Learned Indexing and Sampling for
Improving Query Performance
N Big-Data Analytics

Kexin Rong

VMware Research Group | Georgia Tech SCS
Stanford MLSys Seminar
04/14/22

VmWa re® Gegr;gcig gg:‘:p(ﬂt%t- Science

College of Computing

Data Is growing exponentially

OProjected Data Growth
Increased automated processes

000 (e.g., sensors, devices) to collect data

400
Reduced storage costs due to Big

Data systems (e.g., HDFS, S3), cloud
200

Source: ID% CN X 1,_u/' ((g)

2016 2017 2018 2019 2020 2021
Year

Percent (2016)

26-Aug

Data partition as a basic unit for storage
Segsnowflake —> ﬁ

Spcmr‘ll(\Z SQL
Data %
E -

28-Aug

Cloud Storage

host metric time
sl 3 2015
52 5 2015
sl 500 2016
s3 100 2017
sl 50 2019

* many rows

°

Partition 1

Partition 2

host metric time

host metric time

sl 3 2015 sl 500 2016
s2 5 2015 s3 100 2017
128 MB

128 MB

Data partition as a basic unit for storage

Partition N
host metric time
sl 50 2019

128 MB

host metric time

sl 3 2015
52 5 2015
sl 500 2016
s3 100 2017
sl 50 2019
* many rows

e Ccolumnar compression

°

files on disk/cloud

Data partition as a basic unit for 1/0

Partition 1 Partition 2 Partition N
host metric time host metric time host metric time
sl 3 2015 sl 500 2016 sl 50 2019
s2 5 2015 s3 100 2017

o000
128 MB 128 MB 128 MB
meta Col 1 Col2 | col3

data

How to process SQL queries efficiently?

OO
Two classic ideas: ?aﬁ’\“
\© QG\N
e |
#1 Sampling N

(e

Before: row-level sampling for approximation

host metric
serverl 3
serverl 5
server?2 50000
server3 100
server3 50

host metric
serverl 3
serverl 5
server2 50000
server3 100
server3 50

Aggregate Query

SELECT
-+ SUM(metric)
GROUP BY host

Now: row-level sampling Is expensive

host metric
serverl 3
serverl 5
server2 50000
server3 100
server3 50

Partition 2

host metric

Partition 1
host metric
serverl 3
serverl 5

serverl 10
server2 50000

128 MB

128 MB

Partition N

host metric

server3 100

server3 50

128 MB

Now: row-level sampling Is expensive

row samples

host

metric

host

metric

host

metric

host

metric

;

compressed

1

Now: row-level sampling Is expensive

row samples

data read

Sampling one row => Reading one partition

host metric host metric host metric host metric
host metric host metric host metric host metric

Now: row-level sampling Is expensive

row samples

data read

host

metric

host

metric

host

metric

host

metric

;

host

metric

host

metric

host

metric

host

metric

Suppose each partition has 100 rows:

* 1% row sample => ~64% (1-0.991%) of the partitions

* 10% row sample => almost every partition

New

row samples

®

Problem: partition-level sampling

host metric host metric host metric host metric

parti‘tiOn Samp|es host metric host metric host metric host metric

@

Either ALL or NONE of the rows in a partition are sampled

10% row samples => read 99.9% of data
10% partition samples => read 10% of data

12

New Problem: partition-level sampling

r Samp
Data E

e SAMPLE (k partitions) - D

— minimze approximation error .
Query Y

eS

How to process SQL queries efficiently?

Two classic ideas: o a(’g: \V

#2 Indexing oV

HASH (host, metric)

TEEEE

Before: row-level index

Locate rows quickly by avoiding sequential scans

o[+T0 SELECT * FROM tbl
e " WHERE metric = 5

-

_[o 2 |of 4 o] [Q 7 a

4

1 o".; o|-yo| 3 o + |o}--Jto s-..-o o |off-4o] 7 |o] - to] s ."o o |o]

\ row_id 66

row_id 97
row _id 101

Now: partition-level metadata as index

table Min max of each column
/ v \ Part min(metric) max(metric) min(host) max(host)
Part 1 Part 2 Part 3 1 6 8 serverl server5
2 3 10 serverl server5
3 1 4 serverl serverb

