
CS 4440 A

Emerging Database
Technologies

Lecture 7

02/04/26

Desirable Properties of Transactions: ACID

• Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

• Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

• Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

• Durability: Once a transaction changes the database and the changes
are committed, these changes must never be lost because of
subsequent failure.

This class: ensuring consistency & isolation via concurrency control

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 18 – Concurrency Control

Supplementary materials

Fundamental of Database Systems (7th Edition)

• Chapter 21 - Concurrency Control Techniques

3

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang.

Agenda

1. Schedule (this lecture)

2. Lock-based Concurrency Control

3. Optimistic Concurrency Control

4

1. Schedule

5

Transaction = Sequence of Operations

A transaction is a sequence of actions that the DBMS executes:

● INPUT(X): copy block X from disk to memory

● READ(X, t): copy X to transaction’s local variable t
(run INPUT(X) if X is not in memory)

● WRITE(X, t): copy value of t to X (run INPUT(X) if X is not in memory)

● OUTPUT(X): copy X from memory to disk

● ABORT, COMMIT

6

Assumption: Transactions

communicate only through

READ and WRITE

Schedule = Interleaved Execution History

A schedule shows how multiple transactions' operations are
interleaved during the execution.

• Operations from the same transaction must maintain their original order

• E.g., If T1 does R(A) before W(A), this order is preserved in any schedule containing T1

Intuitively, a schedule represents:
• A record of what actually happened (execution history)

• OR a possible way operations could be ordered (potential execution)

7

Characterizing Schedules based on Serializability
(1)

Serial schedule
• A schedule S is serial if, for every transaction T participating in the

schedule, all the operations of T are executed consecutively in the
schedule.

• Basically, actions from different transactions are NOT interleaved

• Otherwise, the schedule is called nonserial schedule.

Serializable schedule
• A schedule S is serializable if it is equivalent to some serial schedule of the

same n transactions.

Serial and serializable schedules are guaranteed to preserve
the consistency of database states

Serial schedule

● One transaction is executed at a time

9

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

Q: Do serial schedules

allow for high throughput?

Schedule: (T1, T2)

Serializable schedule

● There exists a serial schedule with the same effect

10

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)

Same effect as (T1, T2)

Serializable schedule

● This is not serializable (values for A, B changed)

11

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

50

250

150

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)

Q: Is this schedule

serializable?

Serial vs Serializable Schedule

Being serializable is not the same as being serial

Being serializable implies that the schedule is a correct schedule.
• It will leave the database in a consistent state.

Interleaving improves efficiency due to concurrent execution, e.g.,

• While one transaction is blocked on I/O, the CPU can process another transaction

• Interleaving short and long transactions might allow the short transaction to finish
sooner (otherwise it need to wait until the long transaction is done)

Serial

Serializable

Interleaving & Isolation

The DBMS has freedom to interleave TXNs (to improve
performance)

However, it must pick a schedule such that isolation and
consistency are maintained

• Must be as if the TXNs had executed serially!

13

ACID

Conflicts: Anomalies with Interleaved Execution

Types of conflicts:
• Write-Read (WR) -> Dirty Reads

• Read-Write (RW) -> Non-repeatable Reads

• Write-Write (WW) -> Lost Update

Conditions for conflicts:
• The operations must belong to different transactions (no conflict within the

same transaction).

• The operations must access the same database object

• At least one of the operations must be a write operation.

14

Implication for schedules:
Swapping the order of two
conflicting operations
changes the outcome.

DB isolation levels define which types of
conflicts a database will prevent or allow.

