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• Collect raw data 
• Collect labels
• …

Data 
Acquisition

• Data cleaning
• Data augmentation
• …

Data 
Preparation • Model Selection

• Hyperparameter 
Tuning

• Training models
• ..

Model 
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• Making prediction 
• Evaluating model 

performance
• …

Model 
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The ML lifecycle in a bird's eye view 

[1] Sculley, David, et al. "Hidden technical debt in machine learning systems." NeurIPS 2015

ML ≈ Model + Data
“Only a fraction of real-world ML systems is composed of ML code” [1]



Data is the Bottleneck for ML 
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Model is gradually commoditized
● Transformers for “all” tasks
● Out-of-the-box invocation of ML libraries gives decent results

Data remains the bottleneck
• Collecting and storing raw data is becoming cheaper 
• Turning them into ML-ready datasets is not 

Sources: 
https://www.techspot.com/news/98600-chatgpt-powered-hidden-army-contractors-making-15-hour.html

What is hard about data?

ML ≈ Model + Data



Challenge #1: Raw data often requires 
significant human cleaning efforts
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Missing Values Outliers Mislabels

Label: Fox

ML demands high quality data, but real-world data often contains errors   



Data Cleaning: Most Time-Consuming, Least 
Enjoyable Data Science Task      Forbes, 2016
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Storage Preprocessing Training
on

65% of epoch time

Analyzing and Mitigating Data Stalls in DNN Training, VLDB 2021
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Challenge #2: Data preprocessing can also 
be a computation bottleneck 



Challenge #3: Model Amplifies Data Biases 
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The model perpetuates and amplify human biases by aggregating the data, 
resulting in a model that only performs well for the majority. 

Example: Buolamwini and Gebru (2018). Gender Shades: Intersectional 
Accuracy Disparities in Commercial Gender Classification



Data 
Privacy

Data 
Integration 

Lineage and 
Provenance 

Data 
discovery

Lack of 
Labels

And many more… 
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The data-centric perspective 
Data curation is becoming a critical bottleneck in the ML lifecycle
• High-quality, ML-ready datasets  
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By optimizing data curation, we have opportunities to 
• Save human time
• Save compute resources 
• Even get a better model 

Data 
Acquisition

Data 
Preparation

Model 
Development

Model 
Evaluation



This talk: Data curation for ML  
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Framework + Hardware 
Profiling 

fine-grained profiling for 
preprocessing pipelines

(WIP)
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ML-aware preprocessing 
pipeline search
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Fair active learning 
fairness-aware label 

acquisition
(VLDB’24)
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This talk: Data curation for ML  
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DiffPrep: Differentiable Data 
Preprocessing Pipeline Search 
for Learning over Tabular Data

With Peng Li, Zhiyi Chen and Xu Chu



Data preprocessing is an essential step in ML
Raw data collected from data sources can rarely be used directly by ML models
due to the existence of data issues (e.g., data errors, different feature scales).



Designing a data preprocessing pipeline is challenging
Data Preprocessing Pipeline is a sequence of operators, where each operator
tackles one specific data issue.

Complex design decisions
• Types: should we include outlier removal?
• Operators: should we use standardization or min-max normalization?
• Order: should we remove outlier before or after normalization?
• Feature-wise: different features use different pipelines?

Exponentially increases the design space 

Impute MV
with Mean Imputation

Remove outliers 
with Z-score

Normalize data
with Standardization
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Limitations in Existing Methods
Practioners
• Use a default pipeline or

trial-and-error methods.

Traditional Data Cleaning Work
• Design pipelines that optimize data quality independently of ML.
• Data quality may not be accessible, and it may not lead to the optimal 

ML performance.

Existing AutoML Systems
• Limited search space. 
• Train model multiple times.



DiffPrep: Automate Data Preprocessing
Goal: automatically and efficiently select a data preprocessing pipeline from the
search space such that the model performance (validation accuracy) is maximized. 

argmin
!"!#"$%

𝐿𝑜𝑠𝑠	(𝐷&'#, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙∗)

 𝑠. 𝑡. 𝑚𝑜𝑑𝑒𝑙∗ = argmin
)*+%#

𝐿𝑜𝑠𝑠	(𝐷,-'"$, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙)

“Bi-level Optimization”

Outer level:

Inner level:

Compared with existing AutoML systems:
• Explore the entire design space of data preprocessing pipelines (types, 

operators, order, feature-wise).
• Only need to train ML model once.