SELECT *« FROM tbl
WHERE metric = 5

Now: partition-level metadata

table

/

N

Min-max Index

Part 1

Part 2

Part 3

Part min(metric) max(metric) min(host) max(host)

1 6 8 serverl serverb
2 3 10 serverl serverS
3 1 4 serverl serverS

read I

SELECT *« FROM tbl
WHERE metric = 5

Now: partition-level metadata

table Min-max Index
/ v \ Part min(metric) max(metric) min(host) max(host)
P
Part 1 Part 2 art 3 1 6 8 serverl server5
2 3 10 serverl serverb
3 1 4 serverl serverb

SELECT *« FROM tbl
WHERE host = server?2

Now: partition-level metadata

table

/

N

Min-max Index

Part 1

Part 2

Part 3

Part min(metric) max(metric) min(host) max(host)

1 6 8 serverl serverb
2 3 10 serverl serverb
3 1 4 serverl serverb

read T read T read T

SELECT *« FROM tbl
WHERE host = server?2

New Problem: how to design partitions”

Data

Query

D ——

N—
D —

~——

~——

e M [(row_id) — partition_id e .

(ou1eW ‘1s0U) HSVH

maximize #partitions skipped .

Data Layout

How to process SQL queries efficiently?

- OO
Two classic ideas: aﬁ’\"\
% oo
e |
#1 Sampling #2 Indexing oot
SAMPLE (k partitions) f(row_id) — part_id

HASH (host, metric)

B me BT

Talk Overview

#1 How to Sample? 3

+
PS3: weighted partition-level sampling D.[H].

» 3-70x reduction in #partitions read

Approximate Partition Selection
for Big-Data Workloads
using Summary Statistics

Kexin Rong*, Yao Lu*, Peter Bailis, Srikanth Kandula®, Philip Levis
Stanford, Microsoft™

“Hidden” cost of row-level sampling

| =

= 7 128 MB 128 MB 128 MB 128 MB

Media such as flat files in data lakes and columnar stores does not
support random access

24

Partition-level Sampling

]
]
@

= 7 256 MB 256 MB 256 MB 256 MB

Sampling fraction «< I/O cost:
Either ALL or NONE of the rows in a partition are sampled

Uniform partition-level sampling is already supported in practice

ORACLE

db :
I snowflake PostgreSQL

Challenge: How to select partitions?

Partition 1 Partition 2 Partition 99 Partition 100
ham 10 ham 3 ham 1 spam 50000
ham 2 ham 5 ham 5 spam 40000

SELECT SUM(Y) GROUP BY X

* random partition-level sample # random sample of the dataset
« Rows In partition can be correlated

Challenge: How to select partitions?

Partition 1 Partition 2 Partition 99 Partition 100

ham 10 ham 3 ham 1 spam 50000
ham 2 ham 5 ham 5 spam 40000

SELECT SUM(Y) GROUP BY X

* random partition-level sample # random sample of the dataset
« Rows In partition can be correlated

» Unclear how to perform stratified/importance sampling
« Needed by queries with GROUP BY or complex aggregates

Problem Statement

Partition 1 Partition 2 Partition 100

e |[nput: Data

A partitioning of the dataset

. Query from workload Query SELECT SUM(Y) GROUP BY X
* Supported Queries

Aggregate: SUM, COUNT ()

Predicate: AND, OR, NOT * Workload Assumption

Group by: groups with medium cardinality known group by columns

Join: deformalized table known aggregate functions

Problem Statement

* Input:
A partitioning of the dataset
« Sampling budget
* Query from workload

 Output:
 Partitions selection + weights

Partition 1 Partition 2 Partition 100

Data

Budget 2 partitions
Query SELECT SUM(Y) GROUP BY X

v v

Answer (ham, 10) (spam, 1000)
Weights 99 1

Estimate (ham, 10x99) (spam, 1000x1)

Problem Statement

* Input:
A partitioning of the dataset
« Sampling budget
* Query from workload

 Output:
 Partitions selection + weights

e Goal: minimize error

Data
Budget
Query

Answer
Weights

Estimate
Exact

Partition 1

2 partitions

Partition 2 Partition 100

SELECT SUM(Y) GROUP BY X

v

(ham, 10)
99

(ham, 990)
(ham, 1000)

v

(spam, 1000)

1

(spam, 1000)
(spam, 1000)

