
From Raw to Ready:
Optimizing Data Curation for

Machine Learning
Kexin Rong

VRG, 07/11/24

• Collect raw data
• Collect labels
• …

Data
Acquisition

• Data cleaning
• Data augmentation
• …

Data
Preparation • Model Selection

• Hyperparameter
Tuning

• Training models
• ..

Model
Development

• Making prediction
• Evaluating model

performance
• …

Model
Evaluation

2

The ML lifecycle in a bird's eye view

[1] Sculley, David, et al. "Hidden technical debt in machine learning systems." NeurIPS 2015

ML ≈ Model + Data
“Only a fraction of real-world ML systems is composed of ML code” [1]

Data is the Bottleneck for ML

3

Model is gradually commoditized
● Transformers for “all” tasks
● Out-of-the-box invocation of ML libraries gives decent results

Data remains the bottleneck
• Collecting and storing raw data is becoming cheaper
• Turning them into ML-ready datasets is not

Sources:
https://www.techspot.com/news/98600-chatgpt-powered-hidden-army-contractors-making-15-hour.html

What is hard about data?

ML ≈ Model + Data

Challenge #1: Raw data often requires
significant human cleaning efforts

4

Missing Values Outliers Mislabels

Label: Fox

ML demands high quality data, but real-world data often contains errors

Data Cleaning: Most Time-Consuming, Least
Enjoyable Data Science Task Forbes, 2016

5

57%

21%

3%

4%

10%

5%

Least Enjoyable

60%19%

9%

4%
3%

5%

Most Time-Consuming

Storage Preprocessing Training
on

65% of epoch time

Analyzing and Mitigating Data Stalls in DNN Training, VLDB 2021
6

Challenge #2: Data preprocessing can also
be a computation bottleneck

Challenge #3: Model Amplifies Data Biases

7

The model perpetuates and amplify human biases by aggregating the data,
resulting in a model that only performs well for the majority.

Example: Buolamwini and Gebru (2018). Gender Shades: Intersectional
Accuracy Disparities in Commercial Gender Classification

Data
Privacy

Data
Integration

Lineage and
Provenance

Data
discovery

Lack of
Labels

And many more…

8

The data-centric perspective
Data curation is becoming a critical bottleneck in the ML lifecycle
• High-quality, ML-ready datasets

9

By optimizing data curation, we have opportunities to
• Save human time
• Save compute resources
• Even get a better model

Data
Acquisition

Data
Preparation

Model
Development

Model
Evaluation

This talk: Data curation for ML

10

Framework + Hardware
Profiling

fine-grained profiling for
preprocessing pipelines

(WIP)

Automatic Data
Preprocessing

ML-aware preprocessing
pipeline search
(SIGMOD’23)

Fair active learning
fairness-aware label

acquisition
(VLDB’24)

Data
Acquisition

Data
Preparation

Model
Development

Model
Evaluation

This talk: Data curation for ML

11

Automatic Data
Preprocessing

ML-aware preprocessing
pipeline search
(SIGMOD’23)

Data
Acquisition

Data
Preparation

Model
Development

Model
Evaluation

DiffPrep: Differentiable Data
Preprocessing Pipeline Search
for Learning over Tabular Data

With Peng Li, Zhiyi Chen and Xu Chu

Data preprocessing is an essential step in ML
Raw data collected from data sources can rarely be used directly by ML models
due to the existence of data issues (e.g., data errors, different feature scales).

Designing a data preprocessing pipeline is challenging
Data Preprocessing Pipeline is a sequence of operators, where each operator
tackles one specific data issue.

Complex design decisions
• Types: should we include outlier removal?
• Operators: should we use standardization or min-max normalization?
• Order: should we remove outlier before or after normalization?
• Feature-wise: different features use different pipelines?

Exponentially increases the design space

Impute MV
with Mean Imputation

Remove outliers
with Z-score

Normalize data
with Standardization

14

Limitations in Existing Methods
Practioners
• Use a default pipeline or

trial-and-error methods.

Traditional Data Cleaning Work
• Design pipelines that optimize data quality independently of ML.
• Data quality may not be accessible, and it may not lead to the optimal

ML performance.

Existing AutoML Systems
• Limited search space.
• Train model multiple times.

DiffPrep: Automate Data Preprocessing
Goal: automatically and efficiently select a data preprocessing pipeline from the
search space such that the model performance (validation accuracy) is maximized.

argmin
!"!#"$%

𝐿𝑜𝑠𝑠	(𝐷&'#, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙∗)

 𝑠. 𝑡. 𝑚𝑜𝑑𝑒𝑙∗ = argmin
)*+%#

𝐿𝑜𝑠𝑠	(𝐷,-'"$, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙)

“Bi-level Optimization”

Outer level:

Inner level:

Compared with existing AutoML systems:
• Explore the entire design space of data preprocessing pipelines (types,

operators, order, feature-wise).
• Only need to train ML model once.

