
Learned Indexing and Sampling for
Improving Query Performance

in Big-Data Analytics
Kexin Rong

VMware Research Group | Georgia Tech SCS
Stanford MLSys Seminar

04/14/22

Data is growing exponentially

Source: IDC

2

Increased automated processes
(e.g., sensors, devices) to collect data

Reduced storage costs due to Big
Data systems (e.g., HDFS, S3), cloud

0

200

400

600

2016 2017 2018 2019 2020 2021

Pe
rc

en
t (

20
16

)

Year

Projected Data Growth

Data partition as a basic unit for storage

Data partition as a basic unit for storage
host metric time
s1 3 2015

s2 5 2015

s1 500 2016

s3 100 2017

s1 50 2019

… … …

…
128 MB 128 MB

Partition 1 Partition N
host metric time

s1 3 2015

s2 5 2015

…

• many rows

host metric time

s1 50 2019

…

Partition 2
host metric time

s1 500 2016

s3 100 2017

…

128 MB

Data partition as a basic unit for I/O
host metric time
s1 3 2015

s2 5 2015

s1 500 2016

s3 100 2017

s1 50 2019

… … …

…
128 MB 128 MB

Partition 1 Partition N
host metric time

s1 3 2015

s2 5 2015

…

• many rows
• columnar compression
• files on disk/cloud Col 1 Col 2meta

data Col 3

host metric time

s1 50 2019

…

Partition 2
host metric time

s1 500 2016

s3 100 2017

…

128 MB

How to process SQL queries efficiently?

#1 Sampling #2 Indexing

HASH (host, metric)

Partitio
n

Rowis
the
new

Two classic ideas:

Before: row-level sampling for approximation

host metric
server1 3
server1 5
server2 50000
server3 100
server3 50
…

host metric
server1 3
server1 5
server2 50000
server3 100
server3 50
…

SELECT
 SUM(metric)
GROUP BY host

Aggregate Query

7

Now: row-level sampling is expensive
host metric
server1 3

server1 5

server2 50000

server3 100

server3 50

…

…
128 MB 128 MB 128 MB

Partition 1 Partition 2 Partition N

host metric

server1 3

server1 5

…

host metric

server1 10

server2 50000

…

host metric

server3 100

server3 50

…

8

row samples
host metric host metric host metrichost metric

9

compressed

Now: row-level sampling is expensive

row samples

data read

Sampling one row => Reading one partition

host metric host metric host metrichost metric

host metric host metric host metrichost metric

10

Now: row-level sampling is expensive

row samples

data read

host metric host metric host metrichost metric

host metric host metric host metrichost metric

Suppose each partition has 100 rows:
• 1% row sample => ~64% (1-0.99100) of the partitions
• 10% row sample => almost every partition

11

Now: row-level sampling is expensive

row samples

partition samples

host metric host metric host metrichost metric

host metric host metric host metrichost metric

10% row samples => read 99.9% of data
10% partition samples => read 10% of data

Either ALL or NONE of the rows in a partition are sampled

12

New Problem: partition-level sampling

New Problem: partition-level sampling

Data

Query

Samples

SAMPLE	(k	partitions)

minimze	approximation	error

SAMPLE	(k	partitions)

How to process SQL queries efficiently?

#1 Sampling #2 Indexing

HASH (host, metric)

Partitio
n

Rowis
the
new

Two classic ideas:

Before: row-level index
Locate rows quickly by avoiding sequential scans

SELECT * FROM tbl
WHERE metric = 5

row_id 66

row_id 97

row_id 101

Now: partition-level metadata as index

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

SELECT * FROM tbl
WHERE metric = 5

Min max of each column

Part 1

table

Part 2 Part 3

Now: partition-level metadata

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

SELECT * FROM tbl
WHERE metric = 5

Min-max Index

Part 1

table

Part 2 Part 3

read

Now: partition-level metadata

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

Part 1

table Min-max Index

Part 2 Part 3

SELECT * FROM tbl
WHERE host = server2

Now: partition-level metadata

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

Min-max Index

read

SELECT * FROM tbl
WHERE host = server2

read read

Part 1

table

Part 2 Part 3

New Problem: how to design partitions?

