Learned Indexing and Sampling for Improving Query Performance in Big-Data Analytics

Kexin Rong VMware Research Group | Georgia Tech SCS Stanford MLSys Seminar 04/14/22

Data is growing exponentially

• Projected Data Growth

Increased automated processes (e.g., sensors, devices) to collect data

Reduced storage costs due to Big Data systems (e.g., HDFS, S3), cloud

Data partition as a basic unit for storage

Cloud Storage

Data partition as a basic unit for storage

• many rows

Data partition as a basic unit for I/O

- many rows
- columnar compression
- files on disk/cloud

meta data	Col 1	Col 2	Col 3
--------------	-------	-------	-------

How to process SQL queries efficiently?

Two classic ideas:

#1 Sampling

#2 Indexing

Before: row-level sampling for approximation

host	metric
server1	3
server1	5
server2	50000
server3	100
server3	50

host	metric
server1	3
server1	5
server2	50000
server3	100
server3	50

Aggregate Query

SELECT SUM(metric) GROUP BY host

row samples

data read

Sampling one row => Reading one partition

Suppose each partition has 100 rows:

- 1% row sample => $\sim 64\%$ (1-0.99¹⁰⁰) of the partitions
- 10% row sample => almost every partition

New Problem: partition-level sampling

Either ALL or NONE of the rows in a partition are sampled

10% row samples => read **99.9%** of data

10% partition samples => read **10%** of data

New Problem: partition-level sampling

How to process SQL queries efficiently?

Two classic ideas:

#1 Sampling SAMPLE (k partitions) #2 Indexing

partition is Row

new

Before: row-level index

Locate rows quickly by avoiding sequential scans

Now: partition-level metadata as index

Min max of each column

Part	min(metric)	max(metric)	min(host)	max(host)
1	6	8	server1	server5
2	3	10	server1	server5
3	1	4	server1	server5

SELECT * FROM tbl
WHERE metric = 5

Now: partition-level metadata

Min-max Index

Part	min(metric)	max(metric)	min(host)	max(host)
1	6	8	server1	server5
2	3	10	server1	server5
3	1	4	server1	server5

SELECT * FROM tbl
WHERE metric = 5

Now: partition-level metadata

Min-max Index

Part	min(metric)	max(metric)	min(host)	max(host)
1	6	8	server1	server5
2	3	10	server1	server5
3	1	4	server1	server5

SELECT * FROM tbl WHERE host = server2

Now: partition-level metadata

Min-max Index

Part	min(metric)	max(metric)	min(host)	max(host)
1	6	8	server1	server5
2	3	10	server1	server5
3	1	4	server1	server5

SELECT * FROM tbl WHERE host = server2

New Problem: how to design partitions?

Data Layout

How to process SQL queries efficiently?

Two classic ideas:

#1 Sampling SAMPLE (k partitions) #2 Indexing $f(row_id) \rightarrow part_id$

Talk Overview

#1 How to Sample?PS3: weighted partition-level sampling3-70x reduction in #partitions read

#2 How to Index?OLO: online layout optimization• 30% faster than a single layout

Approximate Partition Selection for Big-Data Workloads using Summary Statistics

Kexin Rong*, Yao Lu*, Peter Bailis, Srikanth Kandula*, Philip Levis Stanford, Microsoft*

"Hidden" cost of row-level sampling

Media such as flat files in data lakes and columnar stores does not support *random access*

Partition-level Sampling

Sampling fraction \propto I/O cost:

Either ALL or NONE of the rows in a partition are sampled

Uniform partition-level sampling is already supported in practice

Challenge: How to select partitions?

- random partition-level sample \neq random sample of the dataset
 - Rows in partition can be correlated

Challenge: How to select partitions?

- random partition-level sample \neq random sample of the dataset
 - Rows in partition can be correlated
- Unclear how to perform stratified/importance sampling
 - Needed by queries with GROUP BY or complex aggregates

Problem Statement

• Input:

- A partitioning of the dataset
- Sampling budget
- Query from workload

Data	Partition 1	Partition 2	Partition 100
Budget	2 partitior	IS	
Query	SELECT S	SUM(Y) GROUP BY	ΥΧ

* Supported Queries Aggregate: SUM, COUNT(*) Predicate: AND, OR, NOT Group by: groups with medium cardinality Join: deformalized table

* Workload Assumption known group by columns known aggregate functions

Problem Statement

- Input:
 - A partitioning of the dataset
 - Sampling budget
 - Query from workload
- Output:
 - Partitions selection + weights

Estimate (ham, 10×99) (spam, 1000×1)

Problem Statement

- Input:
 - A partitioning of the dataset
 - Sampling budget
 - Query from workload
- Output:
 - Partitions selection + weights

Data	Partition 1 Partition 2	Partition 100
Budget	2 partitions	
Query	SELECT SUM(Y) GROUP B	ΥX
	\checkmark	
Answer	(ham, 10)	(spam, 1000)
Weights	99	1

• Goal: minimize error

PS³: Partition Selection with Summary Statistics

Use case:

• *Read-only* and *append-only* data stores

Solution:

- Compute summary statistics offline
- Use statistics to select partitions online

Result:

- Between 2.7x-70x reduction in number of partitions read to achieve the same relative error compared to random
- per partition storage overhead $\leq 100KB$

Overview of PS³

Stats Builder

Partition Picker

Overview of PS³

Overview of PS³

Statistics Builder: Which stats to store?