Solving the bi-level optimization problem 
argmin
!"!#"$%

𝐿𝑜𝑠𝑠	(𝐷&'#, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙∗)

 𝑠. 𝑡. 𝑚𝑜𝑑𝑒𝑙∗ = argmin
)*+%#

𝐿𝑜𝑠𝑠	(𝐷,-'"$, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒,𝑚𝑜𝑑𝑒𝑙)

Outer level:

Inner level:

Can we convert the discrete search space into a continuous and
differentiable space? -- Then we can use gradient descent

Key challenge: The search space of pipelines is discrete. 

Naive Approach: Train a ML model with every possible pipeline and select the
best one. This does not work as the space is very large -- O(𝑚𝑠𝑐) with m choices,
s transformations, c feature.



Step 1: Parameterization
Goal: Represent each choice of pipeline using a set of binary parameters
Let‘s first assume we have a predefined order of transformation.

𝑥
𝑓!!(mean)

𝑓!"  (median)

MV
Imputation

…

𝑓"!

𝑓"" (𝑍score)

Outlier
Removal

…

𝑓#!

𝑓#"

Normalization

…

𝑥′

Associate each operator with a 𝛽". ∈ {0,1}

/
!

𝛽!" = 1

𝑥3 𝑥, 𝜷
𝐿	(𝐷&'#, 𝜷)
𝐿	(𝐷,-'"$, 𝜷)

𝛽!! = 1

𝛽!" = 0

𝛽!# = 0

𝑥! =%
!

𝛽!"𝑓!"(𝑥!#$)
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Step 2: Relaxation

𝜷: 𝛽". ∈ [0,1]
Relax

To retain constraints ∑" 𝛽". = 1, use softmax function, 𝜏". ∈ ℝ
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Associate each operator with a 𝛽". ∈ {0,1}

* Order selection can be supported using a similar methodology of 
parameterization (permutation matrix) + relaxation (Sinkhorn normalization)  



Gradient-based Bi-level Optimization
Iteratively and alternatively 
• update pipeline parameters using gradient of validation loss 
• update model parameters using gradient of training loss

We can learn pipeline and model parameters simultaneously
by training model only once!

20



Experiment Setup
Datasets: 18 real-world datasets

Model: Logistic regression

Search Space:
 Missing value imputation, Outlier removal, Discretization, Normalization

Methods compared:

Our methods Practical Methods AutoML Systems Advanced Data
Cleaning Methods

DiffPrep-Fix (DP-Fix)
DiffPrep-Flex (DP-Flex)

Default (DEF)
Random Search (RS)

AutoSklearn (AS) BoostClean (Clean)
Learn2Clean (LC)



Experiment Results – Model Accuracy 

DiffPrep achieves the best test accuracy on 15 out of 18 datasets! 22



Experiment Results – Runtime
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DiffPrep is faster than other approaches like AutoSklearn and RandomSearch 



DiffPrep: Automate Data Preprocessing

Tabular Dataset

mean

mean

MV
Imputation

freq value

Z-score (2)

Z-score (3)

Outlier
Removal

MAD 

min-max

standardiz
ation

Normalization

IQR Differentiable 
ML model
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Novel bi-level optimization problem that enables: 
• Large pipeline search space 
• Train model only once 

(Optional) 
Preprocessing 
Prototype

Missing 
Value Outlier Normalization



This talk: Data curation for ML  
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LOTUS: Characterization of Machine 
Learning Preprocessing Pipelines via 
Framework and Hardware Profiling
With Rajveer Bachkaniwala, Harshith Lanka, and Ada Gavrilovska
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transforms.Compose([
 transforms.RandomResizedCrop(…),
 transforms.RandomHorizontalFlip(…),
 transforms.Normalize(...)])

Preprocessing in ML training jobs

27

Storage Preprocessing Training



Preprocessing performance matters 

Especially in 
• ML training jobs that demands low latency 
• Systems with a CPU-to-accelerator ratio imbalance 
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Google’s profile numbers:

● Low latency batch generation 
required (< 1 ms) 

● 20% jobs spend > 33% 
compute time in ingestion

tf.data, VLDB 2021| cedar, arxiv 2024



Many preprocessing optimization
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Parallelization
(Plumber [MLSys’22], tf.data [VLDB’21])

Caching Optimizations
(tf.data service, Cachew [ATC’22], FFCV [CVPR’23], Where Is My Training 

Bottleneck? [SIGMOD’22]) 

Disaggregated Preprocessing
(GoldMiner [SIGMOD’23], cedar 

[arXiv’24])
Co-location and scheduling

(Revamper [ATC’21], SiloD [EuroSys’23])

Accelerator Offloading
(NVIDIA DALI)

Optimization rely on understanding of the performance bottlenecks!  



