Emerging Database
lTechnologies

Lecture 7
02/04/26

Desirable Properties of Transactions: ACID

« Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

 Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

* |solation: A transaction should not make its updates visible to other
transactions until it is committed.

 Durability: Once a transaction changes the database and the changes
are committed, these changes must never be lost because of
subsequent failure.

This class: ensuring consistency & isolation via concurrency control

Reading Materials

Database Systems: The Complete Book (2nd edition)
» Chapter 18 — Concurrency Control

1

|
SR
]
B

& DATABASE

Supplementary materials
Fundamental of Database Systems (7th Edition) “?“&%L‘
» Chapter 21 - Concurrency Control Techniques el

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang. 3

Agenda

1. Schedule (this lecture)
2. Lock-based Concurrency Control

3. Optimistic Concurrency Control

1. Schedule

Transaction = Sequence of Operations

A transaction is a sequence of actions that the DBMS executes:

INPUT(X): copy block X from disk to memory

READ(X, t): copy X to transaction’s local variable t
(run INPUT(X) if X is not in memory)

WRITE(X, t): copy value of t to X (run INPUT(X) if X is not in memory)

OUTPUT(X): copy X from memory to disk Assumption: Transactions

communicate only through
ABORT, COMMIT READ and WRITE

Schedule = Interleaved Execution History

A schedule shows how multiple transactions' operations are
interleaved during the execution.

« Operations from the same transaction must maintain their original order
« E.g., If T1 does R(A) before W(A), this order is preserved in any schedule containing T1

Intuitively, a schedule represents:
A record of what actually happened (execution history)
* OR a possible way operations could be ordered (potential execution)

Characterizing Schedules based on Serializability
(1)

Serial schedule

« A schedule S is serial if, for every transaction T participating in the
schedule, all the operations of T are executed consecutively in the
schedule.

 Basically, actions from different transactions are NOT interleaved
« Otherwise, the schedule is called nonserial schedule.

Serializable schedule

« A schedule S is serializable if it is equivalent to some serial schedule of the
same n transactions.

Serial and serializable schedules are guaranteed to preserve
the consistency of database states

Serial schedule

e One transaction is executed at a time

T 2 A B
READ(A, t) 25 25
t:=t+100
WRITE(A, 1)

READ(B, 1) 125
t:=t+100
WRITE(B, t)
125
READ(A, s)
S :=5%2
WRITE(A, s) 250
READ(B, s)
s:=5%2
WRITE(B, s) 250

Schedule: (T1, T2)

Q: Do serial schedules
allow for high throughput?

Serializable schedule

There exists a serial schedule with the same effect

11 72 A B
25 25
READ(A, t)
t:=t+100
WRITE(A, t) 175
READ(A, s)
S:=5*2
WRITE(A, s) 250
READ(B, t)
t:=t+100
WRITE(B, t) 195
READ(B, s)
S:=5*2
WRITE(B, s) 250

Same effect as (T1, T2)

10

Serializable schedule

This is not serializable (values for A, B changed)

11 2 A B
25 25
READ(A, t)
t:=t+100
WRITE(A, t) 125
READ(A, s)
S:=5*2
WRITE(A, s) 250
READ(B, s)
S:=5*2
WRITE(B, s) 50
READ(B, t)
t:=t+100
WRITE(B, t) 150

Q: Is this schedule
serializable?

11

-~ N
Serial vs Serializable Schedule [Serial }

Serializable

Being serializable is not the same as being serial - /

Being serializable implies that the schedule is a correct schedule.
* |t will leave the database in a consistent state.

Interleaving improves efficiency due to concurrent execution, e.g.,
* While one transaction is blocked on I/O, the CPU can process another transaction

* Interleaving short and long transactions might allow the short transaction to finish
sooner (otherwise it need to wait until the long transaction is done)

Interleaving & Isolation

The DBMS has freedom to interleave TXNs (to improve
performance)

However, it must pick a schedule such that isolation and
consistency are maintained

* Must be as if the TXNs had executed serially! ACID

Conflicts: Anomalies with Interleaved Execution

Types Qf conflicts: Implication for schedules:
+ Write-Read (WR) Swapping the order of two
* Read-Write (RW) conflicting operations

» Write-Write (WW) changes the outcome.

Conditions for conflicts:

* The operations must belong to (no conflict within the
same transaction).

* The operations must access the
At least one of the operations must be a operation.

DB isolation levels define which types of
conflicts a database will prevent or allow.

Abstract view of TXNS: reads and writes

Serializability is hard to check - cannot always know detailed behaviors

DBMS’s abstract view of transactions: ri(X): Ti reads X
w;(X): Ti writes X

T1:r(A); wi(A); ri(B); wy(B)
T2:1,(A); w,(A); r,(B); w,(B)

Serializable schedule: r(A); w,(A); ry(A); w,(A); r(B); w,(B); ry(B); w,(B);

15

WW Conflict

T1: W(A), W(B), C
T2: W(A), W(B), C

Overwriting Uncommitted Data (WW Conflicts, “lost update™):

« T2 overwrites the value of A, which has been modified by T1, still in
progress

« Suppose we need the salaries of two employees (A and B) to be the same

e T1 sets them to $1000
e T2 sets them to $2000

Prevented by: All standard isolation levels

WR Conflict

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), Commit

Reading Uncommitted Data (WR Conflicts, “dirty reads™):

 transaction T2 reads an object that has been modified by T1 but
not yet committed

Prevented by: READ COMMITTED and higher

RW Conflict

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Unrepeatable Reads (RW Conflicts):

« T2 changes the value of an object A that has been read by transaction T1,
which is still in progress

|t T1 tries to read A again, it will get a different result

Prevented by: REPEATABLE READ and higher

Characterizing Schedules based on Serializability (2)

Conflict equivalent
« Two conflict equivalent schedules have the same effect on a database
 All pairs of conflicting actions are in same order
* one schedule can be obtained from the other by

« ejther on two different objects
 or both are read on the same object

Conflict serializable

« A schedule S is said to be conlflict serializable if it is conflict equivalent to
some serial schedule S'.

