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Data is growing exponentially

Source: IDC
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Increased automated processes 
(e.g., sensors, devices) to collect data

 

Reduced storage costs due to Big 
Data systems (e.g., HDFS, S3), cloud
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Data partition as a basic unit for storage



Data partition as a basic unit for storage
host metric time
s1 3 2015

s2 5 2015

s1 500 2016

s3 100 2017

s1 50 2019

… … …

…
128 MB 128 MB

Partition 1 Partition N
host metric time

s1 3 2015

s2 5 2015

…

• many rows

host metric time

s1 50 2019

…

Partition 2
host metric time

s1 500 2016

s3 100 2017

…

128 MB



Data partition as a basic unit for I/O 
host metric time
s1 3 2015

s2 5 2015

s1 500 2016

s3 100 2017

s1 50 2019

… … …

…
128 MB 128 MB

Partition 1 Partition N
host metric time

s1 3 2015

s2 5 2015

…

• many rows
• columnar compression
• files on disk/cloud Col 1 Col 2meta

data Col 3

host metric time

s1 50 2019

…

Partition 2
host metric time

s1 500 2016

s3 100 2017

…

128 MB



How to process SQL queries efficiently?

#1 Sampling #2 Indexing

HASH (host, metric)

Partitio
n

Rowis 
the
new

Two classic ideas:



Before: row-level sampling for approximation

host metric
server1 3
server1 5
server2 50000
server3 100
server3 50
…

host metric
server1 3
server1 5
server2 50000
server3 100
server3 50
…

SELECT      
  SUM(metric)
GROUP BY host

Aggregate Query
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Now: row-level sampling is expensive
host metric
server1 3

server1 5

server2 50000

server3 100

server3 50

…

…
128 MB 128 MB 128 MB

Partition 1 Partition 2 Partition N

host metric

server1 3

server1 5

…

host metric

server1 10

server2 50000

…

host metric

server3 100

server3 50

…
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row samples
host metric host metric host metrichost metric

9

compressed

Now: row-level sampling is expensive



row samples

data read

Sampling one row => Reading one partition 

host metric host metric host metrichost metric

host metric host metric host metrichost metric
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Now: row-level sampling is expensive



row samples

data read

host metric host metric host metrichost metric

host metric host metric host metrichost metric

Suppose each partition has 100 rows:
• 1% row sample => ~64% (1-0.99100) of the partitions
• 10% row sample => almost every partition
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Now: row-level sampling is expensive



row samples

partition samples

host metric host metric host metrichost metric

host metric host metric host metrichost metric

10% row samples => read 99.9% of data  
10% partition samples => read 10% of data 

Either ALL or NONE of the rows in a partition are sampled
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New Problem: partition-level sampling



New Problem: partition-level sampling

Data

Query

Samples

SAMPLE	(k	partitions)

minimze	approximation	error



SAMPLE	(k	partitions)

How to process SQL queries efficiently?

#1 Sampling #2 Indexing

HASH (host, metric)

Partitio
n

Rowis 
the
new

Two classic ideas:



Before: row-level index 
Locate rows quickly by avoiding sequential scans 

SELECT * FROM tbl 
WHERE metric = 5

row_id 66

row_id 97

row_id 101



Now: partition-level metadata as index 

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

SELECT * FROM tbl 
WHERE metric = 5

Min max of each column

Part 1

table

Part 2 Part 3



Now: partition-level metadata

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

SELECT * FROM tbl 
WHERE metric = 5

Min-max Index 

Part 1

table

Part 2 Part 3

read



Now: partition-level metadata

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

Part 1

table Min-max Index 

Part 2 Part 3

SELECT * FROM tbl 
WHERE host = server2



Now: partition-level metadata

Part min(metric) max(metric) min(host) max(host)
1 6 8 server1 server5

2 3 10 server1 server5

3 1 4 server1 server5

Min-max Index 

read

SELECT * FROM tbl 
WHERE host = server2

read read

Part 1

table

Part 2 Part 3



New Problem: how to design partitions?

