Emerging Database
lTechnologies

Lecture 6
02/02/26

Announcements

* Assignment 1 due tonight

* Assignment 2 released this Wednesday

e Midterm

« Monday Feb 16 during class time
« Open book and notes, closed Internet

« Contents covered: lec 2 —lec 7 (lecture this Wednesday)
* Review lecture next Wednesday

Desirable Properties of Transactions: ACID

« Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

« Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

* |solation: A transaction should not make its updates visible to other
transactions until it is committed.

 Durability: Once a transaction changes the database and the changes
are committed, these changes must never be lost because of
subsequent failure.

This class: ensuring atomicity and durability with logging
and recovery manager

Fallure modes and solutions

Erroneous data entry
o Iypos
— Write constraints and triggers

Media failures
o Local disk failure, head crashes
— Parity checks, RAID, archiving and copying

Catastrophic failures
o Explosions, fires
— Archiving and copying

stem failures
o Iransaction state lost due to power loss and software errors
— Logging

Our focus today

Summary of Recovery Mechanism

Log

* An ordered list of updates

Atomicity

* by "undo”ing actions of “aborted transactions”

Durability

* by making sure that all actions of committed transactions survive crashes
and system failure

e —i.e. by “redo”-ing actions of “committed transactions”

Reading Materials

Database Systems: The Complete Book (2nd edition)
« Chapter 17 - Copying with System Failures

Supplementary materials
Fundamental of Database Systems (7th Edition)
» Chapter 22 - Database Recovery Technigques

Agenda

1. WAL Protocol
2. Undo Logging
3. Redo Logging

4. Undo/redo logging

1. Write-Ahead Logging (WAL)
TXN Commit Protocol

Recall: Disk vs. Main Memory

« Keep in mind the tradeoffs here as motivation for the
mechanisms we introduce

« Main memory: fast but limited capacity, volatile

* \/s. Disk: slow but large capacity, durable

How do we effectively utilize both ensuring certain critical guarantees?

Our model: Three Types of Regions of Memory

Local Global

Main
1. Local: In our model each process in a DBMS Memory | 1 2 4
has its own local memory, where it stores values (RAM)
that only it “sees”
Disk 3

2. Global: Each process can read from / write to
shared data in main memory

3. c[j)'isli(: Global memory can read from / flush to
IS

“Flushing to disk” =

4. Log: Assume on stable disk storage- spans both writing to disk from
main memory and disk...

main memory

3asic ldea: Logging

« Record UNDO information for every update!
» Sequential writes to log
* Minimal info (diff) written to log

 The log consists of an ordered list of actions
 Log record contains:
<XID, location, old data, new data>

This is sufficient to UNDO any transaction!

Why do we need logging for atomicity?

« Couldn’t we just write TXN to disk only once whole TXN complete?
* Then, if abort / crash and TXN not complete, it has no effect- atomicity!
« With unlimited memory and time, this could work...

« However, we need to log partial results of TXNs because of:
* Memory constraints (enough space for full TXN??)
 Time constraints (what if one TXN takes very long?)

We need to write partial results to disk!
...And so we need a log to be able to undo these partial results!

A picture of logging
T: R(A), W(A)

T >
@ Main Memory

g
A=0
Data on Disk Log on Disk

A picture of logging

T:R(A), W(A)

T >
@ Main Memory

g
A=0
Data on Disk Log on Disk

A picture of logging

T:R(A), W(A)

T >G»

Log

@ Main Memory

g
A=0
Data on Disk Log on Disk

Operation recorded
in log in main
memory!

What Is the correct way to write this
all to disk?

« We'll look at the Write-Ahead Logging (WAL) protocol

« We'll see why it works by looking at other protocols which are
incorrect!

Remember: Key idea is to ensure durability
while maintaining our ability to “undo”!

Incorrect Commit Protocol #1

T: R(A), W(A)

A: 021

Main Memory

I Log

Data on Disk

Log on Disk

Let’s try committing
before we've written

either data or log to
disk...

OK, Commit!

If we crash now, is T
durable?

Lost T’s update!

Incorrect Commit Protocol #2

Let’s try committing
after we’'ve written

TZ R(A), V\/(A) A 01 data but before we’ve

written log to disk...