Why do we care about conflict serializability?

e Serial execution = correct but slow

* Arbitrary interleaving = fast but potentially incorrect
o Write-Read (WR)
o Read-Write (RW)
o Write-Write (WW)
 Conflict serializable schedules = the "sweet spot" where we get

both performance AND correctness

« Most locking protocols (like 2PL) are designed specifically to guarantee
conflict serializability

Conflict-serializable schedule The schedule respects the internal

ordering of each transaction

Conflict-equivalent to serial schedule

Serial

ri(A); wi(A); ry(A); wo(A); r(B); wy(B); r,(B); w,(B);

>

r1(A); wi(A); ry(A); ri(B); wy(A); wy(B); ry(B); w,(B);

>

ri(A); wi(A); ri(B); ry(A); wy(A); wy(B); ro(B); wy(B);

ri(A); wi(A); ry(B); ry(A); wy(B)

>

ri(A); wi(A); ri(B); wq(B); ry(A); wy(A); r5(B); w,(B);

21

Conflict-serializable schedule

o A conflict-serializable schedule is always serializable

o But not vice versa (e.qg., serializable schedule due to detailed

transaction behavior)

ST: wy(Y); wy(X); wy(Y); wy(X); w(X);

S2: W (Y); Wy (Y); wy(X); wq(X); ws(X);

o 2\

E

_ Conflict Serializable J

kSeriaIizabIe /

Serijal

Serializable,
but not conflict
serializable

22

In-class Exercise

o Are there conflict-equivalent schedules to (T1, T2) that interleaves the two
transactions?

T1: ry(A); wy(A); r4(B); w,(B);

T2:1r,5(B); Wy(B); ry(A); wy(A);

(T1, T2): r(A); wi(A); ri(B); wi(B); r5(B); wy(B); ry(A); wy(A);

Testing for conflict serializability

Through a precedence graph:
» Looks at only read_ltem (X) and write_ltem (X) operations

« Constructs a precedence graph (serialization graph) - a graph
with directed edges

* An edge is created from Ti to Tj if one of the operations in Ti
appears before a conflicting operation in Tj

» The schedule is serializable if and only if the precedence graph
has no cycles.

Precedence graph

Can use to decide conflict serializability

ro(A); r1(B); wy(A); r3(A); wq(B); wa(A); ry(B); w,(B);

ro(A); ri(B); wy(A); r5(B); r3(A); wq(B); ws(A); wy(B);

* Also called dependency graph, conflict graph, or serializability graph

25

Precedence graph

Can use to decide conflict serializability

ro(A); r1(B); wy(A); r3(A); wq(B); w3(A); ry(B); wy(B); T1 — T2 — T3

ry(A); ra(B); wy(A); ry(B); r3(A); wi(B); wa(A); w,(B); T1 12 T3

* One node per committed transaction
« Edge from Tito Tjif an action of Ti precedes and conflicts with one of Tj's actions
— Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

26

Precedence graph

Can use to decide conflict serializability

ro(A); r1(B); wy(A); r3(A); wq(B); w3(A); ry(B); wy(B); T1 — T2 — T3
m N
ry(A); ra(B); wy(A); ry(B); r3(A); wi(B); wa(A); w,(B); M — T2 — T3

* One node per committed transaction
« Edge from Tito Tjif an action of Ti precedes and conflicts with one of Tj's actions
— Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

27

Precedence graph

Can use to decide conflict serializability

This is conflict serializable
o 3 T
ro(A); r1(B); wy(A); r3(A); wq(B); wa(A); ry(B); w,(B); 1 — T2 — 13
/\ This is not because of cycle
e RN
ry(A); r1(B); wy(A); ry(B); r3(A); wi(B); wi(A); w,y(B); 1T — 12— 13

* One node per committed transaction
« Edge from Tito Tjif an action of Ti precedes and conflicts with one of Tj's actions
— Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

28

In-class Exercise

o What is the precedence graph for the schedule:

r1(A); ry(A); r(B); ry(B); r3(A); ra(B); wq(A); wy(B);

* One node per committed transaction
« Edge from Tito Tjif an action of Ti precedes and conflicts with one of Tj’s actions
— Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- W|(A)

29

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Desirable Properties of Transactions: ACID
	Slide 3: Reading Materials
	Slide 4: Agenda

	schedule
	Slide 5: 1. Schedule
	Slide 6: Transaction = Sequence of Operations
	Slide 7: Schedule = Interleaved Execution History
	Slide 8: Characterizing Schedules based on Serializability (1)
	Slide 9: Serial schedule
	Slide 10: Serializable schedule
	Slide 11: Serializable schedule
	Slide 12: Serial vs Serializable Schedule
	Slide 13: Interleaving & Isolation
	Slide 14: Conflicts: Anomalies with Interleaved Execution
	Slide 15: Abstract view of TXNs: reads and writes
	Slide 16: WW Conflict
	Slide 17: WR Conflict
	Slide 18: RW Conflict
	Slide 19: Characterizing Schedules based on Serializability (2)
	Slide 20: Why do we care about conflict serializability?
	Slide 21: Conflict-serializable schedule
	Slide 22: Conflict-serializable schedule
	Slide 23: In-class Exercise
	Slide 24: Testing for conflict serializability
	Slide 25: Precedence graph
	Slide 26: Precedence graph
	Slide 27: Precedence graph
	Slide 28: Precedence graph
	Slide 29: In-class Exercise

