From Raw to Ready:
Optimizing Data Curation for
Machine Learning

Kexin Rong
VRG, 07/11/24

georgia © BROADCOM

The ML lifecycle in a bird's eye view

“Only a fraction of real-world ML systems is composed of ML code” 1]
ML = Model + Data

(o Collect raw data
e Collect labels

~

Data
Acquisition

BEF!
Preparation

¢ Data cleaning
e Data augmentation

N\

o Model Selection
e Hyperparameter
Tuning

¢ Training models
° .

Model
Development

\

Model
@ Caluation

¢ Making prediction

¢ Evaluating model
performance
. R

_

[1] Sculley, David, et al. "Hidden technical debt in machine learning systems." NeurlPS 2015

Data 1s the Bottleneck for ML

ML = Model +

Model is gradually commoditized S
e [Transformers for “all” tasks
e QOut-of-the-box invocation of ML libraries gives decent results

remains the bottleneck
- Collecting and storing raw di = \npat iS har
* Turning them into ML-ready (oot

4 about data?

ources:
https://www.techspot.com/news/98600-chatgpt-powered-hidden-army-contra

ctors-making-15-hour.html

Challenge #1: Raw data often requires
significant human cleaning efforts

ML demands high quality data, but real-world data often contains errors

Label: Fox

e : UN R/P . UN R/P : chrl.d Bank .
10%4] ~ 20%5! | Gini (%)© Ag 356t e

= Seychelles 65.8

[Comoros 64.3

BPZ Namibia 106.6 56.1 63.9

B= South Africa 33.1 17.9 63.1

— Botswana 43.0 20.4 61.0

Bl Haiti 54 .4 26.6 59.2

Bl Angola 58.6 l l

= Honduras 59.4 17.2 57.0 ;L —

,\:\ m" ,bu ».‘* g’p’ <,§o'bb. éo,\u /\%%b- P qu Qu @%x
Age

Missing Values Outliers Mislabels

Data Cleaning: Most Time-Consuming, Least
Enjoyable Data Science Task Forbes, 2016

Most Time-Consuming Least Enjoyable

® Cleaning & organizing data ® Collecting data sets
® Mining data for patterns Refining algorithms
® Building training sets m Others

Challenge #2: Data preprocessing can also
be a computation bottleneck

@:>

Storage Preprocessing) Training
Y on
:l"l.ﬂﬂl'lD cl:nnnb cl':.ﬂﬂl'lD —
dcPule glcrPufe d|cPulg GPU
(= =] G =] C =]

65% of epoch time

Analyzing and Mitigating Data Stalls in DNN Training, VLDB 2021

Challenge

3: Model Amplifies Data

S3lases

The model perpetuates and amplify human biases by aggregating the data,
resulting in a model that only performs well for the majority.

Example: Buolamwini and Gebru (2018). Gender Shades: Intersectional
Accuracy Disparities in Commercial Gender Classification

Accuracy (%)

—_

o

o
]

()]
o
|

Accuracy of Face Recognition Technologies
34.4%
|

20.8%|

33.7%
1

31.4%
!

22.5%

|
Microsoft

Face++

IBM
Face Recognition Technology

|
Amazon

Kairos

[Darker female
[Darker male
[Lighter female
1 Lighter male

And many more...

o ackof

O v -
Lineage and Data o e s SR
Provenance discovery 0 & Oeo
n — rriangle A A\ A\
Data _
g Integration ‘ s)

U Data) ‘ ar |
- Pr'vacy> - =

The data-centric perspective

Data curation is becoming a critical bottleneck in the ML lifecycle
« High-quality, ML-ready datasets

By optimizing data curation, we have opportunities to
« Save human time
« Save compute resources
* Even get a better model

Data Data Model —, Model
Acquisition Preparation Development Evaluation

This talk:

Data curation for ML

Automatic Data
Preprocessing
ML-aware preprocessing
pipeline search

(SIGMOD’23)

Framework + Hardware

Profiling

fine-grained profiling for
preprocessing pipelines

(WIP)

aa)

Data
Acquisition

\

Data
Preparation

\

Model
Development

\

Model
Evaluation

Fair active learning
fairness-aware label
acquisition
(VLDB’24)

10

This talk:

Data curation for ML

Automatic Data Data
Preprocessing Acquisition
ML-aware preprocessing

pipeline search

(SIGMOD’23)

I Data
Preparation

Model
Development
\

Model
Evaluation

11

DiffPrep: Differentiable Data
Preprocessing Pipeline Search
for Learning over Tabular Data

With Peng Li, Zhiyi Chen and Xu Chu

Georgia
Tech.