𝒇(𝒓𝒐𝒘_𝒊𝒅) ⟶ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏_𝒊𝒅

Data

Query

maximize	#partitions skipped

HASH (host, m
etric)

Data Layout



SAMPLE	(k	partitions)

How to process SQL queries efficiently?

#1 Sampling #2 Indexing

HASH (host, metric)

Partitio
n

Rowis 
the
new

Two classic ideas:

𝑓(𝑟𝑜𝑤_𝑖𝑑) ⟶ 𝑝𝑎𝑟𝑡_𝑖𝑑



Talk Overview

#1 How to Sample?
     PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read 

#2 How to Index?
     OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)



Approximate Partition Selection 
for Big-Data Workloads
using Summary Statistics
Kexin Rong*, Yao Lu*, Peter Bailis, Srikanth Kandula*, Philip Levis
Stanford, Microsoft*



“Hidden” cost of row-level sampling 

Partition 1 Partition 2 Partition 3 Partition N…
128 MB 128 MB 128 MB 128 MB

Media such as flat files in data lakes and columnar stores does not 
support random access 
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Partition-level Sampling

Uniform partition-level sampling is already supported in practice

Sampling fraction ∝ I/O cost:
 Either ALL or NONE of the rows in a partition are sampled 

Partition 1 Partition 2 Partition 3 Partition N…
256 MB 256 MB 256 MB 256 MB

25



Challenge: How to select partitions? 

X Y
spam 50000
spam 40000
…

Partition 1 Partition 2 Partition 100

X Y
ham 10
ham 2
…

X Y
ham 3
ham 5
…

X Y
ham 1
ham 5
…

Partition 99

…

• random partition-level sample ≠ random sample of the dataset
• Rows in partition can be correlated 

SELECT SUM(Y) GROUP BY X

26



Challenge: How to select partitions? 

X Y
spam 50000
spam 40000
…

Partition 1 Partition 2 Partition 100

X Y
ham 10
ham 2
…

X Y
ham 3
ham 5
…

X Y
ham 1
ham 5
…

Partition 99

…

• random partition-level sample ≠ random sample of the dataset
• Rows in partition can be correlated 

• Unclear how to perform stratified/importance sampling 
• Needed by queries with GROUP BY or complex aggregates 

SELECT SUM(Y) GROUP BY X
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Problem Statement
• Input: 
• A partitioning of the dataset 
• Sampling budget 
• Query from workload

Partition 1 Partition 2 Partition 100

…
Data

Query SELECT SUM(Y) GROUP BY X

* Supported Queries
Aggregate: SUM, COUNT(*)
Predicate: AND, OR, NOT 
Group by: groups with medium cardinality 
Join: deformalized table

Budget 2 partitions

* Workload Assumption
         known group by columns
         known aggregate functions 28



Problem Statement

Estimate   (ham, 10×99)   (spam, 1000×1)

(ham, 10) (spam, 1000)Answer
Weights 99 1

Partition 1 Partition 2 Partition 100

…
Data

Query SELECT SUM(Y) GROUP BY X

Budget 2 partitions

29

• Input: 
• A partitioning of the dataset 
• Sampling budget 
• Query from workload

• Output: 
• Partitions selection + weights



Problem Statement

Estimate   (ham, 990)     (spam, 1000)

(ham, 10) (spam, 1000)Answer
Weights 99 1

Partition 1 Partition 2 Partition 100

…
Data

Query SELECT SUM(Y) GROUP BY X

Budget 2 partitions

30

• Input: 
• A partitioning of the dataset 
• Sampling budget 
• Query from workload

• Output: 
• Partitions selection + weights

• Goal: minimize error
Exact        (ham, 1000)   (spam, 1000)



PS3: Partition Selection with Summary Statistics
Use case:
• Read-only and append-only data stores

Solution: 
• Compute summary statistics offline 
• Use statistics to select partitions online

Result: 
• Between 2.7x-70x reduction in number of partitions read 

to achieve the same relative error compared to random 
• per partition storage overhead ≤	100KB