Solving the bi-level optimization problem
argmin
!"!#"$%

𝐿𝑜𝑠𝑠	(𝐷&'#, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙∗)

 𝑠. 𝑡. 𝑚𝑜𝑑𝑒𝑙∗ = argmin
)*+%#

𝐿𝑜𝑠𝑠	(𝐷,-'"$, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙)

Outer level:

Inner level:

Can we convert the discrete search space into a continuous and
differentiable space? -- Then we can use gradient descent

Key challenge: The search space of pipelines is discrete.

Naive Approach: Train a ML model with every possible pipeline and select the
best one. This does not work as the space is very large -- O(𝑚𝑠𝑐) with m choices,
s transformations, c feature.

Step 1: Parameterization
Goal: Represent each choice of pipeline using a set of binary parameters
Let‘s first assume we have a predefined order of transformation.

𝑥
𝑓!!(mean)

𝑓!" (median)

MV
Imputation

…

𝑓"!

𝑓"" (𝑍score)

Outlier
Removal

…

𝑓#!

𝑓#"

Normalization

…

𝑥′

Associate each operator with a 𝛽". ∈ {0,1}

/
!

𝛽!" = 1

𝑥3 𝑥, 𝜷
𝐿	(𝐷&'#, 𝜷)
𝐿	(𝐷,-'"$, 𝜷)

𝛽!! = 1

𝛽!" = 0

𝛽!# = 0

𝑥! =%
!

𝛽!"𝑓!"(𝑥!#$)

18

Step 2: Relaxation

𝜷: 𝛽". ∈ [0,1]
Relax

To retain constraints ∑" 𝛽". = 1, use softmax function, 𝜏". ∈ ℝ

19

Associate each operator with a 𝛽". ∈ {0,1}

* Order selection can be supported using a similar methodology of
parameterization (permutation matrix) + relaxation (Sinkhorn normalization)

Gradient-based Bi-level Optimization
Iteratively and alternatively
• update pipeline parameters using gradient of validation loss
• update model parameters using gradient of training loss

We can learn pipeline and model parameters simultaneously
by training model only once!

20

Experiment Setup
Datasets: 18 real-world datasets

Model: Logistic regression

Search Space:
 Missing value imputation, Outlier removal, Discretization, Normalization

Methods compared:

Our methods Practical Methods AutoML Systems Advanced Data
Cleaning Methods

DiffPrep-Fix (DP-Fix)
DiffPrep-Flex (DP-Flex)

Default (DEF)
Random Search (RS)

AutoSklearn (AS) BoostClean (Clean)
Learn2Clean (LC)

Experiment Results – Model Accuracy

DiffPrep achieves the best test accuracy on 15 out of 18 datasets! 22

Experiment Results – Runtime

23

DiffPrep is faster than other approaches like AutoSklearn and RandomSearch

DiffPrep: Automate Data Preprocessing

Tabular Dataset

mean

mean

MV
Imputation

freq value

Z-score (2)

Z-score (3)

Outlier
Removal

MAD

min-max

standardiz
ation

Normalization

IQR Differentiable
ML model

24

Novel bi-level optimization problem that enables:
• Large pipeline search space
• Train model only once

(Optional)
Preprocessing
Prototype

Missing
Value Outlier Normalization

This talk: Data curation for ML

25

Framework + Hardware
Profiling

fine-grained profiling for
preprocessing pipelines

(WIP)

Automatic Data
Preprocessing

ML-aware preprocessing
pipeline search
(SIGMOD’23)

Data
Acquisition

Data
Preparation

Model
Development

Model
Evaluation

LOTUS: Characterization of Machine
Learning Preprocessing Pipelines via
Framework and Hardware Profiling
With Rajveer Bachkaniwala, Harshith Lanka, and Ada Gavrilovska

26

transforms.Compose([
 transforms.RandomResizedCrop(…),
 transforms.RandomHorizontalFlip(…),
 transforms.Normalize(...)])

Preprocessing in ML training jobs

27

Storage Preprocessing Training

Preprocessing performance matters

Especially in
• ML training jobs that demands low latency
• Systems with a CPU-to-accelerator ratio imbalance

28

Google’s profile numbers:

● Low latency batch generation
required (< 1 ms)

● 20% jobs spend > 33%
compute time in ingestion

tf.data, VLDB 2021| cedar, arxiv 2024

Many preprocessing optimization

29

Parallelization
(Plumber [MLSys’22], tf.data [VLDB’21])

Caching Optimizations
(tf.data service, Cachew [ATC’22], FFCV [CVPR’23], Where Is My Training

Bottleneck? [SIGMOD’22])

Disaggregated Preprocessing
(GoldMiner [SIGMOD’23], cedar

[arXiv’24])
Co-location and scheduling

(Revamper [ATC’21], SiloD [EuroSys’23])

Accelerator Offloading
(NVIDIA DALI)

Optimization rely on understanding of the performance bottlenecks!