• Inspired by systems like Spark SQL, ZoneMaps

Sketches
Histograms
Measures
AKMV
Heavy Hitter

Statistics Builder: Which stats to store?

• Inspired by systems like Spark SQL, ZoneMaps

Sketches	Summary Statistics
Histograms	
Measures	min, max, moments, log moments
AKMV	
Heavy Hitter	

Statistics Builder: Which stats to store?

- Inspired by systems like Spark SQL, ZoneMaps
- Summary statistics are different from query to query

Sketches	Summary Statistics
Histograms	selectivity estimates
Measures	min, max, moments, log moments
AKMV	#dv, avg freq of dv
Heavy Hitter	#hh, occurrence bitmap of hh

• Details in the paper

Partition Picker: How to use stats?

- Idea #1: Distinguish partitions by *contribution* to the query
 - Sample more important partitions more frequently

• Summary statistics is correlated with partition importance

SELECT SUM(Y) FROM table WHERE Z > 1 GROUP BY X

- SUM(Y) => max(Y), avg(Y)
- GROUP BY X => # distinct values in X
- WHERE Z>1 => selectivity

Partition Picker: How to use stats?

- Train models to classify partitions into importance groups
 - Trained per workload, data layout and dataset

Partition Picker: How to use stats?

- Idea #2: Leverage partition *redundancy*
 - Use clustering to choose dissimilar partitions

Random partition level sampling

★ random

Random augmented with predicate filter enabled by summary statistics

→ random+filter

modified prior work our prototype on Learned Stratified Sampling

 PS^3

► LSS^[1]

[1] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to sample: Counting with complex queries. PVLDB, 13(3):390-402, 2019.

\star random 🛛 🐳 random+filter

TPC-H* (sf=1000)

- Dataset
 - 2.5GB partitions × 3000
- Query

- LSS - PS³
- PS³ 1% partition (1.5% error)
 - LSS 5% partition
 - random+filter 40% partition
 - random 70% partition

Evaluation: Overhead

• Per partition storage overhead

Aria	KDD	TPC-DS*	TPC-H*
18KB	12KB	103KB	84KB

- Per partition storage overhead is constant
- Single-thread partition picker overhead

Aria	KDD	TPC-DS*	TPC-H*
90ms	106ms	220ms	1002ms

• Can be further reduced via parallelization

More experiments in the paper

- Sensitivity analysis
 - Partition counts
 - Data layouts
 - Query selectivity
- Generalization to unseen TPC-H queries

Talk Overview

#1 How to Sample?PS3: weighted partition-level sampling3-70x reduction in #partitions read

#2 How to Index?OLO: online layout optimization• 30% faster than a single layout

Online Data Layout Optimization via Metrical Task Systems

Kexin Rong, Paul Liu, Moses Charikar

Data layout affects query performance

Data Layout

How to design layout to maximize skipping?

Specialize to query workloads

Qd-tree (SOTA) ^[1]

• Extract *predicates* from workloads as splitting criteria of the tree

[1] Z. Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD 2020.

Problem: layouts overfit to workloads overfitting

Performance subject to workload changes

What to do when workload changes?

Option 1: Change layout Reorganization cost + Query cost -

Option 2: Do nothing Reorganization cost Query cost +

Goal: Minimize query + reorganization costs

Input: unknown sequence of queries Output: *when* and *how* to reorganize

One approach: prediction task

Supervised learning future workload

Reinforcement learning reward of actions

Decisions rely on predictions of the future

Our approach: online algorithms

- Does NOT rely on predictions of future workload
- Provide guarantees in the form of competitive ratio

 $\sup_{I} \frac{cost(online \ algorithm)}{cost(offline \ algorithm)}$

Our approach: online algorithms

- Does NOT rely on predictions of future workload
- Provide guarantees in the form of competitive ratio

 $\sim \log(|S|)$

Challenge: intractable state space

Insight: allow the state space to change over time

Result: competitive ratio $\sim \log(|S_{max}|)$

OLO Overview

Evaluation: End-to-end Time

Evaluation: End-to-end Time Query Reorg

Dataset

• TPC-H

Workload

- 30k queries
- 20 templates

Metric:

• query + reorganization time

Static OLO Periodic Regret

Static OLO Periodic Regret Static

Static OLO Periodic Regret

#1 How to Sample?PS3: weighted partition-level sampling3-70x reduction in #partitions read

#2 How to Index?OLO: online layout optimization• 30% faster than a single layout

Kexin Rong krong@cs.stanford.edu

Question to think about

How to balance the needs between sampling and skipping?

#1 How to Sample?
PS3: weighted partition-level sampling
3-70x reduction in #partitions read

#2 How to Index?OLO: online layout optimization• 30% faster than a single layout

Kexin Rong krong@cs.stanford.edu