31



Overview of PS3

Stats Builder

Partition Picker 

Offline

Online
32



Overview of PS3

Stats Builder

Offline

Online

Data
…

Partition 1 Partition 2 Partition N

precomputed stats: query-specific stats:Precomputed
• min(x), max(x)

Stats …

33



Overview of PS3

Stats Builder

Partition Picker 

Offline

Online

Data
…

Partition 1 Partition 2 Partition N

precomputed stats: query-specific stats:Precomputed
• min(x), max(x)

precomputed stats: query-specific stats: Query-specific
• selectivity

Stats …

Stats …

Budget: 10 partitions

SELECT X, SUM(Y)
Query

weighted partition selection 
• partition 1, weight=10
• partition 3, weight =2
• …

34



Statistics Builder: Which stats to store?
• Inspired by systems like Spark SQL, ZoneMaps 

Sketches

Histograms
Measures
AKMV
Heavy Hitter

35



Statistics Builder: Which stats to store?
• Inspired by systems like Spark SQL, ZoneMaps 

Sketches Summary Statistics 

Histograms
Measures min, max, moments, log moments… 
AKMV
Heavy Hitter

36



Statistics Builder: Which stats to store?
• Inspired by systems like Spark SQL, ZoneMaps 
• Summary statistics are different from query to query

• Details in the paper 

Sketches Summary Statistics 

Histograms selectivity estimates 
Measures min, max, moments, log moments… 
AKMV #dv, avg freq of dv …
Heavy Hitter #hh, occurrence bitmap of hh …

37



Partition Picker: How to use stats?
• Idea #1:  Distinguish partitions by contribution to the query
• Sample more important partitions more frequently 

38

SELECT SUM(Y) FROM table WHERE Z > 1 GROUP BY X
• SUM(Y) => max(Y), avg(Y)
• GROUP BY X => # distinct values in X
• WHERE Z>1 => selectivity

• Summary statistics is correlated with partition importance



Partition Picker: How to use stats?

Most important group

• Train models to classify partitions into importance groups
• Trained per workload, data layout and dataset

…

Input Models

Least important group

More

Fewer

39

clf1

clfk

…

Classes Samples



Partition Picker: How to use stats?
• Idea #2: Leverage partition redundancy 
• Use clustering to choose dissimilar partitions 

40

w = 10 

w = 13 

w = 11 



Evaluation: Accuracy

modified prior work 
on Learned 
Stratified Sampling

Random 
augmented with 
predicate filter 
enabled by 
summary statistics

Random partition 
level sampling our prototype

41
[1] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to sample: Counting with complex queries. PVLDB, 
13(3):390-402, 2019.

random random+filter LSS[1] PS3



Evaluation: Accuracy

• Dataset
• 2.5GB partitions × 3000

• Query
SELECT o_orderpriority,
              SUM(l_extendedprice*l_discount)
FROM tpch
WHERE r1_name = “EUROPE” AND 

p_size >7
GROUP BY o_orderpriority

42

random random+filter LSS PS3

TPC-H* (sf=1000)
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Evaluation: Accuracy
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random random+filter LSS PS3

better

data read (%) <=>
    total compute hours 
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Evaluation: Accuracy

• PS3 1% partition (1.5% error) 
• LSS 5% partition
• random+filter 40% partition
• random 70% partition

random random+filter LSS PS3

better



Evaluation: Overhead
• Per partition storage overhead 

• Per partition storage overhead is constant 

• Single-thread partition picker overhead

• Can be further reduced via parallelization

Aria KDD TPC-DS* TPC-H*
18KB 12KB 103KB 84KB

Aria KDD TPC-DS* TPC-H*
90ms 106ms 220ms 1002ms
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More experiments in the paper
• Sensitivity analysis 
• Partition counts 
• Data layouts
• Query selectivity 

• Generalization to unseen TPC-H queries 

46



Talk Overview

#1 How to Sample?
     PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read 

#2 How to Index?
     OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)



Online Data Layout Optimization 
via
Metrical Task Systems
Kexin Rong, Paul Liu, Moses Charikar  



Data layout affects query performance 

𝒇(𝒓𝒐𝒘_𝒊𝒅) ⟶ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏_𝒊𝒅

Data

Query

maximize	#partitions skipped

HASH (host, m
etric)

Data Layout



How to design layout to maximize skipping? 