Limitation of Current Profiling Tools

30

Connecting python functions to their performance on CPU hardware

For hardware profilers (e.g., Intel Vtune, AMD uProf):

● Hardware profilers collect performance numbers
for C/C++ functions

● Exact stack trace from Python function to C/C++
functions called is missing

C/C++ function

HW perf #s

Python function

?

HW profiler

Preprocessing operations are declared in Python!

Limitation of Current Profiling Tools

31

Sampling-based Python profilers: Scalene, py-spy, austin
• Limited by sampling interval (e.g., 1-10ms by default)

• ”Fine-grained” events (e.g., duration of individual operator)
as short as 100us

Scalene OSDI’23 | py-spy https://github.com/benfred/py-spy | austin https://github.com/P403n1x87/austin

Fine-grained tracing of preprocessing stage with low overhead

PyTorch Profiler
• Does not capture actual

preprocessing operations on the
worker processes

Preprocess
(batch 2)

1Idle 2

Preprocess
(batch 1)

DataLoader worker 1

DataLoader worker 2

Main process

https://github.com/benfred/py-spy
https://github.com/P403n1x87/austin

LOTUS: Profiling Tool for Preprocessing Pipelines*

Enable reasoning of performance of preprocessing pipelines at a
hardware level

32
* Current implementation targets PyTorch’s DataLoader preprocessing library

LotusTrace
Fine-grained tracing of preprocessing stage with low overhead

LotusMap
Connecting python functions to their performance on CPU hardware

LotusTrace: Fine-grained tracing with low overhead

33

Declarative specification =>
Instrumentation while
ensuring generalizability

[T1] Total preprocessing time for a specific batch ~ per batch variance

[T2] Time taken by each preprocessing operation in a batch ~ dominant ops
[T3] Time the main process spent waiting for a specific batch to finish being
preprocessed by a DataLoader worker ~ GPU idle time

34

Tracing visualization

Main
process

Data
loaders

Arrow from preprocessing event to
batch consumption

Example image classification pipeline from MLPerf

Bottleneck: prepeocessing

Main process waiting for batch to finish

35

Tracing visualization

Main
process

Data
loaders

Example image segmentation pipeline from MLPerf

Bottleneck: GPU

variation in per batch preprocessing time

LotusMap: Python func <=> hardware events

36

Python funcs

C/C++ funcs
C/C++ function

HW Perf #s

Python function

LotusMap

HW profiler

Missing piece: mapping from Python functions to C++ function

Mapping can be precomputed offline

Case study: Impact of #DataLoaders

53% increase
Why?

P3Torch

(b)

Diminishing performance gains with
high data loaders

(a)

Legend for (b)

37

Legend for (e)

Dataloaders

Fr
on

t-e
nd

 b
ou

nd

(c)

~75% undersupply
in uOps

(e)

Preprocessing stage becomes front-end bound
with more cores (dataloaders)

38

Filter out C/C++ functions irrelevant to preprocessing

Case study: Impact of #DataLoaders

● LotusTrace enables insights into the high level behavior of an ML
pipeline through finer granularity trace

● LotusMap enables insight into the HW performance of
preprocessing operations through a mapping methodology

● More workload characterization in the paper

LOTUS: Profiling Preprocessing Pipelines

39

This talk: Data curation for ML

40

Automatic Data
Preprocessing

ML-aware preprocessing
pipeline search
(SIGMOD’23)

Fair active learning
fairness-aware label

acquisition
(VLDB’24)

Data
Acquisition

Data
Preparation

Model
Development

Model
Evaluation

Framework + Hardware
Profiling

fine-grained profiling for
preprocessing pipelines

(WIP)

FALCON: Fair Active Learning
using Multi-armed Bandits
With Ki Hyun Tae, Hantian Zhang, Jaeyoung Park, and Steven Euijong Whang

41

Active Learning: Reduce data annotation cost
● Given an unlabeled dataset
● Selects samples to label for maximizing accuracy under a fixed budget

42

Unlabeled data
Labeled

Model

Labeler
Label

Inference

Train

e.g., highest entropy samples

Impact of Active Learning on Fairness
● Labeling more samples could worsen fairness

○ To improve DP, we want more samples from the target subgroup
(attribute=female, label=positive)