Data preprocessing Is an essential step in ML

Raw data collected from data sources can rarely be used directly by ML models
due to the existence of data issues (e.g., data errors, different feature scales).

Data Model
(" YA Preprocessing AN AWl Evaluation |}

» Collecting raw « Data Cleaning » Model Selection « Making Prediction
data from data « Normalization * Hyper-parameter « Evaluating model
sources Discretization Tuning performance

. « Training models .

__ Data J J Model y, _)
Acquisition Training

Designing a data preprocessing pipeline is challenging

Data Preprocessing Pipeline is a sequence of operators, where each operator
tackles one specific data issue.

:> Remove outliers :> Normalize data
with Z-score with Standardization

Complex design decisions
* Types: should we include outlier removal?
« QOperators: should we use standardization or min-max normalization?
« QOrder: should we remove outlier before or after normalization?

. FeattTJre-wise: different features use different pipelines?

Exponentially increases the design space

14

Limitations in Existing Methods
--mm

PraCtiO ners X X X Random Search
o Use a default pipeliﬂe or Azure v X X X Bayesian Optimization
. Auto-Sklearn v v X X Bayesian Optimization
trial-and-error methods. Leamn2Clean / / / « Q-Learning
DiffPrep-Fix v v X v Bi-level Optimization with
DiffPrep-Flex J J J J Gradient Descent

Traditional Data Cleaning Work
» Design pipelines that optimize data quality independently of ML.

« Data qguality may not be accessible, and it may not lead to the optimal
ML performance.

Existing AutoML Systems
e Limited search space.
« [rain model multiple times.

DiffPrep: Automate Data Preprocessing

Goal: automatically and efficiently select a data preprocessing pipeline from the
search space such that the model performance (validation accuracy) is maximized.

Outer level: argmin Loss (D,,;, pipeline, model™)
pipline
Inner level: s.t. model™ = argmin Loss (, pipeline, model)
model

“Bi-level Optimization”

Compared with existing AutoML systems:

» Explore the entire design space of data preprocessing pipelines (types,
operators, order, feature-wise).

* Only need to train ML model once.

Solving the bi-level optimization problem

Outer level: argmin Loss (D,,,;, pipeline, model™)
pipline
Inner level: s.t. model™ = argmin Loss (, pipeline, model)
model

Naive Approach: Train a ML model with every possible pipeline and select the

best one. This does not work as the space is very large -- O(m?®¢) with m choices,
s transformations, c feature.

Key challenge: The search space of pipelines is discrete.

Can we convert the discrete search space into a continuous and
differentiable space? -- Then we can use gradient descent

Step 1: Parameterization

Goal: Represent each choice of pipeline using a set of binary parameters
Let's first assume we have a predefined order of transformation.

-

MV Outlier Normalization
Imputation Removal
— //-
\ . 4) N ’ 14
X == s (meciaf .. - o D) | A | X
X xi =) PBijfij(xi-1)
AL % I Y i
- ﬁlg — 0 - - p
- AN J y x'(x, B)
Associate each operator with a f;; € {0,1} L (Dya1, B)

L (D train» ﬁ)

0 Otherwise

1 f;; is selected _

18

Step 2: Relaxation

Rel
Associate each operator witha f;; € {0,1} X g, Bi; € [04]
Bij = {1 fij is selected

0 Otherwise

To retain constraints);; ;; = 1, use softmax function, 7;; € R

__exp(7ij)
2k exp(Tix)

ﬁij

* Order selection can be supported using a similar methodology of
parameterization (permutation matrix) + relaxation (Sinkhorn normalization)

Gradient-based Bi-level Optimization

lteratively and alternatively
« update pipeline parameters using gradient of validation loss
* update model parameters using gradient of training loss

Algorithm 1 Learning Model and Pipeline Parameters via Gradient
Descent

Require: S, Dtrain, Dyl
Ensure: ff, w
1: while not converged do
2. Update underlying parameters for f: T = t—n1 VL, (B, w—
n2VwLtrain(B,w))
3: Update model parameters:w =w — 12V, Lirqin (B(T), W)
4: return a,w

We can learn pipeline and model parameters simultaneously
by training model only once!

