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Data Is growing exponentially

OProjected Data Growth
Increased automated processes

000 (e.g., sensors, devices) to collect data

400
Reduced storage costs due to Big

Data systems (e.g., HDFS, S3), cloud
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Data partition as a basic unit for storage
Segsnowflake —> ﬁ
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Cloud Storage



host metric time
sl 3 2015
52 5 2015
sl 500 2016
s3 100 2017
sl 50 2019

* many rows

°

Partition 1

Partition 2

host metric time

host metric time

sl 3 2015 sl 500 2016
s2 5 2015 s3 100 2017
128 MB

128 MB

Data partition as a basic unit for storage

Partition N
host metric time
sl 50 2019

128 MB




host metric time

sl 3 2015
52 5 2015
sl 500 2016
s3 100 2017
sl 50 2019
* many rows

e Ccolumnar compression

°

files on disk/cloud

Data partition as a basic unit for 1/0

Partition 1 Partition 2 Partition N
host metric time host metric time host metric time
sl 3 2015 sl 500 2016 sl 50 2019
s2 5 2015 s3 100 2017

o000
128 MB 128 MB 128 MB
meta Col 1 Col2 | col3

data




How to process SQL queries efficiently?

OO
Two classic ideas: ?aﬁ’\“
\© QG\N
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#1 Sampling N
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Before: row-level sampling for approximation

host metric
serverl 3
serverl 5
server?2 50000
server3 100
server3 50

host metric
serverl 3
serverl 5
server2 50000
server3 100
server3 50

Aggregate Query

SELECT
-+ SUM(metric)
GROUP BY host



Now: row-level sampling Is expensive

host metric
serverl 3
serverl 5
server2 50000
server3 100
server3 50

Partition 2

host metric

Partition 1
host metric
serverl 3
serverl 5

serverl 10
server2 50000

128 MB

128 MB

Partition N

host metric

server3 100

server3 50

128 MB




Now: row-level sampling Is expensive

row samples

host

metric

host

metric

host

metric

host

metric

;

compressed

1




Now: row-level sampling Is expensive

row samples

data read

Sampling one row => Reading one partition

host metric host metric host metric host metric
host metric host metric host metric host metric




Now: row-level sampling Is expensive

row samples

data read

host

metric

host

metric

host

metric

host

metric

;

host

metric

host

metric

host

metric

host

metric

Suppose each partition has 100 rows:

* 1% row sample => ~64% (1-0.991%) of the partitions

* 10% row sample => almost every partition




New

row samples

®

Problem: partition-level sampling

host metric host metric host metric host metric

parti‘tiOn Samp|es host metric host metric host metric host metric

@

Either ALL or NONE of the rows in a partition are sampled

10% row samples => read 99.9% of data
10% partition samples => read 10% of data

12



New Problem: partition-level sampling

r Samp
Data E

e SAMPLE (k partitions) - D

— minimze approximation error .
Query Y

eS



How to process SQL queries efficiently?

Two classic ideas: o a(’g: \V

#2 Indexing oV

HASH (host, metric)

TEEEE




Before: row-level index

Locate rows quickly by avoiding sequential scans

o[+T0 SELECT * FROM tbl
e " WHERE metric = 5

-

_[o 2 |of 4 o] [Q 7 a

4
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\ row_id 66

row_id 97
row _id 101




Now: partition-level metadata as index

table Min max of each column
/ v \ Part min(metric) max(metric) min(host) max(host)
Part 1 Part 2 Part 3 1 6 8 serverl server5
2 3 10 serverl server5
3 1 4 serverl serverb

SELECT *« FROM tbl
WHERE metric = 5



Now: partition-level metadata

table

/

N

Min-max Index

Part 1

Part 2

Part 3

Part min(metric) max(metric) min(host) max(host)

1 6 8 serverl serverb
2 3 10 serverl serverS
3 1 4 serverl serverS

read I

SELECT *« FROM tbl
WHERE metric = 5




Now: partition-level metadata

table Min-max Index
/ v \ Part min(metric) max(metric) min(host) max(host)
P
Part 1 Part 2 art 3 1 6 8 serverl server5
2 3 10 serverl serverb
3 1 4 serverl serverb

SELECT *« FROM tbl
WHERE host = server?2



Now: partition-level metadata

table

/

N

Min-max Index

Part 1

Part 2

Part 3

Part min(metric) max(metric) min(host) max(host)

1 6 8 serverl serverb
2 3 10 serverl serverb
3 1 4 serverl serverb

read T read T read T

SELECT *« FROM tbl
WHERE host = server?2




New Problem: how to design partitions”

Data

Query

D ——

N—
D —

~——

~——

e M [(row_id) — partition_id e .