PS3: Partition Selection with Summary Statistics

Use case:
* Read-only and append-only data stores

Solution:
« Compute summary statistics offline
« Use statistics to select partitions online

Result:
 Between 2. /7x-70x reduction in number of partitions read
to achieve the same relative error compared to random
« per partition storage overhead < 100KB

Overview of PS®
Offline

Stats Builder

Partition Picker

Online

Overview of PS®

Partition 1 Partition 2 Partition N Ofﬂlﬂe
Data
Stats Builder
[Precomputed
* min(x), max(x)
Stats [1] [] ... [T

Online
33

Overview of PSS

Partition 1 Partition 2 Partition N
Data
Stats Builder
Precomputed
* min(x), max(x)
Stats W D -
Stats i N s i R] Query-specific
l e selectivity
Query

SELECT X UM(Y) —»
r SUM(Y) Partition Picker

Budget: 10 partitions

_» Weighted partition selection
* partition 1, weight=10
e partition 3, weight =2

Offline

Online

Statistics Builder: Which stats to store?

* Inspired by systems like Spark SQL, ZoneMaps

Histograms
Measures

AKMV
Heavy Hitter

Statistics Builder: Which stats to store?

* Inspired by systems like Spark SQL, ZoneMaps

Sketches Summary Statistics

Histograms

Measures min, max, moments, log moments...
AKMV

Heavy Hitter

Statistics Builder: Which stats to store?

* Inspired by systems like Spark SQL, ZoneMaps
« Summary statistics are different from query to query

Histograms selectivity estimates

Measures min, max, moments, log moments...
AKMV #dv, avg freq of dv ...

Heavy Hitter #hh, occurrence bitmap of hh ...

 Detalls in the paper

Partition

Picker: How to use stats?

* |dea #1: Distinguish partitions by contribution to the query
e Sample more important partitions more frequently

« Summary statistics is correlated with partition importance

SELECT SUM(Y) FROM table WHERE Z > 1 GROUP BY X

« SUM(Y) => max(Y), avg(Y)
« GROUP BY X => # distinct values in X
« WHERE Z>1 => selectivity

Partition

Picker: How to use stats?

 Train models to classify partitions into importance groups
 Trained per workload, data layout and dataset

Input Models Classes Samples
| L —] <+ Most important group More
|] clf;
— — L
I [|
—] <+ [east important group Fewer

lek

-

39

Partition

Picker: How to use stats?

* |dea #2: Leverage partition redundancy
» Use clustering to choose dissimilar partitions

O O
L]
n i
= |jl:l w =10
\M,

40

Evaluation: Accuracy

¢ random random-+filter LSS PS3
Random p‘ﬁ‘r““O” Random . modified prior work our prototype
level sampling augmented with

predicate filter on Learned

enabled by Stratified Sampling

summary statistics

[1] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to sample: Counting with complex queries. PVLDB,
13(3):390-402, 2019.

Evaluation: Accuracy

3¢ random random+filter LSS - PS3
TPC-H* (Sf=1000) e Dataset
« 2.5GB partitions x 3000
* Query

SELECT o_orderpriority,
SUM(|_extendedprice*| discount)
FROM tpch
WHERE r1_name = “EUROPE” AND
p_size >7
GROUP BY o_orderpriority

42

Avg RelErr

Evaluation: Accuracy

3¢ random random+filter

TPC-H* (sf=1000)

0.25
0.2 /
015 better

0.1
0.05
0

0 20 40 60

Data Read (%)

80

100

LSS - PS3

data read (%) <=>
total compute hours

e

43

Avg RelErr

Evaluation: Accuracy

3¢ random random+filter

TPC-H* (sf=1000)

0 20 40 60
Data Read (%)

LSS - PS3

« PS3 1% partition (1.5% error)
¢ LSS 5% partition

« random-+filter 40% partition

* random 70% partition

100
44

Evaluation: Overhead

 Per partition storage overhead

Aria KDD TPC-DS*
18KB 12KB 103KB

TPC-H*
84KB

 Per partition storage overhead is constant

 Single-thread partition picker overhead

Aria KDD TPC-DS*
90ms 106mMs 220ms

TPC-H*

« Can be further reduced via parallelization

1002ms |

45

More experiments In the paper

« Sensitivity analysis
 Partition counts
« Data layouts
* Query selectivity

» Generalization to unseen TPC-H queries

—%— random+filter —o— PS3

0.12 0.12
0.10- Average |o.10 Worst: Q8 | 0-57 Best: Q1
- 0.4-
L._j 0.08- 0.08- :
()]
o 0.06- 0.061 0.31
(@)
>] | 0.2
2 0.04 0.04
0.02- 0.02- 0.11
0.00