○ What if the sample has a different label (attribute=female, label=negative)?
○ It decreases the positive prediction rate of Female and thus worsens DP

43

Demographic Parity (DP): Similar positive
prediction rate across sensitive groups

Our Setup: Fair Active Learning
● Selects samples to label for maximizing fairness under a fixed budget
● Supports any group fairness of binary classification models

44

Unlabeled data
Labeled

Model

Labeler
Label

Inference

Train If unfair

Group
fairness
measure

Falcon: Fair Active Learning
1. Select subgroups to label and uses a trial-and-error method to handle

unknown ground-truth labels
2. Identify the most informative samples for fairness using adversarial MABs
3. Balance fairness and accuracy by alternating with traditional AL

45

Select sampleSelect target
subgroup

Combine
with AL

Fairness only

Falcon

● Key strategy: increase the labeling of specific subgroups
○ Subgroup is defined using attributes and labels, e.g., (attribute=female,

label=positive)
○ Any group fairness measure can be expressed as a function of

subgroup accuracies

Subgroup Labeling for Fairness

46

Select SampleSelect Target
Subgroup

Combined
with AL

Step 1

47

(attribute=female, label=positive) (attribute=male, label=negative)

*See paper for other
measuresDemographic Parity (DP): Similar positive

prediction rate across sensitive groups

Key strategy: increase the labeling of specific subgroups
○ Subgroup is defined using attributes and labels, e.g.,

(attribute=female, label=positive)
○ Any group fairness measure can be expressed as a function of

subgroup accuracies

Subgroup Labeling for Fairness

Target
Subgroups

Handling Unknown Ground Truth Labels
● However, ground truth labels are not available in an AL setting
● Adding samples with undesired labels can negatively affect fairness

49

(attribute=female, label=positive)

negative

Trial-and-error Strategy
● Select samples in the target sensitive group to label, but postpone using

them in model training when they turn out to have undesirable labels
● Postponing undesired samples is critical for improving fairness

50

(attribute=female, label=positive)

Informativeness for Fairness
● Which sample is the most informative for fairness when using

trial-and-error?
● Improves the target group’s accuracy the most and also has a

desired label

51

Select SampleSelect Target
Subgroup

Combined
with AL

Step 2

Trade-off b/w Informativeness and Postpone Rate
Key observation: the more informative a sample is for improving the target group’s
accuracy, the less likely it has the target label

○ Sample A increases the target group accuracy more than B if positively
labeled, but is less likely to have a positive label

52

Policies: amount of risk taken
● The more “risk” we are willing to take for finding an informative

sample, the less likely it has the desired label
● We capture this risk taking as a policy “r” = c for each target group

○ Selects a sample whose predicted probability for the target label
closest to (1 - c)

53

Challenge: Optimal policy changes over time

The optimal policy varies as we label more samples
○ There is no clear trend across the datasets

54

Multi-armed Bandit (MAB) for Policy Search

55

Arm: policy
Reward: fairness improv.

Adversarial MABs: No assumptions about the reward distribution
○ More conservative, but have theoretical guarantees

We use EXP3 as a representative algorithm
○ Key idea: some arms may later be useful, keep on giving each arm a

chance to be selected

○ Selection probability = Accumulated reward + Uniform distribution

Combined with AL for Accuracy
Alternates between fair and accurate labeling probabilistically

○ Improves fairness with λ probability and accuracy with (1 − λ) probability
○ A higher λ indicates better fairness

No modifications for the AL methods

56

Select SampleSelect Target
Subgroup

Combined
with AL

Step 3

Experiment Setup
Methods compared:
• Entropy: Standard AL
• Random: Uniform random samples
• FAL: First fair active learning algorithm
• D-FA2L: Disagreement-based AL algorithm

Datasets

57

Accuracy and Fairness Tradeoff
● Falcon shows the best accuracy and fairness trade-off

○ Also, similar results for other datasets, fairness measures, and ML models

58
[1] FAL (Anahideh et al., ESA 2022)
[2] D-FA2L (Cao et al., IJCNN 2022)

Falcon Summary

1. Select subgroups to label and
uses a trial-and-error method
to handle unknown ground-
truth labels

2. Automatically selects the best
sampling policy using
adversarial MABs

3. Balances fairness and
accuracy by alternating its
selection for fairness with
traditional AL

59

This talk: Data curation for ML

60

Framework + Hardware
Profiling

fine-grained profiling for
preprocessing pipelines

(WIP)

Automatic Data
Preprocessing

ML-aware preprocessing
pipeline search
(SIGMOD’23)

Fair active learning
fairness-aware label

acquisition
(VLDB’24)

Data
Acquisition

Data
Preparation

Model
Development

Model
Evaluation