(ou1eW ‘1s0U) HSVH

maximize #partitions skipped .

Data Layout



How to process SQL queries efficiently?

- OO
Two classic ideas: aﬁ’\"\
% oo
e |
#1 Sampling #2 Indexing oot
SAMPLE (k partitions) f(row_id) — part_id

HASH (host, metric)

B me BT




Talk Overview

#1 How to Sample? 3

+
PS3: weighted partition-level sampling D.[ H ].

» 3-70x reduction in #partitions read




Approximate Partition Selection
for Big-Data Workloads
using Summary Statistics

Kexin Rong*, Yao Lu*, Peter Bailis, Srikanth Kandula®, Philip Levis
Stanford, Microsoft™



“Hidden” cost of row-level sampling

| =

= 7 128 MB 128 MB 128 MB 128 MB

Media such as flat files in data lakes and columnar stores does not
support random access

24



Partition-level Sampling

]
]
@

= 7 256 MB 256 MB 256 MB 256 MB

Sampling fraction «< I/O cost:
Either ALL or NONE of the rows in a partition are sampled

Uniform partition-level sampling is already supported in practice

ORACLE

db :
I snowflake PostgreSQL




Challenge: How to select partitions?

Partition 1 Partition 2 Partition 99 Partition 100
ham 10 ham 3 ham 1 spam 50000
ham 2 ham 5 ham 5 spam 40000

SELECT SUM(Y) GROUP BY X

* random partition-level sample # random sample of the dataset
« Rows In partition can be correlated



Challenge: How to select partitions?

Partition 1 Partition 2 Partition 99 Partition 100

ham 10 ham 3 ham 1 spam 50000
ham 2 ham 5 ham 5 spam 40000

SELECT SUM(Y) GROUP BY X

* random partition-level sample # random sample of the dataset
« Rows In partition can be correlated

» Unclear how to perform stratified/importance sampling
« Needed by queries with GROUP BY or complex aggregates



Problem Statement

Partition 1 Partition 2 Partition 100

e |[nput: Data

A partitioning of the dataset

. Query from workload Query SELECT SUM(Y) GROUP BY X
* Supported Queries

Aggregate: SUM, COUNT ()

Predicate: AND, OR, NOT * Workload Assumption

Group by: groups with medium cardinality known group by columns

Join: deformalized table known aggregate functions



Problem Statement

* Input:
A partitioning of the dataset
« Sampling budget
* Query from workload

 Output:
 Partitions selection + weights

Partition 1 Partition 2 Partition 100

Data

Budget 2 partitions
Query SELECT SUM(Y) GROUP BY X

v v

Answer (ham, 10) (spam, 1000)
Weights 99 1

Estimate (ham, 10x99) (spam, 1000x1)



Problem Statement

* Input:
A partitioning of the dataset
« Sampling budget
* Query from workload

 Output:
 Partitions selection + weights

e Goal: minimize error

Data
Budget
Query

Answer
Weights

Estimate
Exact

Partition 1

2 partitions

Partition 2 Partition 100

SELECT SUM(Y) GROUP BY X

v

(ham, 10)
99

(ham, 990)
(ham, 1000)

v

(spam, 1000)

1

(spam, 1000)
(spam, 1000)



PS3: Partition Selection with Summary Statistics

Use case:
* Read-only and append-only data stores

Solution:
« Compute summary statistics offline
« Use statistics to select partitions online

Result:
 Between 2. /7x-70x reduction in number of partitions read
to achieve the same relative error compared to random
« per partition storage overhead < 100KB