: ; : ; 0.00 - - : ; 0.0 : : : :
O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100
data read (%) data read (%) data read (%)

Talk Overview

?
#2 How 1o Index HASH (host, metric)

OLO: online layout optimization
» 30% faster than a single layout

Online Data Layout Optimization
via
Metrical Task Systems

Kexin Rong, Paul Liu, Moses Charikar

Data layout affects query performance

Data

Query

D ——

N—
D —

~——

~——

f(row_id) — partition_id ag .

D —
_
D —

maximize #partitions skipped

(ou1eW ‘1s0U) HSVH

Data Layout

How to design layout to maximize skipping?

Specialize to query workloads

cpu < 10%
Qd-tree (SOTA) [1 ~\
, user IN (root) mem > 1G
» Extract predicates from
workloads as splitting _____Y/, \/
criteria of the tree bid=0! 'bid=1! 'bid=2: bid=3:

————————————————————————————————

Data Partitions

Splitting Criteria

[1] Z. Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD 2020.

Problem: layouts overfit to workloads
overfitting

——

Knowledge Experience

0
0
o o 0
' " . 69 T“""
0 0o o
To

o) (@

Performance subject to workload changes

What to do when workload changes”?

i "o &
New Layout

Current Layout
2 ?{ B

Current Layout

Option 1: Change layout

Reorganization cost +
Query cost -

Option 2: Do nothing

Reorganization cost
Query cost +

Goal: Minimize query + reorganization costs

Input: unknown sequence of queries
Qutput: when and how to reorganize

Layout #1 Layout #8 Layout #1
O » Time

T= T=100 T=1000

One approach: prediction task

Supervised learning Reinforcement learning
future workload reward of actions

0 O
O/0
© 0/o0 (
o
°° O

Decisions rely on predictions of the future

Our approach: online algorithms

* Does NOT rely on predictions of future workload
* Provide guarantees in the form of competitive ratio

cost(online algorithm)

Sl;p cost(of fline algorithm)

Our approach: online algorithms

* Does NOT rely on predictions of future workload
* Provide guarantees in the form of competitive ratio

cost(online algorithm)
~ log(lST)
cost(of fline algorithm)

State Space S: & %}

Layout 1 Layout 2 Layout 3

sup

Challenge: intractable state space

f(row_id) — partition_id

o) P 4 add
& 5 N

State Space S:

del

Insight: allow the state space to change over time

Result: competitive ratio ~ log(|S,,..|)

OLO Overview

Workload
=0 []
[]

[]
[]

T=N L[

O

Data Layout Candidates

O
o"o

update consume

Manager

Input

Schedule

Fvaluation: End-to-end Time

Best offline layout for the
entire query workload

Switch to new layout if better

Switch to new layout if cumulative
regret > reorganization cost

Static OLO Periodic Regret

Evaluation: End-to-end Time
m Query Reorg

Dataset
- TPC-H

Workload

« 30k queries
« 20 templates

Metric:
e query + reorganization time

Static OLO Periodic Regret

Total Time (hour)

Evaluation: End-to-end Time

B Query MW Reorg
TPC-H (Qd-tree)

I } [I I

Static OLO Periodic Regret Static

TPC-H (Z-O rder) I

OLO Periodic Regret

This Talk

#1 How to Sample? 4 ¢
PS3: weighted partition-level sampling D.[H].

» 3-70x reduction in #partitions read

?
#2 How 1o Index: HASH (host, metric)

OLO: online layout optimization
» 30% faster than a single layout

Kexin Rong krong@cs.stanford.edu

mailto:krong@cs.stanford.edu

Question to think about

How to balance the needs between sampling and skipping”?

Sampling 9 Skipping

This talk

#1 How to Sample? 2014 2019
PS3: weighted partition-level sampling D.[|].'

» 3-70x reduction in #partitions read

!?
#2 How to Index? HASH (host, metric)

OLO: online layout optimization
« 30% faster than a single layout

Kexin Rong krong@cs.stanford.edu

mailto:krong@cs.stanford.edu