20

—xXperiment Setup

Datasets: 18 real-world datasets
Model: Logistic regression

Search Space:

Transformation Types

Transformation Operators

Missing Value
Imputation

Mean
Median
Mode

Numerical
Features

Categorical | Most Frequent Value
Features Dummy Variable

Normalization

Standardization
Min-Max Scaling
Robust Scaling
Max Absolute Scaling

Outlier
Removal

Z-Score (k)
MAD (k)
IQR (k)

Discretization

Uniform (n)
Quantile (n)

Missing value imputation, Outlier removal, Discretization, Normalization

Methods compared:

Our methods Practical Methods

DiffPrep-Fix (DP-Fix) Default (DEF)
DiffPrep-Flex (DP-Flex) Random Search (RS)

AutoML Systems

AutoSklearn (AS)

Advanced Data
Cleaning Methods

BoostClean (Clean)
Learn2Clean (LC)

Experiment Results — Model Accuracy

Data Characteristics Test Accuracy
Dataset #Ex. #Feat. #classes #MVs #Out. | DEF RS AS LC BC [|DP-Fix DP-Flex
abalone 4177 9 28 0 200 | 0.24 0.243 0.216 0.186 0.168
ada_prior 4562 15 2 88 423 | 0.8348 0.844 0.8353 0.816 0.8438
avila 20867 11 12 0 4458 | 0.553 0.598 0.615 0.597 0.585
connect-4 67557 43 3 0 45873 | 0.659 0.671 0.667 0.658 0.69
eeg 14980 15 2 0 209 | 0.589 0.658 0.657 0.641 0.659
google 9367 9 2 1639 109 | 0.586 0.627 0.664 0.549 0.616
house 1460 81 2 6965 617 | 0.928 0.938 0.945 0.812 0.928
jungle_chess 44819 7 3 0 0 0.668 0.669 0.678 0.676 0.667
micro 20000 21 5 0 8122 | 0.564 0.579 0.584 0.582 0.561
mozilla4 15545 6 2 0 290 | 0.855 0.922 0.931 0.854 0.93
obesity 2111 17 7 0 25 | 0.775 0.841 0.737 0.723 0.652
page-blocks 5473 11 5 0 1011 | 0.942 0.959 0.969 0.92 0.951
pbcseq 1945 19 2 1445 99 0.71 073 0.712 0.704 0.72
pol 15000 49 2 0 8754 | 0.884 0.879 0.877 0.737 0.903
run_or_walk 88588 7 2 0 8548 | 0.719 0.829 0.851 0.728 0.835
shuttle 58000 10 7 0 5341 | 0.964 0.996 0.998 0.997 0.997
uscensus 32561 15 2 4262 2812 | 0.848 0.84 0.851 0.786 0.848
wall-robot-nav | 5456 25 ! 0 1871 | 0.697 0.872 0.869 0.69 0.9

DiffPrep achieves the best test accuracy on 15 out of 18 datasets!

Experiment Results — Runtime

_>5000 __6000
€ 4000 T X € 5000 A
o a o A
£ X £ 4000
= 3000 & = A
- A 3000 A $
22000 T X 2
= * @ ® £ 2000 A A °
c A ¥ = ®
S 1000 X o © ©® S1000, o o @ ° % X
o ® o & § ¥ ¥ x x X

0 %—%— XX X X X 0

10K 20K 30K 40K 50K 60K 70K 80K 90K 10K 20K 30K 40K 50K 60K 70K 80K 90K
Examples # Examples
xDefault xRS wAS +LC «BC eDP-Fix DP-Flex X Default ® DP-Fix 4 DP-Flex
(a) Logistic Regression (b) Two-layer Neural Network

DiffPrep is faster than other approaches like AutoSklearn and RandomSearch

23

DIffPrep: Automate Data Preprocessing

(Optional)
{ H]—v[] Preprocessing
Prototype

/ Mv \ / Outlier \ / . \
. Normalization
Imputation Removal
A0 \-//j standardiz =
mean S AN NN P .
[4 > T, ation
Tabular Dataset freq value AP mMAD Y IR Differentiable
\ L L J ML model

Novel bi-level optimization problem that enables:
« Large pipeline search space
e [rain model only once

24

This talk: Data curation tor ML

Automatic Data Da.t.a.