Limitation of Current Profiling Tools 
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Connecting python functions to their performance on CPU hardware

For hardware profilers (e.g., Intel Vtune, AMD uProf ):

● Hardware profilers collect performance numbers 
for C/C++ functions

● Exact stack trace from Python function to C/C++ 
functions called is missing

C/C++ function

HW perf #s

Python function

?

HW      profiler

Preprocessing operations are declared in Python!



Limitation of Current Profiling Tools 
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Sampling-based Python profilers:  Scalene, py-spy, austin
• Limited by sampling interval (e.g., 1-10ms by default)

• ”Fine-grained” events (e.g., duration of individual operator) 
as short as 100us 

Scalene OSDI’23 | py-spy https://github.com/benfred/py-spy | austin https://github.com/P403n1x87/austin

Fine-grained tracing of preprocessing stage with low overhead

PyTorch Profiler 
• Does not capture actual 

preprocessing operations on the 
worker processes 

Preprocess 
(batch 2)

1Idle 2

Preprocess 
(batch 1)

DataLoader worker 1

DataLoader worker 2

Main process

https://github.com/benfred/py-spy
https://github.com/P403n1x87/austin


LOTUS: Profiling Tool for Preprocessing Pipelines*

Enable reasoning of performance of preprocessing pipelines at a 
hardware level 
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* Current implementation targets PyTorch’s DataLoader preprocessing library

LotusTrace
Fine-grained tracing of preprocessing stage with low overhead

LotusMap
Connecting python functions to their performance on CPU hardware



LotusTrace: Fine-grained tracing with low overhead
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Declarative specification => 
Instrumentation while 
ensuring generalizability 

[T1] Total preprocessing time for a specific batch ~ per batch variance

[T2] Time taken by each preprocessing operation in a batch ~ dominant ops
[T3] Time the main process spent waiting for a specific batch to finish being 
preprocessed by a DataLoader worker ~ GPU idle time 
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Tracing visualization 

Main 
process

Data 
loaders

Arrow from preprocessing event to 
batch consumption

Example image classification pipeline from MLPerf

Bottleneck: prepeocessing

Main process waiting for batch to finish
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Tracing visualization 

Main 
process

Data 
loaders

Example image segmentation pipeline from MLPerf

Bottleneck: GPU

variation in per batch preprocessing time 



LotusMap: Python func <=> hardware events
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Python funcs

C/C++ funcs
C/C++ function

HW Perf #s

Python function

LotusMap

HW      profiler

Missing piece: mapping from Python functions to C++ function 

Mapping can be precomputed offline 



Case study: Impact of #DataLoaders 

53% increase
Why?

P3Torch

(b)

Diminishing performance gains with 
high data loaders

(a)

Legend for (b)
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Legend for (e)

Dataloaders

Fr
on

t-e
nd

 b
ou

nd

(c)

~75% undersupply 
in uOps 

(e)

Preprocessing stage becomes front-end bound 
with more cores (dataloaders)
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Filter out C/C++ functions irrelevant to preprocessing

Case study: Impact of #DataLoaders 



● LotusTrace enables insights into the high level behavior of an ML 
pipeline through finer granularity trace

● LotusMap enables insight into the HW performance of 
preprocessing operations through a mapping methodology

● More workload characterization in the paper

LOTUS: Profiling Preprocessing Pipelines
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This talk: Data curation for ML  
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(SIGMOD’23)

Fair active learning 
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Framework + Hardware 
Profiling 

fine-grained profiling for 
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(WIP)



FALCON: Fair Active Learning 
using Multi-armed Bandits
With Ki Hyun Tae, Hantian Zhang, Jaeyoung Park, and Steven Euijong Whang
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Active Learning: Reduce data annotation cost
● Given an unlabeled dataset 
● Selects samples to label for maximizing accuracy under a fixed budget

42

Unlabeled data
Labeled

Model

Labeler
Label

Inference

Train

e.g., highest entropy samples



Impact of Active Learning on Fairness
● Labeling more samples could worsen fairness 

○ To improve DP, we want more samples from the target subgroup 
(attribute=female, label=positive)

