
CS 4440 A

Emerging Database
Technologies

Lecture 6

02/02/26

Announcements

2

• Assignment 1 due tonight

• Assignment 2 released this Wednesday

• Midterm
• Monday Feb 16 during class time

• Open book and notes, closed Internet

• Contents covered: lec 2 – lec 7 (lecture this Wednesday)

• Review lecture next Wednesday

Desirable Properties of Transactions: ACID

• Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

• Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

• Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

• Durability: Once a transaction changes the database and the changes
are committed, these changes must never be lost because of
subsequent failure.

This class: ensuring atomicity and durability with logging
and recovery manager

Failure modes and solutions
Erroneous data entry

○ Typos
→ Write constraints and triggers

Media failures
○ Local disk failure, head crashes

→ Parity checks, RAID, archiving and copying

Catastrophic failures
○ Explosions, fires

→ Archiving and copying

System failures
○ Transaction state lost due to power loss and software errors

→ Logging

4
Our focus today

Summary of Recovery Mechanism

Log
• An ordered list of updates

Atomicity
• by ”undo”ing actions of “aborted transactions”

Durability
• by making sure that all actions of committed transactions survive crashes

and system failure

• – i.e. by “redo”-ing actions of “committed transactions”

5

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 17 - Copying with System Failures

Supplementary materials

Fundamental of Database Systems (7th Edition)

• Chapter 22 - Database Recovery Techniques

6

Agenda

1. WAL Protocol

2. Undo Logging

3. Redo Logging

4. Undo/redo logging

7

1. Write-Ahead Logging (WAL)
TXN Commit Protocol

8

• Keep in mind the tradeoffs here as motivation for the
mechanisms we introduce

• Main memory: fast but limited capacity, volatile

• Vs. Disk: slow but large capacity, durable

9

Recall: Disk vs. Main Memory

How do we effectively utilize both ensuring certain critical guarantees?

Our model: Three Types of Regions of Memory

1. Local: In our model each process in a DBMS
has its own local memory, where it stores values
that only it “sees”

2. Global: Each process can read from / write to
shared data in main memory

3. Disk: Global memory can read from / flush to
disk

4. Log: Assume on stable disk storage- spans both
main memory and disk…

Local Global

Main
Memory

(RAM)

Disk

“Flushing to disk” =
writing to disk from
main memory

1 2

3

4

Basic Idea: Logging

• Record UNDO information for every update!

• Sequential writes to log

• Minimal info (diff) written to log

• The log consists of an ordered list of actions

• Log record contains:

<XID, location, old data, new data>

This is sufficient to UNDO any transaction!

Why do we need logging for atomicity?

• Couldn’t we just write TXN to disk only once whole TXN complete?
• Then, if abort / crash and TXN not complete, it has no effect- atomicity!

• With unlimited memory and time, this could work…

• However, we need to log partial results of TXNs because of:
• Memory constraints (enough space for full TXN??)

• Time constraints (what if one TXN takes very long?)

We need to write partial results to disk!
…And so we need a log to be able to undo these partial results!

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogT A=0

B=5

A=0

T: R(A), W(A)

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A)
A: 0→1

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A)
A: 0→1

Operation recorded
in log in main

memory!

What is the correct way to write this
all to disk?

• We’ll look at the Write-Ahead Logging (WAL) protocol

• We’ll see why it works by looking at other protocols which are
incorrect!

16

Remember: Key idea is to ensure durability
while maintaining our ability to “undo”!

Incorrect Commit Protocol #1

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0→1

Let’s try committing
before we’ve written
either data or log to
disk…

If we crash now, is T
durable?

OK, Commit!

Lost T’s update!

Incorrect Commit Protocol #2

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0→1

Let’s try committing
after we’ve written
data but before we’ve
written log to disk…

If we crash now, is T
durable? Yes! Except…

OK, Commit!

How do we know
whether T was
committed??

Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0→1

This time, let’s try
committing after we’ve
written log to disk but
before we’ve written data to
disk… this is WAL!

If we crash now, is T
durable?

OK, Commit!

Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

T

A=0

T: R(A), W(A)

A: 0→1

This time, let’s try
committing after we’ve
written log to disk but
before we’ve written data to
disk… this is WAL!

If we crash now, is T
durable?

OK, Commit!

USE THE LOG!
A=1

Write-Ahead Logging (WAL)

DB uses Write-Ahead Logging (WAL) Protocol:

1. Log before data: Must force log record for an
update before the corresponding data page
goes to storage

2. Force log on commit: Must write all log records
for a TX before commit

Each update is logged!
Why not reads?

→ Atomicity

→ Durability

FORCE: write operation must
be completed to persistent
storage before proceeding

Transaction is committed once commit log
record is on stable storage

Logging Mechanisms

Different logging schemes define how changes are logged, and
what recovery actions are needed.