I Log
. - OK, Commit!
Main Memory

If we crash now, is T
durable? Yes! Except...

— How do we know

Log on Disk whether T was
committed??

=0

Data on Disk

Write-ahead Logging (WAL) Commit Protocol

This time, let’s try

T R(A), W(A) A 01 committing after we've
' written log to disk but
- before we've written data to
I Log disk... this is WAL

Main Memory

OK, Commit!

If we crash now, is T
durable?

_
Log on Disk

Data on Disk

Write-ahead Logging (WAL) Commit Protocol

This time, let’s try

T: R(A), W(A) committing aft?r we've
written log to disk but
before we've written data to

T a disk... this is WAL!

Main Memory
OK, Commit!

A 01 If we crash now, is T
durable?

A=1

Data on Disk Log on Disk USE THE LOG!

FORCE: write operation must

erte 'Ahead I—Ogglng (WAI—) be completed to persistent

storage before proceeding

DB uses Write-Ahead Logging (WAL) Protocol:

Each update is logged!

1. Log before data: Must force log record for an ~ Why notreads?
update before the corresponding data page

goes to storage > Atomicity

2. Force log on commit: Must write all log records
for a TX before commit .
- Durability

Transaction is committed once commit log
record is on stable storage

Logging Mechanisms

Different logging schemes define how changes are logged, and
what recovery actions are needed.

We will discuss three approaches (all follow WAL):
» Undo logging
* Redo logging
« Undo/Redo logging

Transaction primitives

Example transaction

O

Consistent state: A = B

Logical steps

A
B :

A
B

*

X

2
2

Execution
Memory Disk
Action tl Al B| Al B
READ(A, t) 8| 8 8| &8
ti=t*?2 16| 8 8| 8
WRITE(A, t) 16 | 16 8| 8
READ(B, t) 816 8| 8| 8
t:=t*2 16 16| 8| 8| 8
WRITE(B, t) 16 116116 8| 8
OUTPUT(A) 16 116|116 |16 | 8
OUTPUT(B) 16|16 |16 | 16 | 16

23

Recall: The Correctness Principle

A fundamental assumption about transaction is:

If a transaction executes in the absence of any other
transactions or system errors, and it starts with the
database in a consistent state, then the database is also
in a consistent state when the transactions ends.

DB in consistent state Run in isolation DB in consistent state

Ei@m = @

Transaction primitives

Example transaction

(@)

Consistent state: A = B

Logical steps

Execution

Memory Disk

A
B :

A
B

*

X

2
2

Action t| A| B| A| B
READ(A, t) 8| 8 8| 8
t:=t*?2 16| 8 8| 8
WRITE(A, t) 16 | 16 8| 8
READ(B, t) 8116 8| 8| 8
t:=t*2 16 16| 8| 8| 8
WRITE(B, t) 16 /16|(16| 8 8
OUTPUT(A) 16 /16|16 |16 &8
OUTPUT(B) 16 |16 |16 | 16 | 16

Consistent

25

Transaction primitives

Example transaction

(@)

Consistent state: A = B

Logical steps

Execution

Memory Disk

A
B :

A
B

*

X

2
2

Action t| A| B| A| B
READ(A, t) 8| 8 8| 8
t:=t*?2 16| 8 8| 8
WRITE(A, t) 16 | 16 8| 8
READ(B, t) 8116 8| 8| 8
t:=t*2 16 16| 8| 8| 8
WRITE(B, t) 16 /16|(16| 8 8
OUTPUT(A) 16 /16|16 |16 &8
OUTPUT(B) 16 |16 |16 | 16 | 16

Consistent

26

Transaction primitives

Example transaction

(@)

Consistent state: A = B

Logical steps

Execution

Memory Disk

A
B :

A
B

*

X

2
2

Action t| A| B| A| B
READ(A, t) 8| 8 8| 8
t:=t*?2 16| 8 8| 8
WRITE(A, t) 16 | 16 8| 8
READ(B, t) 8116 8| 8| 8
t:=t*2 16 16| 8| 8| 8
WRITE(B, t) 16 /16|(16| 8 8
OUTPUT(A) 16 /16|16 |16 &8
OUTPUT(B) 16 |16 |16 | 16 | 16