Preprocessing Acquisition
ML-aware preprocessing

pipeline search

SIGMOD'23) s
reparation
Model
Framework + Hardware Development
Profiling
fine-grained profiling for \
preprocessing pipelines Model
(WIP)

@ Evaluation

25

LOTUS: Characterization of Machine
L earning Preprocessing Pipelines via
Framework and Hardware Profiling

Georgia
Tech.

Preprocessing In ML training jobs

Storage Preprocessing Training

transforms.Compose([
transforms.RandomResizedCrop(..),
transforms.RandomHorizontalFlip(..),
transforms.Normalize(...)])

\ J
Y

27

Preprocessing performance matters

1.0) :
« Google’s profile numbers:
208
-éo.e e Low latency batch generation
%04 required (< 1 ms)
Zo2 e 20% jobs spend > 33%
- compute time in ingestion
0.0 0.2 0.4 0.6 0.8 1.0
Fraction of job compute time spent in input pipeline
tf.data, VLDB 2021| cedar, arxiv 2024
Especially in

* ML training jobs that demands low latency
» Systems with a CPU-to-accelerator ratio imbalance

28

Many preprocessing optimization

Accelerator Offloading

Parallelization (NVIDIA DALI)
(Plumber [MLSys’22], tf.data [VLDB’21])

Caching Optimizations
(tf.data service, Cachew [ATC’22], FFCV [CVPR’23], Where Is My Training
Bottleneck? [SIGMOD’22])

Disaggregated Preprocessing
(GoldMiner [SIGMOD’23], cedar
[arXiv’'24])

Optimization rely on understanding of the performance bottlenecks!

29

Limitation of Current Profiling Tools

Connecting python functions to their performance on CPU hardware

Preprocessing operations are declared in Python!
[Python function 1

For hardware profilers (e.g., Intel Vtune, AMD uProf): 9

e Hardware profilers collect performance numbers

for C/C++ functions [C/C++ function }

e Exact stack trace from Python function to C/C++ HW | profiler
functions called is missing v

[HW perf #s 1

30

Limitation of Current Profiling Tools

Fine-grained tracing of preprocessing stage with low overhead

Sampling-based Python profilers: Scalene, py-spy, austin
« Limited by sampling interval (e.g., 1-10ms by default)

* "Fine-grained” events (e.q., duration of individual operator)

as short as 100us

PyTorch Profiler

* Does not capture actual
preprocessing operations on the
WOrker processes

Ve

-

DataLoader worker 1

~

J

Preprocess
(batch 1)

s

-

DataLoader worker 2

~N

J

Scalene OSDI’23 | py-spy https://github.com/benfred/py-spy | austin https://github.com/P403n1x87/austin

Preprocess
(batch 2)

\

™~

1

ok

https://github.com/benfred/py-spy
https://github.com/P403n1x87/austin

LOTUS: Profiling Tool for Preprocessing Pipelines®

Enable reasoning of performance of preprocessing pipelines at a
hardware level

4)

LotusTrace
Fine-grained tracing of preprocessing stage with low overhead

_ /

4)
LotusMap

Connecting python functions to their performance on CPU hardware
_ /

* Current implementation targets PyTorch’s Datal.oader preprocessing library »

LotusTrace: Fine-grained tracing with low overhead

1]
2]
T3]

Declarative specification =>
Instrumentation while
ensuring generalizability

O 0 N N e W N =

—
o

11

(4
o

—
= W

import torchvision.transforms as transforms
import torchvision.datasets as datasets
custom_log_file = <To use our instrumentation>
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose ([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
1, log_transform_elapsed_time=custom_log_file),
log_file=custom_log_file

)

Total preprocessing time for a specific batch ~ per batch variance

Time taken by each preprocessing operation in a batch ~ dominant ops

Time the main process spent waiting for a specific batch to finish being
preprocessed by a DatalLoader worker ~ GPU idle time