○ What if the sample has a different label (attribute=female, label=negative)?
○ It decreases the positive prediction rate of Female and thus worsens DP

43

Demographic Parity (DP): Similar positive 
prediction rate across sensitive groups



Our Setup: Fair Active Learning
● Selects samples to label for maximizing fairness under a fixed budget
● Supports any group fairness of binary classification models
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Unlabeled data
Labeled

Model

Labeler
Label

Inference

Train If unfair

Group 
fairness 
measure



Falcon: Fair Active Learning
1. Select subgroups to label and uses a trial-and-error method to handle 

unknown ground-truth labels
2. Identify the most informative samples for fairness using adversarial MABs
3. Balance fairness and accuracy by alternating with traditional AL

45

Select sampleSelect target 
subgroup

Combine 
with AL

Fairness only

Falcon



● Key strategy: increase the labeling of specific subgroups 
○ Subgroup is defined using attributes and labels, e.g., (attribute=female, 

label=positive)
○ Any group fairness measure can be expressed as a function of 

subgroup accuracies

Subgroup Labeling for Fairness

46

Select SampleSelect Target 
Subgroup

Combined 
with AL

Step 1
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(attribute=female, label=positive) (attribute=male, label=negative) 

*See paper for other 
measuresDemographic Parity (DP): Similar positive 

prediction rate across sensitive groups

Key strategy: increase the labeling of specific subgroups 
○ Subgroup is defined using attributes and labels, e.g., 

(attribute=female, label=positive)
○ Any group fairness measure can be expressed as a function of 

subgroup accuracies

Subgroup Labeling for Fairness

Target 
Subgroups



Handling Unknown Ground Truth Labels
● However, ground truth labels are not available in an AL setting
● Adding samples with undesired labels can negatively affect fairness
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(attribute=female, label=positive) 

negative



Trial-and-error Strategy
● Select samples in the target sensitive group to label, but postpone using 

them in model training when they turn out to have undesirable labels
● Postponing undesired samples is critical for improving fairness
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(attribute=female, label=positive) 



Informativeness for Fairness
● Which sample is the most informative for fairness when using 

trial-and-error? 
● Improves the target group’s accuracy the most and also has a 

desired label
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Select SampleSelect Target 
Subgroup

Combined 
with AL

Step 2



Trade-off b/w Informativeness and Postpone Rate
Key observation: the more informative a sample is for improving the target group’s 
accuracy, the less likely it has the target label

○ Sample A increases the target group accuracy more than B if positively 
labeled, but is less likely to have a positive label
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Policies: amount of risk taken 
● The more “risk” we are willing to take for finding an informative 

sample, the less likely it has the desired label
● We capture this risk taking as a policy “r” = c for each target group

○ Selects a sample whose predicted probability for the target label 
closest to (1 - c)
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Challenge: Optimal policy changes over time 

The optimal policy varies as we label more samples
○ There is no clear trend across the datasets
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Multi-armed Bandit (MAB) for Policy Search
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Arm: policy 
Reward: fairness improv. 

Adversarial MABs: No assumptions about the reward distribution 
○ More conservative, but have theoretical guarantees

We use EXP3 as a representative algorithm
○ Key idea: some arms may later be useful, keep on giving each arm a 

chance to be selected

○ Selection probability = Accumulated reward + Uniform distribution



Combined with AL for Accuracy 
Alternates between fair and accurate labeling probabilistically

○ Improves fairness with λ probability and accuracy with (1 − λ) probability
○ A higher λ indicates better fairness

No modifications for the AL methods
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Select SampleSelect Target 
Subgroup

Combined 
with AL

Step 3



Experiment Setup
Methods compared:
• Entropy: Standard AL
• Random: Uniform random samples 
• FAL: First fair active learning algorithm
• D-FA2L: Disagreement-based AL algorithm 

Datasets
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Accuracy and Fairness Tradeoff 
● Falcon shows the best accuracy and fairness trade-off 

○ Also, similar results for other datasets, fairness measures, and ML models
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[1] FAL (Anahideh et al., ESA 2022)
[2] D-FA2L (Cao et al., IJCNN  2022)



Falcon Summary 

1. Select subgroups to label and 
uses a trial-and-error method 
to handle unknown ground-
truth labels

2. Automatically selects the best 
sampling policy using 
adversarial MABs

3. Balances fairness and 
accuracy by alternating its 
selection for fairness with 
traditional AL
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This talk: Data curation for ML  
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