Abstract view of TXNs: reads and writes

Serializability is hard to check - cannot always know detailed behaviors

DBMS’s abstract view of transactions:

15

T1: r1(A); w1(A); r1(B); w1(B)

T2: r2(A); w2(A); r2(B); w2(B)

Serializable schedule: r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

ri(X): Ti reads X
wi(X): Ti writes X

WW Conflict

Overwriting Uncommitted Data (WW Conflicts, “lost update”):
• T2 overwrites the value of A, which has been modified by T1, still in

progress

• Suppose we need the salaries of two employees (A and B) to be the same

• T1 sets them to $1000

• T2 sets them to $2000

16
Prevented by: All standard isolation levels

WR Conflict

Reading Uncommitted Data (WR Conflicts, “dirty reads”):
• transaction T2 reads an object that has been modified by T1 but

not yet committed

17

Prevented by: READ COMMITTED and higher

RW Conflict

Unrepeatable Reads (RW Conflicts):
• T2 changes the value of an object A that has been read by transaction T1,

which is still in progress

• If T1 tries to read A again, it will get a different result

18

Prevented by: REPEATABLE READ and higher

Characterizing Schedules based on Serializability (2)

Conflict equivalent
• Two conflict equivalent schedules have the same effect on a database

• All pairs of conflicting actions are in same order

• one schedule can be obtained from the other by swapping “non-
conflicting” actions

• either on two different objects

• or both are read on the same object

Conflict serializable
• A schedule S is said to be conflict serializable if it is conflict equivalent to

some serial schedule S’.

Why do we care about conflict serializability?

• Serial execution = correct but slow

• Arbitrary interleaving = fast but potentially incorrect
oWrite-Read (WR)

oRead-Write (RW)

oWrite-Write (WW)

• Conflict serializable schedules = the "sweet spot" where we get
both performance AND correctness
• Most locking protocols (like 2PL) are designed specifically to guarantee

conflict serializability

20

Conflict-serializable schedule

● Conflict-equivalent to serial schedule

21

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B);

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B);Serial

The schedule respects the internal
ordering of each transaction

Conflict-serializable schedule

● A conflict-serializable schedule is always serializable
● But not vice versa (e.g., serializable schedule due to detailed

transaction behavior)

22

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X);

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X);

Serial

Serializable,

but not conflict

serializable

Serial

Conflict Serializable

Serializable

In-class Exercise

● Are there conflict-equivalent schedules to (T1, T2) that interleaves the two
transactions?

23

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

(T1, T2): r1(A); w1(A); r1(B); w1(B); r2(B); w2(B); r2(A); w2(A);

Testing for conflict serializability

Through a precedence graph:
• Looks at only read_Item (X) and write_Item (X) operations

• Constructs a precedence graph (serialization graph) - a graph
with directed edges

• An edge is created from Ti to Tj if one of the operations in Ti
appears before a conflicting operation in Tj

• The schedule is serializable if and only if the precedence graph
has no cycles.

Precedence graph

Can use to decide conflict serializability

25

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

* Also called dependency graph, conflict graph, or serializability graph

Precedence graph

Can use to decide conflict serializability

26

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

27

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

28

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

This is conflict serializable

This is not because of cycle

In-class Exercise

● What is the precedence graph for the schedule:

29

r1(A); r2(A); r1(B); r2(B); r3(A); r4(B); w1(A); w2(B);

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Desirable Properties of Transactions: ACID
	Slide 3: Reading Materials
	Slide 4: Agenda

	schedule
	Slide 5: 1. Schedule
	Slide 6: Transaction = Sequence of Operations
	Slide 7: Schedule = Interleaved Execution History
	Slide 8: Characterizing Schedules based on Serializability (1)
	Slide 9: Serial schedule
	Slide 10: Serializable schedule
	Slide 11: Serializable schedule
	Slide 12: Serial vs Serializable Schedule
	Slide 13: Interleaving & Isolation
	Slide 14: Conflicts: Anomalies with Interleaved Execution
	Slide 15: Abstract view of TXNs: reads and writes
	Slide 16: WW Conflict
	Slide 17: WR Conflict
	Slide 18: RW Conflict
	Slide 19: Characterizing Schedules based on Serializability (2)
	Slide 20: Why do we care about conflict serializability?
	Slide 21: Conflict-serializable schedule
	Slide 22: Conflict-serializable schedule
	Slide 23: In-class Exercise
	Slide 24: Testing for conflict serializability
	Slide 25: Precedence graph
	Slide 26: Precedence graph
	Slide 27: Precedence graph
	Slide 28: Precedence graph
	Slide 29: In-class Exercise