𝒇(𝒓𝒐𝒘_𝒊𝒅) ⟶ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏_𝒊𝒅

Data

Query

maximize	#partitions skipped

HASH (host, m
etric)

Data Layout

SAMPLE	(k	partitions)

How to process SQL queries efficiently?

#1 Sampling #2 Indexing

HASH (host, metric)

Partitio
n

Rowis
the
new

Two classic ideas:

𝑓(𝑟𝑜𝑤_𝑖𝑑) ⟶ 𝑝𝑎𝑟𝑡_𝑖𝑑

Talk Overview

#1 How to Sample?
 PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read

#2 How to Index?
 OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)

Approximate Partition Selection
for Big-Data Workloads
using Summary Statistics
Kexin Rong*, Yao Lu*, Peter Bailis, Srikanth Kandula*, Philip Levis
Stanford, Microsoft*

“Hidden” cost of row-level sampling

Partition 1 Partition 2 Partition 3 Partition N…
128 MB 128 MB 128 MB 128 MB

Media such as flat files in data lakes and columnar stores does not
support random access

24

Partition-level Sampling

Uniform partition-level sampling is already supported in practice

Sampling fraction ∝ I/O cost:
 Either ALL or NONE of the rows in a partition are sampled

Partition 1 Partition 2 Partition 3 Partition N…
256 MB 256 MB 256 MB 256 MB

25

Challenge: How to select partitions?

X Y
spam 50000
spam 40000
…

Partition 1 Partition 2 Partition 100

X Y
ham 10
ham 2
…

X Y
ham 3
ham 5
…

X Y
ham 1
ham 5
…

Partition 99

…

• random partition-level sample ≠ random sample of the dataset
• Rows in partition can be correlated

SELECT SUM(Y) GROUP BY X

26

Challenge: How to select partitions?

X Y
spam 50000
spam 40000
…

Partition 1 Partition 2 Partition 100

X Y
ham 10
ham 2
…

X Y
ham 3
ham 5
…

X Y
ham 1
ham 5
…

Partition 99

…

• random partition-level sample ≠ random sample of the dataset
• Rows in partition can be correlated

• Unclear how to perform stratified/importance sampling
• Needed by queries with GROUP BY or complex aggregates

SELECT SUM(Y) GROUP BY X

27

Problem Statement
• Input:
• A partitioning of the dataset
• Sampling budget
• Query from workload

Partition 1 Partition 2 Partition 100

…
Data

Query SELECT SUM(Y) GROUP BY X

* Supported Queries
Aggregate: SUM, COUNT(*)
Predicate: AND, OR, NOT
Group by: groups with medium cardinality
Join: deformalized table

Budget 2 partitions

* Workload Assumption
 known group by columns
 known aggregate functions 28

Problem Statement

Estimate (ham, 10×99) (spam, 1000×1)

(ham, 10) (spam, 1000)Answer
Weights 99 1

Partition 1 Partition 2 Partition 100

…
Data

Query SELECT SUM(Y) GROUP BY X

Budget 2 partitions

29

• Input:
• A partitioning of the dataset
• Sampling budget
• Query from workload

• Output:
• Partitions selection + weights

Problem Statement

Estimate (ham, 990) (spam, 1000)

(ham, 10) (spam, 1000)Answer
Weights 99 1

Partition 1 Partition 2 Partition 100

…
Data

Query SELECT SUM(Y) GROUP BY X

Budget 2 partitions

30

• Input:
• A partitioning of the dataset
• Sampling budget
• Query from workload

• Output:
• Partitions selection + weights

• Goal: minimize error
Exact (ham, 1000) (spam, 1000)

PS3: Partition Selection with Summary Statistics
Use case:
• Read-only and append-only data stores

Solution:
• Compute summary statistics offline
• Use statistics to select partitions online

