to relations without affecting correctness
Net effect: Reduce the optimization problem size

CREATE CONSTRAINT pod_affinity AS
CHECK (pods.has_pod_affinity = false) OR 
      (pods.node NOT IN (…))
FROM pods

CREATE CONSTRAINT pod_affinity AS
CHECK (pods.node NOT IN (…))
FROM pods
WHERE pods.has_pod_affinity = true

Feasibility-preserving 
constraint pushdown

16



Evaluation #2: Effect of Constraint Pushdown
Environment: simulated cluster with 500, 5k and 50k nodes
Result: sub-second scheduling latency at 50K node cluster size (reduced 
optimization problem sizes by over 300x without affecting correctness)

lower is better
1 sec



Scaling DCM with Query Optimization Techniques

Two query optimization inspired techniques 
• Incremental view maintenance for relation evaluation  

• Making work proportional to size of the changes, not the size of the databases 
• Predicate Pushdown for constraint evaluation 

• Pushing down constraints to reduce optimization problem size 

Net effect: sub-second scheduling latency on 50k-node clusters

18

<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

Code available at: https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23

C-SQL: SQL-variant for constraint optimization

https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23