We will discuss three approaches (all follow WAL):
• Undo logging

• Redo logging

• Undo/Redo logging

22

Transaction primitives

● Example transaction
○ Consistent state: A = B

23

A := A * 2
B := B * 2

Logical steps

Execution

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Recall: The Correctness Principle
A fundamental assumption about transaction is:

24

DB in consistent state

Txn

DB in consistent stateRun in isolation

If a transaction executes in the absence of any other
transactions or system errors, and it starts with the
database in a consistent state, then the database is also
in a consistent state when the transactions ends.

Transaction primitives

● Example transaction
○ Consistent state: A = B

25

A := A * 2
B := B * 2

Logical steps

Execution

Consistent

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

26

A := A * 2
B := B * 2

Logical steps

Execution

Consistent

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

27

A := A * 2
B := B * 2

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

Logical steps

Execution

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Not consistent!
Either reset A = 8
or advance B = 16

2. Undo logging

28

Undo logging

29

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

● Idea: Undo incomplete transactions, and ignore committed ones

Undo log format:

<T, X, v>: T updated
database element X
whose old value is v

Undo logging

30

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Memory Disk

T started

T completed
successfully

T changed A, and its
former value is 8

● Idea: Undo incomplete transactions, and ignore committed ones

Undo logging

31

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Rule 1:
<T, A, 8> must be
flushed to disk before
new A is written to disk
(same for B)

Log

● Idea: Undo incomplete transactions, and ignore committed ones

Undo logging

32

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Rule 1:
<T, A, 8> must be flushed
to disk before new A is
written to disk (same for
B)

Rule 2:
<COMMIT T> must be
flushed to disk after A
and B are written to disk

Log

● Idea: Undo incomplete transactions, and ignore committed ones

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

33

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Crash

Recovery

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

34

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

35

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Ignore (T was committed)

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

36

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Ignore (T was committed)

Ignore (T was committed)

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

37

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

38

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

<COMMIT T> may or may not have
been flushed to disk. If so, same as
previous scenario. If not, T is
considered incomplete

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

39

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

If T was incomplete, set B to
previous value 8 on disk

A = 16
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

40

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

If T was incomplete, set A to
previous value 8 on disk

A = 8
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

41

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

Write <ABORT T> to log and
flush to disk

A = 8
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

42

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 16
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

43

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 8
 B = 8

Same recovery as before, but only A is
set to previous value

What happens if the system crashes
during the recovery?

● Undo-log recovery is
idempotent, so repeating the
recovery is OK

44

Image source: https://insightrsblog.com/2010/09/17/do-you-want-to-recreate-your-entire-database/

In-class Exercise

● Given the undo log, describe the action of the recovery manager

45

<START T>
<T, A, 10>
<START U>
<U, B, 20>
<T, C, 30>
<U, D, 40>
<COMMIT U>

Crash

Checkpointing

● Entire log can be too long

● Cannot truncate log after a COMMIT because there are other
running transactions

46

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>

47

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>

48

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>

49

Wait until all transactions commit or abort

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>

50

Write <CKPT> and flush

Flush log

Wait until all transactions commit or abort

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>
<START T3>
<T3, E, 25>
<T3, F, 30>

51

Resume transactions

Write <CKPT> and flush

Flush log

Wait until all transactions commit or abort

Stop accepting new transactions

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

52

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions

to enter system

53

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <END CKPT>, only need to
recover until <START CKPT (T1, T2)>

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

54

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <START CKPT (T1, T2)>, only
need to recover until <START T1>

3. Redo logging

55

Redo logging

Redo logging ignores incomplete transactions and repeats committed
ones

○ Undo logging cancels incomplete transactions and ignores committed ones

<T, X, v> now means T wrote new value v for database element X

One rule: all log records (e.g., <T, X, v> and <COMMIT T>) must appear
on disk before modifying any database element X on disk

56

Redo logging

● Example

57

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Recovery with redo logging

● Scan log forward and redo committed transactions

58

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

Recovery with redo logging

● Scan log forward and redo committed transactions

59

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 16
B = 16

Recovery with redo logging

● Scan log forward and redo committed transactions

60

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

Recovery with redo logging

● Scan log forward and redo committed transactions

61

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

Do nothing

Nonquiescent checkpointing for redo log

● Write to disk all DB elements modified by committed transactions

62

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>

Nonquiescent checkpointing for redo log

● Write to disk all DB elements modified by committed transactions

63

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>

Write to disk all DB elements by transactions
that already committed when START CKPT was
written to log (i.e., T1)

Nonquiescent checkpointing for redo log

● Write to disk all DB elements modified by committed transactions

64

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Write to disk all DB elements by transactions
that already committed when START CKPT was
written to log (i.e., T1)

Nonquiescent checkpointing for redo log

● After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

65

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3> Crash

Nonquiescent checkpointing for redo log

● After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

66

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3> Crash

Only redo writes by T2
Write <ABORT T3> in log after recovery

4. Undo/redo logging

67

Undo/redo logging

More flexible than undo or redo logging in ordering actions

<T, X, v, w> : T changed value of X from v to w

One rule: <T, X, v, w> must appear on disk before modifying X on disk

68

Undo/redo logging

● Example

69

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

70

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
 B = 8

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

71

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
 B = 16

T is committed
Redo by writing the value 16
for both A and B to the disk.