33

Tracing visualization

Example image classification pipeline from MLPerf

Arrow from preprocessing event to

batch consumption Main process waiting for batch to finish
|12605 ‘ ‘ . . |12705 |1280s .
v Process 652292
Main v 652292 SB »y» SBatchWait 699 » » SBatchWait_703 ») SBatchWait_707 »
Process
__ v Process 652303
652303 SBatchPreprocessed_704 SBaichPreprocessed_708 g
v Process 652335
652335 SB SBatchPreprocessed_701 SBatchPreprocessed_705 SBatchPreprocessed_709
Data 2 | process 652367
loaders | 652367 s SBaichPreprocessed_706 SBatchPreprocessed_710 SBatchPreprocessed_714
v Process 652399
652399 SBa SBatchPreprocessed_699 SBatchPreprocessed 703 SBatchPreprocessed 707

Bottleneck: prepeocessing

34

Tracing visualization

Example image segmentation pipeline from ML Perf variation in per batch preprocessing time

|. . . |34s)) .) |365)) .) |385) . . / |40s . . .) |42s . .) . |44
— v Process 377843

Main | v 377843 > > > N > > > ../,. . ; ; : ;
pProcess

L~ Process 377944
377944 SBa..
v Process 377976
377976 |
v Process 378008
378008]
v Process 378040
378040
Data - v Process 378072 ’
loaders | 378072 | 5 SBatchPrepro..
|
|
|

(V]

SRa

SRatchPrepro. . SBa

v Process 378104
378104

v Process 378136
378136

SRatc. . SRa

v Process 378168
378168

Bottleneck: GPU

35

LotusMap: Python func <=> hardware events

Missing piece: mapping from Python functions to C++ function

Transformation Function
[Pyt hon function 1 Image.convert decompress_onepass ™\
(Loader) jpeg_idct_islow
jpeg_idct_16x16
LotusMap ycc_rgb_convert
v decode_mcu
C/C++ functi Python funcs ImagingUnpackRGB >\
unction __memset_avx2_unaligned_erms
__memmove_avx_unaligned_erms C/ C++ funcs
. libc_calloc
HW | profiler E———
v RandomResizedCrop __memmove_avx_unaligned_erms

[HW Perf #s }

_int_free
ImagingResampleHorizontal 8bpc
ImagingResampleVertical 8bpc

Mapping can be precomputed offline

36

Case study: Impact of #

E2E job elapsed time

Datal_.oaders

1200 A

1000 A

800 -

600 -

Elapsed Time (s)

400 A

200

Diminishing performance gains with
high data loaders

\

12 16 20 24 28
Dataloaders

Legend for (b)

E Collation B |oader

CPU secs

Normalize

Preprocessing time per operation

14000 A

12000 A

10000 A

8000 A

6000 -

4000 A

2000 +

=\

53% increase P3Torch
Why? I

Ra

24 28
(b)
ndomHorizontalFlip ™88 RandomResizedCrop W ToTensor

Dataloaders

37

Front-end bound

0.0

Case study: Impact of #

Preprocessing stage becomes front-end bound
with more cores (dataloaders)

Filter out C/C++ functions irrelevant to preprocessing

(c)

Dataloaders

Legend for (e)

I Collation

ARRRRRRRRNINE)

B |oader

ycc_rgb_convert
vgetargsl_impl

up_read

tupledealloc

tuple_alloc

skb_seq_read

read_markers

pymalloc_alloc
omp_get_max_threads
object_dealloc
jpeg_read_scanlines
jpeg_idct_islow
jpeg_idct_16x16
Jpeg_fill_bit_buffer

generic\ file\ buffered\ read
extd_mpage_readpages
down_read_trylock

down_read

do_mkvalue
decompress_onepass
decode_mcu
¢10::impl::OperatorEntry::lookup
arena_map_get
add_kernel(float)

\Lint_free
__tls_get_addr_slow
__tls_get_addr
__pthread_mutex_unlock_usercnt
__pthread_cond_signal
__memset_avx2_unaligned_erms

Normalize

__memmove_avx_unaligned_erms
__libc_calloc
__do_page_cache_readahead
__GI_getenv

_Py_NewReference

_Py_INCREF

_Py_DECREF
_PyRuntimeState_GetThreadState
_PyEval_EvalFrameDefault
_PyDict_LoadGlobal
PyVectorcall_Function

PyObject_GetAttr

PyEval_SaveThread
PyEval_RestoreThread
ImagingUnpackRGB
ImagingResampleVertical_8bpc
ImagingResampleHorizontal_8bpc
ImagingPackRGB