Result:
• Between 2.7x-70x reduction in number of partitions read

to achieve the same relative error compared to random
• per partition storage overhead ≤	100KB

31

Overview of PS3

Stats Builder

Partition Picker

Offline

Online
32

Overview of PS3

Stats Builder

Offline

Online

Data
…

Partition 1 Partition 2 Partition N

precomputed stats: query-specific stats:Precomputed
• min(x), max(x)

Stats …

33

Overview of PS3

Stats Builder

Partition Picker

Offline

Online

Data
…

Partition 1 Partition 2 Partition N

precomputed stats: query-specific stats:Precomputed
• min(x), max(x)

precomputed stats: query-specific stats: Query-specific
• selectivity

Stats …

Stats …

Budget: 10 partitions

SELECT X, SUM(Y)
Query

weighted partition selection
• partition 1, weight=10
• partition 3, weight =2
• …

34

Statistics Builder: Which stats to store?
• Inspired by systems like Spark SQL, ZoneMaps

Sketches

Histograms
Measures
AKMV
Heavy Hitter

35

Statistics Builder: Which stats to store?
• Inspired by systems like Spark SQL, ZoneMaps

Sketches Summary Statistics

Histograms
Measures min, max, moments, log moments…
AKMV
Heavy Hitter

36

Statistics Builder: Which stats to store?
• Inspired by systems like Spark SQL, ZoneMaps
• Summary statistics are different from query to query

• Details in the paper

Sketches Summary Statistics

Histograms selectivity estimates
Measures min, max, moments, log moments…
AKMV #dv, avg freq of dv …
Heavy Hitter #hh, occurrence bitmap of hh …

37

Partition Picker: How to use stats?
• Idea #1: Distinguish partitions by contribution to the query
• Sample more important partitions more frequently

38

SELECT SUM(Y) FROM table WHERE Z > 1 GROUP BY X
• SUM(Y) => max(Y), avg(Y)
• GROUP BY X => # distinct values in X
• WHERE Z>1 => selectivity

• Summary statistics is correlated with partition importance

Partition Picker: How to use stats?

Most important group

• Train models to classify partitions into importance groups
• Trained per workload, data layout and dataset

…

Input Models

Least important group

More

Fewer

39

clf1

clfk

…

Classes Samples

Partition Picker: How to use stats?
• Idea #2: Leverage partition redundancy
• Use clustering to choose dissimilar partitions

40

w = 10

w = 13

w = 11

Evaluation: Accuracy

modified prior work
on Learned
Stratified Sampling

Random
augmented with
predicate filter
enabled by
summary statistics

Random partition
level sampling our prototype

41
[1] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to sample: Counting with complex queries. PVLDB,
13(3):390-402, 2019.

random random+filter LSS[1] PS3

Evaluation: Accuracy

• Dataset
• 2.5GB partitions × 3000

• Query
SELECT o_orderpriority,
 SUM(l_extendedprice*l_discount)
FROM tpch
WHERE r1_name = “EUROPE” AND

p_size >7
GROUP BY o_orderpriority

42

random random+filter LSS PS3

TPC-H* (sf=1000)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100

Av
g

Re
lE

rr

Data Read (%)

TPC-H* (sf=1000)

Evaluation: Accuracy

43

random random+filter LSS PS3

better

data read (%) <=>
 total compute hours

44

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100

Av
g

Re
lE

rr

Data Read (%)

TPC-H* (sf=1000)

Evaluation: Accuracy

• PS3 1% partition (1.5% error)
• LSS 5% partition
• random+filter 40% partition
• random 70% partition

random random+filter LSS PS3

better

Evaluation: Overhead
• Per partition storage overhead

• Per partition storage overhead is constant

• Single-thread partition picker overhead

• Can be further reduced via parallelization

Aria KDD TPC-DS* TPC-H*
18KB 12KB 103KB 84KB

Aria KDD TPC-DS* TPC-H*
90ms 106ms 220ms 1002ms

45

More experiments in the paper
• Sensitivity analysis
• Partition counts
• Data layouts
• Query selectivity

• Generalization to unseen TPC-H queries

46

Talk Overview

#1 How to Sample?
 PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read

#2 How to Index?
 OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)

Online Data Layout Optimization
via
Metrical Task Systems
Kexin Rong, Paul Liu, Moses Charikar

Data layout affects query performance

𝒇(𝒓𝒐𝒘_𝒊𝒅) ⟶ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏_𝒊𝒅

Data

Query

maximize	#partitions skipped

HASH (host, m
etric)

Data Layout

How to design layout to maximize skipping?