Qd-tree (SOTA) [1]
• Extract predicates from 

workloads as splitting 
criteria of the tree

[1] Z. Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD 2020.

Specialize to query workloads
cpu < 10%

bid=0

mem > 1Guser IN (‘root’)

bid=1 bid=2 bid=3

Y N

Y YN N

Data PartitionsSplitting Criteria



Problem: layouts overfit to workloads
overfitting

Performance subject to workload changes



What to do when workload changes?

#1

Option 2: Do nothing 
Current Layout

New Layout

Reorganization cost +  
Query cost -

Reorganization cost   
Query cost +

Current Layout

# 2

Option 1: Change layout



Goal: Minimize query + reorganization costs
Input: unknown sequence of queries 
Output: when and how to reorganize 

Time
T= 0 T= 100

Layout #1 Layout #8

… T= 1000

Layout #1



One approach: prediction task
Supervised learning Reinforcement learning 

Decisions rely on predictions of the future 

future workload reward of actions



Our approach: online algorithms
• Does NOT rely on predictions of future workload 
• Provide guarantees in the form of competitive ratio 

sup
"

𝑐𝑜𝑠𝑡(𝑜𝑛𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)
𝑐𝑜𝑠𝑡(𝑜𝑓𝑓𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)



Our approach: online algorithms

~	 log( 𝑆 )

Layout 1 Layout 2 Layout 3

State Space 𝑆: 

• Does NOT rely on predictions of future workload 
• Provide guarantees in the form of competitive ratio 

sup
"

𝑐𝑜𝑠𝑡(𝑜𝑛𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)
𝑐𝑜𝑠𝑡(𝑜𝑓𝑓𝑙𝑖𝑛𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)



Challenge: intractable state space

Insight: allow the state space to change over time 

State Space 𝑆: 

Result: competitive ratio ~	 log( 𝑆𝑚𝑎𝑥 )

𝑓(𝑟𝑜𝑤_𝑖𝑑) ⟶ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑

...

add

del



OLO Overview

Data Layout Candidates

Layout 
Manager Reorganizer

Workload

Input

T=0

T=N

…

Schedule
T=0

T=120

T=200

T=N

…

Output

update consume

OLO



Evaluation: End-to-end Time 

Static OLO Periodic Regret

Best offline layout for the 
entire query workload 

Switch to new layout if better

Switch to new layout if cumulative 
regret > reorganization cost



Evaluation: End-to-end Time 

Dataset
• TPC-H 

Workload
• 30k queries 
• 20 templates

Metric:
• query + reorganization time  

Static OLO Periodic Regret

To
ta

l T
im

e 
(h

ou
r)

TPC-H (Qd-tree)



Evaluation: End-to-end Time 

35.3

16.5 13.2

26.5

0.4

7.6 14.6

3.3

Static OLO Periodic Regret

To
ta

l T
im

e 
(h

ou
r)

TPC-H (Qd-tree)

42.6

27.5
36.9

44.6

0.4

7.9

5.8

4.4

Static OLO Periodic Regret

TPC-H (Z-order)

32%



This Talk

#1 How to Sample?
     PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read 

#2 How to Index?
     OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)

Kexin Rong krong@cs.stanford.edu 

mailto:krong@cs.stanford.edu


Question to think about

Sampling Skipping

How to balance the needs between sampling and skipping?



This talk
#1 How to Sample?
     PS3: weighted partition-level sampling

• 3-70x reduction in #partitions read 

#2 How to Index?
     OLO: online layout optimization

• 30% faster than a single layout

HASH (host, metric)
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Kexin Rong krong@cs.stanford.edu 
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