Overview of PS®
Offline

Stats Builder

Partition Picker

Online



Overview of PS®

Partition 1 Partition 2 Partition N Ofﬂlﬂe
Data
Stats Builder
[ Precomputed
*  min(x), max(x)
Stats [ 1] [ ] ... [T

Online
33



Overview of PSS

Partition 1 Partition 2 Partition N
Data
Stats Builder
Precomputed
* min(x), max(x)
Stats W D -
Stats i N s i R ] Query-specific
l e selectivity
Query

SELECT X UM(Y) —»
r SUM(Y) Partition Picker

Budget: 10 partitions

_» Weighted partition selection
* partition 1, weight=10
e partition 3, weight =2

Offline

Online



Statistics Builder: Which stats to store?

* Inspired by systems like Spark SQL, ZoneMaps

Histograms
Measures

AKMV
Heavy Hitter



Statistics Builder: Which stats to store?

* Inspired by systems like Spark SQL, ZoneMaps

Sketches Summary Statistics

Histograms

Measures min, max, moments, log moments...
AKMV

Heavy Hitter




Statistics Builder: Which stats to store?

* Inspired by systems like Spark SQL, ZoneMaps
« Summary statistics are different from query to query

Histograms selectivity estimates

Measures min, max, moments, log moments...
AKMV #dv, avg freq of dv ...

Heavy Hitter #hh, occurrence bitmap of hh ...

 Detalls in the paper



Partition

Picker: How to use stats?

* |dea #1: Distinguish partitions by contribution to the query
e Sample more important partitions more frequently

« Summary statistics is correlated with partition importance

SELECT SUM(Y) FROM table WHERE Z > 1 GROUP BY X

« SUM(Y) => max(Y), avg(Y)
« GROUP BY X => # distinct values in X
« WHERE Z>1 => selectivity



Partition

Picker: How to use stats?

 Train models to classify partitions into importance groups
 Trained per workload, data layout and dataset

Input Models Classes Samples
| L — ] <+ Most important group More
| ] clf;
— — L
I [ |
— ] <+ [ east important group Fewer

lek

-

39



Partition

Picker: How to use stats?

* |dea #2: Leverage partition redundancy
» Use clustering to choose dissimilar partitions

O O
L]
n i
= |jl:l w =10
\M,

40



Evaluation: Accuracy

¢ random random-+filter LSS PS3
Random p‘ﬁ‘r““O” Random . modified prior work  our prototype
level sampling augmented with

predicate filter on Learned

enabled by Stratified Sampling

summary statistics

[1] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to sample: Counting with complex queries. PVLDB,
13(3):390-402, 2019.



Evaluation: Accuracy

3¢ random random+filter LSS - PS3
TPC-H* (Sf=1000) e Dataset
« 2.5GB partitions x 3000
* Query

SELECT o_orderpriority,
SUM(|_extendedprice*| discount)
FROM tpch
WHERE r1_name = “EUROPE” AND
p_size >7
GROUP BY o_orderpriority

42



Avg RelErr

Evaluation: Accuracy

3¢ random random+filter

TPC-H* (sf=1000)

0.25
0.2 /
015 better

0.1
0.05
0

0 20 40 60

Data Read (%)

80

100

LSS - PS3

data read (%) <=>
total compute hours

e

43



Avg RelErr

Evaluation: Accuracy

3¢ random random+filter

TPC-H* (sf=1000)

0 20 40 60
Data Read (%)

LSS - PS3

« PS3 1% partition (1.5% error)
¢ LSS 5% partition

« random-+filter 40% partition

* random 70% partition

100
44



Evaluation: Overhead

 Per partition storage overhead

Aria KDD TPC-DS*
18KB 12KB 103KB

TPC-H*
84KB

 Per partition storage overhead is constant

 Single-thread partition picker overhead

Aria KDD TPC-DS*
90ms 106mMs 220ms

TPC-H*

« Can be further reduced via parallelization

1002ms |

45



More experiments In the paper

« Sensitivity analysis
 Partition counts
« Data layouts
* Query selectivity

» Generalization to unseen TPC-H queries

—%— random+filter —o— PS3

0.12 0.12
0.10- Average |o.10 Worst: Q8 | 0-57 Best: Q1
- 0.4-
L._j 0.08- 0.08- :
()]
o 0.06- 0.061 0.31
(@)
> ] | 0.2
2 0.04 0.04
0.02- 0.02- 0.11
0.00

