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Cluster managers distribute workloads to resources
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Running example: kubernetes scheduler
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How are cluster managers built?

5

Scalability? Decision quality? Extensibility?

Custom best-effort
heuristics for decisions

Ad-hoc data 
structures for 
cluster states

+

Can miss feasible solutionsChallenging with complex 
constraints

Hard to add new policies
and features



Cluster state
Database

SQL-like 
Constraints

Constraint
Solver
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Generated 
Code

Up to 2x faster (p95) pod
placement than 

Kubernetes Scheduler
(500 node scale)

DCM [HotOS’19, OSDI’20]
a declarative approach to cluster management
Developers specify what the cluster manager should achieve, not how



Cluster state
Database

SQL-like 
Constraints

Constraint
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Generated 
Code

This work [VLDB’23]

C-SQL

From enterprise clusters (102-103 nodes) to hyperscale clusters (104 nodes) 

Optimizations inspired by QO:
• Incremental view maintenance
• Predicate Pushdown

With a formal language C-SQL and query-optimization techniques



C-SQL: SQL variant for constraint optimization 

Pod Node Node Mem Overload

@Variable

?
?
?

Foreign Key

Variable 
Columns False

True
False
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Each row in the variable column is a 
variable in the constraint solver



C-SQL: SQL variant for constraint optimization 

Pod Node Node Mem Overload

@Variable

?
?
?

CREATE CONSTRAINT avoid_mem_overload AS
CHECK pods.node IN 
    (SELECT node 
     FROM nodes
     WHERE nodes.mem_overload = false)

FROM pods

Hard 
Constraints False

True
False

Constraint: conditions 
that each row satisfies

Relation: select some rows 9



Pod Node Node Mem Capacity

@Variable

?
?
?

16GB
16GB
16GB

CREATE CONSTRAINT load_balance AS

MAXIMIZE MIN(spare_mem_capacity)

FROM spare_capacity_by_node

Node Spare Mem Capacity

?
?
?

Soft 
Constraints
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C-SQL: SQL variant for constraint optimization 



C-SQL: SQL variant for constraint optimization 

<checkOrOptimize> ::= CHECK <expr> | MAXIMIZE <expr>

<constraint> ::= CREATE CONSTRAINT identifier AS
          <checkOrOptimize> FROM <relation>

<problem> ::= <constraint> [ , <constraint> ]*

Boolean 

Constraint evaluation and relation evaluation are two bottlenecks
Will address with QO-inspired techniques  

Numeric

Standard 
SQL
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#1 Optimizing relation evaluation with IVM 
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<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

p95 latency >5 sec
(500 node cluster)

Goal: sub-second overall latency for 50K-node cluster 

Workload: 2019 Azure public trace, pod arrival rate sped up by 10x



#1 Optimizing relation evaluation with IVM 
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<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

=> make the work proportional to size of the changes, not the size of the databases 

Opportunity: In a datacenter with O(100K) pods, a typical scheduling decision 
might only involve O(100) pods at a time, triggered by job arrivals or completions

Solution: Automatically incrementalize the computation with IVM engine DDlog[1]

[1] Differential Datalog: https://github.com/vmware/differential-datalog
[2] Code available at: https://github.com/vmware/differential-datalog/tree/master/sql

• Support SQL features such as joins, aggregates, GROUP BY, HAVING, OVER, and UNION
• Significant engineering efforts (11K LoC) to build a SQL-frontend and SQL-to-DDlog compiler [2] 

https://github.com/vmware/differential-datalog
https://github.com/vmware/differential-datalog/tree/master/sql
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Evaluation #1: Improved Performance 
Workload: 2019 Azure public trace[1], pod arrival rate sped up by 10x
Environment: simulated cluster with 500 nodes
Result: p95 latency reduces from >5 seconds to 1.7ms (3000x speedup)

[1] https://github.com/Azure/AzurePublicDataset

p95 latency
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Added benefit of IVM: code simplification 
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~2.8× reduction in code size from ~185 lines per policy to ~64 lines

Before DDlog, users simulate IVM for performance via split views and triggers

pod_to_assign 
(dynamic)
assigned_pods 
(static) 

Baseline
split-view



#2 Optimizing constraint evaluation with pushdowns 
<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

Opportunity: Certain constraints can be moved to relations without affecting correctness
Net effect: Reduce the optimization problem size

CREATE CONSTRAINT pod_affinity AS
CHECK (pods.has_pod_affinity = false) OR 
      (pods.node NOT IN (…))
FROM pods

CREATE CONSTRAINT pod_affinity AS
CHECK (pods.node NOT IN (…))
FROM pods
WHERE pods.has_pod_affinity = true

Feasibility-preserving 
constraint pushdown
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Evaluation #2: Effect of Constraint Pushdown
Environment: simulated cluster with 500, 5k and 50k nodes
Result: sub-second scheduling latency at 50K node cluster size (reduced 
optimization problem sizes by over 300x without affecting correctness)

lower is better
1 sec



Scaling DCM with Query Optimization Techniques

Two query optimization inspired techniques 
• Incremental view maintenance for relation evaluation  

• Making work proportional to size of the changes, not the size of the databases 
• Predicate Pushdown for constraint evaluation 

• Pushing down constraints to reduce optimization problem size 

Net effect: sub-second scheduling latency on 50k-node clusters
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<constraint> ::= CREATE CONSTRAINT identifier AS

          <checkOrOptimize> FROM <relation>

Code available at: https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23

C-SQL: SQL-variant for constraint optimization

https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23