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

72

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
 B = 8

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

73

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

T is incomplete
Undo by resetting A and B to
the previous value of 8

Nonquiescent checkpointing for undo/redo logging

● Simpler than other logging methods

74

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>

Nonquiescent checkpointing for undo/redo logging

● Simpler than other logging methods

75

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>

Write to disk all the buffers that are dirty

Nonquiescent checkpointing for undo/redo logging

● Simpler than other logging methods

76

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Write to disk all the buffers that are dirty

Nonquiescent checkpointing for undo/redo logging

● After a crash, redo committed transactions, and undo
uncommitted ones

77

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Nonquiescent checkpointing for undo/redo logging

● After a crash, redo committed transactions, and undo
uncommitted ones

78

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Redo T2 by setting C to 15 on disk
(No need to set B to 10 thanks to CKPT)
Undo T3 by setting D to 19 on disk

Summary

Write-ahead logging protocol
• Log before data

• Force log on commit

Logging and Recovering Mechanisms
• Undo logging

• Redo logging

• Undo/redo logging

• Checkpointing

79

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements

	Recovery
	Slide 3: Desirable Properties of Transactions: ACID
	Slide 4: Failure modes and solutions
	Slide 5: Summary of Recovery Mechanism
	Slide 6: Reading Materials
	Slide 7: Agenda
	Slide 8: 1. Write-Ahead Logging (WAL) TXN Commit Protocol
	Slide 9
	Slide 10: Our model: Three Types of Regions of Memory
	Slide 11: Basic Idea: Logging
	Slide 12: Why do we need logging for atomicity?
	Slide 13: A picture of logging
	Slide 14: A picture of logging
	Slide 15: A picture of logging
	Slide 16: What is the correct way to write this all to disk?
	Slide 17: Incorrect Commit Protocol #1
	Slide 18: Incorrect Commit Protocol #2
	Slide 19: Write-ahead Logging (WAL) Commit Protocol
	Slide 20: Write-ahead Logging (WAL) Commit Protocol
	Slide 21: Write-Ahead Logging (WAL)
	Slide 22: Logging Mechanisms
	Slide 23: Transaction primitives
	Slide 24: Recall: The Correctness Principle
	Slide 25: Transaction primitives
	Slide 26: Transaction primitives
	Slide 27: Transaction primitives

	Undo logging
	Slide 28: 2. Undo logging
	Slide 29: Undo logging
	Slide 30: Undo logging
	Slide 31: Undo logging
	Slide 32: Undo logging
	Slide 33: Recovery using undo logging
	Slide 34: Recovery using undo logging
	Slide 35: Recovery using undo logging
	Slide 36: Recovery using undo logging
	Slide 37: Recovery using undo logging
	Slide 38: Recovery using undo logging
	Slide 39: Recovery using undo logging
	Slide 40: Recovery using undo logging
	Slide 41: Recovery using undo logging
	Slide 42: Recovery using undo logging
	Slide 43: Recovery using undo logging
	Slide 44: What happens if the system crashes during the recovery?
	Slide 45: In-class Exercise

	checkpoint
	Slide 46: Checkpointing
	Slide 47: Checkpointing
	Slide 48: Checkpointing
	Slide 49: Checkpointing
	Slide 50: Checkpointing
	Slide 51: Checkpointing
	Slide 52: Nonquiescent checkpointing
	Slide 53: Nonquiescent checkpointing
	Slide 54: Nonquiescent checkpointing

	redo
	Slide 55: 3. Redo logging
	Slide 56: Redo logging
	Slide 57: Redo logging
	Slide 58: Recovery with redo logging
	Slide 59: Recovery with redo logging
	Slide 60: Recovery with redo logging
	Slide 61: Recovery with redo logging
	Slide 62: Nonquiescent checkpointing for redo log
	Slide 63: Nonquiescent checkpointing for redo log
	Slide 64: Nonquiescent checkpointing for redo log
	Slide 65: Nonquiescent checkpointing for redo log
	Slide 66: Nonquiescent checkpointing for redo log

	undo/redo
	Slide 67: 4. Undo/redo logging
	Slide 68: Undo/redo logging
	Slide 69: Undo/redo logging
	Slide 70: Recovery with undo/redo logging
	Slide 71: Recovery with undo/redo logging
	Slide 72: Recovery with undo/redo logging
	Slide 73: Recovery with undo/redo logging
	Slide 74: Nonquiescent checkpointing for undo/redo logging
	Slide 75: Nonquiescent checkpointing for undo/redo logging
	Slide 76: Nonquiescent checkpointing for undo/redo logging
	Slide 77: Nonquiescent checkpointing for undo/redo logging
	Slide 78: Nonquiescent checkpointing for undo/redo logging
	Slide 79: Summary