Qd-tree (SOTA) [1]
• Extract predicates from

workloads as splitting
criteria of the tree

[1] Z. Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD 2020.

Specialize to query workloads
cpu < 10%

bid=0

mem > 1Guser IN (‘root’)

bid=1 bid=2 bid=3

Y N

Y YN N

Data PartitionsSplitting Criteria

Problem: layouts overfit to workloads
overfitting

Performance subject to workload changes

What to do when workload changes?

#1

Option 2: Do nothing
Current Layout

New Layout

Reorganization cost +
Query cost -

Reorganization cost
Query cost +

Current Layout

2

Option 1: Change layout

Goal: Minimize query + reorganization costs
Input: unknown sequence of queries
Output: when and how to reorganize

Time
T= 0 T= 100

Layout #1 Layout #8

… T= 1000

Layout #1

One approach: prediction task
Supervised learning Reinforcement learning

Decisions rely on predictions of the future

future workload reward of actions

Our approach: online algorithms
• Does NOT rely on predictions of future workload
• Provide guarantees in the form of competitive ratio

sup
"

𝑐𝑜𝑠𝑡(𝑜𝑛𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)
𝑐𝑜𝑠𝑡(𝑜𝑓𝑓𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

Our approach: online algorithms

~	 log(𝑆)

Layout 1 Layout 2 Layout 3

State Space 𝑆:

• Does NOT rely on predictions of future workload
• Provide guarantees in the form of competitive ratio

sup
"

𝑐𝑜𝑠𝑡(𝑜𝑛𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)
𝑐𝑜𝑠𝑡(𝑜𝑓𝑓𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

Challenge: intractable state space

Insight: allow the state space to change over time

State Space 𝑆:

Result: competitive ratio ~	 log(𝑆𝑚𝑎𝑥)

𝑓(𝑟𝑜𝑤_𝑖𝑑) ⟶ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑

...

add

del

OLO Overview

Data Layout Candidates

Layout
Manager Reorganizer

Workload

Input

T=0

T=N

…

Schedule
T=0

T=120

T=200

T=N

…

Output

update consume

OLO

Evaluation: End-to-end Time

Static OLO Periodic Regret

Best offline layout for the
entire query workload

Switch to new layout if better

Switch to new layout if cumulative
regret > reorganization cost

Evaluation: End-to-end Time

Dataset
• TPC-H

Workload
• 30k queries
• 20 templates

Metric:
• query + reorganization time

Static OLO Periodic Regret

To
ta

l T
im

e
(h

ou
r)

TPC-H (Qd-tree)

Evaluation: End-to-end Time

35.3

16.5 13.2

26.5

0.4

7.6 14.6

3.3

Static OLO Periodic Regret

To
ta

l T
im

e
(h

ou
r)

TPC-H (Qd-tree)

42.6

27.5
36.9

44.6

0.4

7.9

5.8

4.4

Static OLO Periodic Regret

TPC-H (Z-order)

32%

This Talk

#1 How to Sample?
 PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read

#2 How to Index?
 OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)

Kexin Rong krong@cs.stanford.edu

mailto:krong@cs.stanford.edu

Question to think about

Sampling Skipping

How to balance the needs between sampling and skipping?

This talk
#1 How to Sample?
 PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read

#2 How to Index?
 OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)

2014 2019

Kexin Rong krong@cs.stanford.edu

mailto:krong@cs.stanford.edu