Not consistent!
Either reset A =8
or advance B=16

27

2. Undo logging

Undo logging

o lIdea: Undo incomplete transactions, and ignore committed ones

Memory Disk

Action t| A Bl A B | Log

<START T>
READ(A, t) 8| 8 8| 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8| 8|<T A 8
READ(B, t) 8| 16| 8| 8| 8
ti=t*?2 16 | 16 8 8 8
WRITE(B, t) 16| 16| 16| 8| 8|<T,B 8
FLUSH LOG
OUTPUT(A) 16| 16| 16| 16| 8
OUTPUT(B) 16| 16| 16| 16| 16

<COMMIT T>
FLUSH LOG

Undo log format:
<T, X, v>: T updated

database element X
whose old value is v

29

Undo logging

o lIdea: Undo incomplete transactions, and ignore committed ones

Memory Disk

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*?2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8>
READ(B, t) 8| 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT T>
FLUSH LOG

T started

T changed A, and its
former value is 8

T completed
successfully

30

Undo logging

o lIdea: Undo incomplete transactions, and ignore committed ones

Rule 1:

<T A, 8> must be
flushed to disk before
new A is written to disk
(same for B)

Memory Disk

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*?2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8
READ(B, t) 8| 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16| 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16| 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT T>
FLUSH LOG

31

Undo logging

o lIdea: Undo incomplete transactions, and ignore committed ones

Rule 1:
<T A, 8 must be flushed
to disk before new A is

written to disk (same for
B)

Memory Disk

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*?2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, &
READ(B, t) 8| 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16| 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16| 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT T>
FLUSH LOG

Rule 2:
<COMMIT T> must be

flushed to disk after A
and B are written to disk

32

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT T>
FLUSH LOG

Crash 33

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8
READ(B, t) 8| 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16| 16 8 8 | <T, B, 8>
FLUSH LOG
OUTPUT(A) 16 | 16| 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT 7> Observe <COMMIT T> record
FLUSH LOG

Crash 34

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, 1) 3| 8 8| 8
t:=t*2 16 8 8 8
WRITE(A, 1) 16 | 16 8| 8|<T A 8
READ(B, 1) 3| 16| 8| 8| 8
t:=t*2 16 | 16 8 8 8
WRITE(B, t) 16| 16| 16| 8| 8| <T,B,8& lgnore (T was committed)
FLUSH LOG
OUTPUT(A) 16| 16| 16| 16| 8 ﬁ
OUTPUT(B) 16| 16| 16| 16| 16

<COMMIT 7> Observe <COMMIT T> record
FLUSH LOG

Crash 35

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 3| 8 8| 8
t:=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8 lgnore (T was committed)
READ(B, t) 3| 16| 8| 8| 8
t:=t*2 16 | 16 8 8 8 ﬁ
WRITE(B, t) 16| 16| 16| 8| 8| <T,B,8& lgnore (T was committed)
FLUSH LOG
OUTPUT(A) 16| 16| 16| 16| 8 ﬁ
OUTPUT(B) 16| 16| 16| 16| 16

<COMMIT T> Observe <COMMIT T> record
FLUSH LOG

Crash 36

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT T> Crash
FLUSH LOG

37

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, &
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16| 16| 16| 8| 8|<T,B 8 <COMMIT T>may or may not have
FLUSH LOG been flushed to disk. If so, same as
OUTPUT(A) 16 16 16 16 8 previous scenario. If not, T is
OUTPUT(B) 16 | 16| 16 | 16 | 16 considered incomplete

<COMMIT T>
FLUSH LOG Crash

38

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START 7>
READ(A, t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, &
READ(B, t) 8 | 16 8 8 8
t:=t*2 16 | 16 8 8 8
WRITE(B, t) 16| 16 | 16 3 8| <T B 8 < If T was incomplete, set B to
FLUSH LOG previous value 8 on disk
OUTPUT(A) 16 | 16| 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT T>
FIUSHTOG Crash

39

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, 1) 16 | 16 3 8| <T A8 - If T was incomplete, set A to
READ(B,) 3| 16 g g 3 previous value 8 on disk
t:=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16| 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16| 16 | 16 8
OUTPUT(B) 16 | 16| 16 | 16 | 16