ImagingjpegDecode

ImagingFlipLeftRight
AVX2::div_true_kernel(float)
AVX2::direct_copy_kernel(unsigned char)
AVX2::direct_copy_kernel(float)
AVX2::copy_kernel(char**long const*, long

RandomHorizontalFlip

Datal_.oaders

[e)]

Core Bound

0.75

Front-End Bound

0.50

0.25

0.00

8 12

6x decrease in

core contention

AN
h

Dataloaders

~75% undersupply

in uOps

Dataloaders

B RandomResizedCrop

24

-
28

28

E ToTensor

38

LOTUS: Profiling Preprocessing Pipelines

o LotusTrace enables insights into the high level behavior of an ML
pipeline through finer granularity trace

o LotusMap enables insight into the HW performance of
preprocessing operations through a mapping methodology

o More workload characterization in the paper

39

This talk: Data curation tor ML

Automatic Data BEIY
Preprocessing Acquisition
ML-aware preprocessing }
pipeline search
: Data
(SicMoD23) - FEH Preparation
¥
Model
Profiling
fine-grained profiling for \
preprocessing pipelines Model
(WIP)

@ Evaluation

Fair active learning
fairness-aware label
acquisition
(VLDB’24)

40

VILDBZ2024

GUANGZHOU

FALCON: Fair Active Learning
using Multi-armed Bandits

With Ki Hyun Tae, Hantian Zhang, Jaeyoung Park, and Steven Euijong Whang

Georgia
KAIST Toch:

Active Learning:

Reduce data annotation cost

e (Given an unlabeled dataset
e Selects samples to label for maximizing accuracy under a fixed budget

Inference e.g., highest entropy samples

Unlabeled data

< > I Train
>
| [= e

Model

42

Impact of Active Learning on Fairness

o Labeling more samples could worsen fairness
- To improve DP, we want more samples from the target subgroup
(attribute=female, label=positive)
- What if the sample has a different label (attribute=female, label=negative)?
- |t decreases the positive prediction rate of Female and thus worsens DP

Demographic Parity (DP): Similar positive
prediction rate across sensitive groups

p(f = 1|z = female) < p(j = 1|z = male)

43

Our Setup: Fair Active Learning

e Selects samples to label for maximizing under a fixed budget
e Supports any group fairness of binary classification models

Inference

\
>

Unlabeled data
~— -

I Train

| I unfair

> Label
Labeled) Labeler

44

—alcon: Fair Active Learning

1. Select subgroups to label and uses a trial-and-error method to handle
unknown ground-truth labels

2. ldentity the most informative samples for fairness using adversarial MABs
3. Balance fairness and accuracy by alternating with traditional AL

Falcon

Fairness only

Combine
with AL

Select target
subgroup

Subgroup Labeling for Fairness

« Key strategy: increase the labeling of specific subgroups
o Subgroup is defined using attributes and labels, e.qg., (attribute=female,
label=positive)
o Any group fairness measure can be expressed as a function of
subgroup accuracies

Step 1

Select Target
Subgroup

Subgroup Labeling for Fairness

Key strategy: increase the labeling of specific subgroups
> Subgroup is defined using attributes and labels, e.qg.,
(attribute=female, label=positive)
o Any group fairness measure can be expressed as a function of
subgroup accuracies

*See paper for other

Demographic Parity (DP): Similar positive measures
prediction rate across sensitive groups

p(§ = 1|z = female) < p(§ = 1|z = male)

Target

SuUbgroups (attribute=female, label=positive) (attribute=male, label=negative)

47

Handling Unknown Ground Truth Labels

e However, ground truth labels are not available in an AL setting
e Adding samples with undesired labels can negatively affect fairness

p(g = 1|z = female) < p(y = 1|z = male)

(attribute=female, label=peositive)

|

negative

Trial-and-error Strategy

o Select samples in the target sensitive group to label, but postpone using
them in model training when they turn out to have undesirable labels
o Postponing undesired samples is critical for improving fairness

p(g = 1|z = female) < p(y = 1|z = male)

(attribute=female, label=positive)

Informativeness for Fairness

e \Which sample is the most informative for fairness when using
trial-and-error?

e Improves the target group’s accuracy the most and also has a
desired label

Step 2

Select Sample

Trade-off b/w Informativeness and Postpone Rate

Key observation: the more informative a sample is for improving the target group’s
accuracy, the less likely it has the target label
- Sample A increases the target group accuracy more than B if positively
labeled, but is less likely to have a positive label

Assume decision boundary ! N
I Target = Posit
should be shifted to left arget Group = Positive

X 3
- <
AN K8

O O
B A

- . o .