: ; : ; 0.00 - - : ; 0.0 : : : :
O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100
data read (%) data read (%) data read (%)



Talk Overview

?
#2 How 1o Index HASH (host, metric)

OLO: online layout optimization
» 30% faster than a single layout . . . . .



Online Data Layout Optimization
via
Metrical Task Systems

Kexin Rong, Paul Liu, Moses Charikar



Data layout affects query performance

Data

Query

D ——

N—
D —

~——

~——

f(row_id) — partition_id ag .

D —
_
D —

maximize #partitions skipped

(ou1eW ‘1s0U) HSVH

Data Layout



How to design layout to maximize skipping?

Specialize to query workloads

cpu < 10%
Qd-tree (SOTA) [ 1 ~\
, user IN ( root) mem > 1G
» Extract predicates from
workloads as splitting _____Y/, ............ \/ .......
criteria of the tree bid=0! 'bid=1! 'bid=2: bid=3:

————————————————————————————————

Data Partitions

Splitting Criteria

[1] Z. Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD 2020.



Problem: layouts overfit to workloads
overfitting

——

Knowledge Experience

0
0
o o 0
' " . 69 T“""
0 0o o
To

o) (@

Performance subject to workload changes



What to do when workload changes”?

i "o &
New Layout

Current Layout
# 2 ?{ B

Current Layout

Option 1: Change layout

Reorganization cost +
Query cost -

Option 2: Do nothing

Reorganization cost
Query cost +



Goal: Minimize query + reorganization costs

Input: unknown sequence of queries
Qutput: when and how to reorganize

Layout #1 Layout #8 Layout #1
O » Time

T= T=100 T=1000



One approach: prediction task

Supervised learning Reinforcement learning
future workload reward of actions

0 O
O/0
© 0/o0 (
o
°° O

Decisions rely on predictions of the future



Our approach: online algorithms

* Does NOT rely on predictions of future workload
* Provide guarantees in the form of competitive ratio

cost(online algorithm)

Sl;p cost(of fline algorithm)



Our approach: online algorithms

* Does NOT rely on predictions of future workload
* Provide guarantees in the form of competitive ratio

cost(online algorithm)
~ log(lST)
cost(of fline algorithm)

State Space S: & %}

Layout 1 Layout 2 Layout 3

sup




Challenge: intractable state space

f(row_id) — partition_id

o) P 4 add
& 5 N

State Space S:

del

Insight: allow the state space to change over time

Result: competitive ratio ~ log(|S,,..|)



OLO Overview

Workload
=0 []
[ ]

[ ]
[ ]

T=N L[

O

Data Layout Candidates

O
o"o

update consume

Manager

Input

Schedule




Fvaluation: End-to-end Time

Best offline layout for the
entire query workload

Switch to new layout if better

Switch to new layout if cumulative
regret > reorganization cost

Static OLO Periodic Regret



Evaluation: End-to-end Time
m Query Reorg

Dataset
- TPC-H

Workload

« 30k queries
« 20 templates

Metric:
e query + reorganization time

Static OLO Periodic Regret



Total Time (hour)

Evaluation: End-to-end Time

B Query MW Reorg
TPC-H (Qd-tree)

I } [ I I

Static OLO Periodic Regret Static

TPC-H (Z-O rder) I

OLO Periodic Regret




This Talk

#1 How to Sample? 4 ¢
PS3: weighted partition-level sampling D.[ H ].

» 3-70x reduction in #partitions read

?
#2 How 1o Index: HASH (host, metric)

OLO: online layout optimization
» 30% faster than a single layout . . . . .

Kexin Rong krong@cs.stanford.edu
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Question to think about

How to balance the needs between sampling and skipping”?

Sampling 9 Skipping
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