&3

&3 (O Positive label (target) O
$3 Negative label

" X /\ Unlabeled

Policies: amount of risk taken

e The more “risk” we are willing to take for finding an informative
sample, the less likely it has the desired label

o \We capture this risk taking as a policy “r’ = ¢ for each target group
o Selects a sample whose predicted probability for the target label
closest to (1 - ¢)

| r=07 1r=05 | r=03
Vg B 0 10
s 4P 4 4
&3 : (O Positive label (target) O
3 & ' | €3 Negative label
| /\ Unlabeled

Challenge: Optimal policy changes over time

The optimal policy varies as we label more samples
o Thereis no clear trend across the datasets

1.0
o G)QG-
S 0.8 éos
% A
a 0.6 o i
o 0 0.4
K £ 0.3
0.2+ , ' , , . | |
0 1000 2000 3000 0 1000 2000 3000
Budget (3000) Budget (3000)

TravelTime (DP) Employ (DP)

54

Multi-armed Bandit (MAB) for Policy Search

: No assumptions about the reward distribution
o More conservative, but have theoretical guarantees

We use EXP3 as a representative algorithm

o Key idea: some arms may later be useful, keep on giving each arm a
chance to be selected

o Selection probability = Accumulated reward + Uniform distribution
A

o
(117 p
|!| : Arm: policy
I Reward: fairness improv.

55

Combined with AL for Accuracy

Alternates between fair and accurate labeling probabilistically
> Improves fairness with A probability and accuracy with (1 — A) probability
o A higher A indicates better fairness

No modifications for the AL methods

Step 3

Combined
with AL

Experiment Setup

Methods compared: 3 Entropy
° Entropy: Standard AL s Random
« Random: Uniform random samples A FAL
* FAL: First fair active learning algorithm D-FA2L
e D-FA2| * Di _ i
D-FA-L: Disagreement-based AL algorithm & Falcon
Datasets Dataset |Dtrain|/|Dun|/|Dtest|/|Dvall ~Sen. Attr Batch B
TravelTime 2,446/48,940/24,470/2,446 gender 10 4K
Employ 5,432/162,960/81,480/5,432 disability 10 4K
Income 3,188/63,760/31,880/3,188 race 10 4K

COMPAS 294/2,356/1,178/294 gender 1 200

57

Accuracy and Fairness Tradeof

« [alcon shows the best accuracy and fairness trade-oft
o Also, similar results for other datasets, fairness measures, and ML models

1.00; ¢

Test DP Score
o o o
B (o)) (0]
=)) o

o
N
o

\ 4

\ 4
<>+ O

¢

Original
Entropy
Random
FAL
D-FAZL
Falcon

0.66 0.68 0.70 0.72 0.74 0.76 0.78

[1] FAL (Anahideh et al., ESA 2022)
[2] D-FA2L (Cao et al., IJCNN 2022)

Test Accuracy
TravelTime (DP)

Test DP Score

0.60;

o
5
©

0.40;

0.30;

¢

\ 4

0“
Ex3

o AA

0.82 0.83 0.84 0.85
Test Accuracy

Employ (DP)

58

—alcon Summary

1. Select subgroups to label and
uses a trial-and-error method
to handle unknown ground-
truth labels

2. Automatically selects the best
sampling policy using
adversarial MABs

3. Balances fairness and
accuracy by alternating its
selection for fairness with
traditional AL

Group Fairness

Measure

{

Target
Subgroups

<_Validation
Data

............. *

Model
Training

Reward
—

Adversarial

MABs

Labeled

labels

Samples
Target
class?

Postponed

Policy

(F

Sample Selection

air AL/ AL)

Unlabeledé
< data

v

Labeler

This talk:

Data curation for ML

Automatic Data
Preprocessing
ML-aware preprocessing
pipeline search

(SIGMOD’23)

Framework + Hardware

Profiling

fine-grained profiling for
preprocessing pipelines

(WIP)

aa)

Data
Acquisition

\

Data
Preparation

\

Model
Development

\

Model
Evaluation

Fair active learning
fairness-aware label
acquisition
(VLDB’24)

60