<COMMIT T>
FLUSHTOG Crash

40

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T> Write <ABORT T> to log and
READ(A, t) 8| 8 8| 8 flush to disk
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8| 8|<T A8
READ(B, t) 8| 16| 8| 8| 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16| 16| 16| 8| 8|<T, B8
FLUSH LOG
OUTPUT(A) 16 | 16| 16 | 16 8
OUTPUT(B) 16| 16| 16| 16| 16

<COMMIT T>
FLUSHTOG Crash

41

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8 Crach
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT T>
FLUSH LOG

42

Recovery using undo logging

o Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, &
READ(B, t) 8 | 16 8 8 8
fo=t*D 16 | 16 8 8 8 Same recovery as before, but only A is
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 8> set to previous value
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8 Crash
OUTPUT(B) 16 | 16| 16| 16 | 16

<COMMIT T>
FLUSH LOG

43

What happens if the system crashes
during the recovery?

o Undo-log recovery is
idempotent, so repeating the
recovery is OK

44

In-class Exercise
« Given the undo log, describe the action of the recovery manager

<START T>
<T A, 10>
<START U>
<U, B, 20>
<T, C, 30>
<U, D, 40>
<COMMIT U>

Crash

Checkpointing
« Entire log can be too long

« Cannot truncate log after a COMMIT because there are other
running transactions

Checkpointing
« Solution: checkpoint log periodically

<START T1>
<T1, A, 5>

<START T2>
<T2, B, 10>

Checkpointing
« Solution: checkpoint log periodically

<START T1>
<T1, A, 5>

<START T2>
<12, B, 10>

Stop accepting new transactions

48

Checkpointing

Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<12, B, 10>
<T2,C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>

Stop accepting new transactions

Wait until all transactions commit or abort

49

Checkpointing

« Solution: checkpoint log periodically

<START T1>

<11, A, 5>

<START T2> Stop accepting new transactions

<12, B, 10>

<712, C, 15> Wait until all transactions commit or abort
<T1, D, 20>

<COMMIT T1> Flush log

<COMMIT T2> Write <CKPT> and flush

<CKPT>

Checkpointing

« Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<12, B, 10>
<T2,C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>
<START T3>
<T3, E, 25>
<T3, F 30>

Stop accepting new transactions
Wait until all transactions commit or abort

Flush log
Write <CKPT> and flush

Resume transactions

Nonguiescent checkpointing

« Motivation: avoid shutting down system while checkpointing
« Checkpoint all active transactions, but allow new transactions to

enter system
<START T1>

<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1,T2)>
<12, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Nonguiescent checkpointing

Motivation: avoid shutting down system while checkpointing
Checkpoint all active transactions, but allow new transactions

to enter system

<START T1>
<T1, A, 5>

<START T2>
<12, B, 10>
<START CKPT (T1,T2)>
<T2, C, 15>

<START T3>
<T1, D, 20>
<COMMIT T1>

<T3,E, 25>
<COMMIT T2>

<END CKPT>
<T3, F 30>

Crash

If we first meet <END CKPT>, only need to
recover until <START CKPT (T1, T2)>

53

Nonguiescent checkpointing

Motivation: avoid shutting down system while checkpointing
Checkpoint all active transactions, but allow new transactions to

enter system

<START T1>
<T1, A, 5>

<START T2>
<12, B, 10>

<START CKPT (T1, T2)>

<72, C, 15>
<START T3>
<T1, D, 20>

<COMMIT T1>
<T3,E, 25>
<COMMIT 12>
<END CKPT>
<T3, F 30>

Crash

A

A

If we first meet <START CKPT (T1, T2)>, only
need to recover until <START T1>

54

3. Redo logging

Redo logging

Redo logging ignores incomplete transactions and repeats committed

ones
o Undo logging cancels incomplete transactions and ignores committed ones

<T, X, v>now means T wrote new value v for database element X

One rule: all log records (e.g., <T, X, v> and <COMMIT T>) must appear
on disk before modifying any database element X on disk

Redo logging

Example
Memory Disk
Action t A B A B | Log
<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 16>
READ(B, t) 8| 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16| 16 8 8 | <T,B, 16>
<COMMIT T>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

57

Recovery with redo logging

« Scan log forward and redo committed transactions

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 16>
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 16>

<COMMIT T>
FLUSH LOG Crash
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

58

Recovery with redo logging

« Scan log forward and redo committed transactions

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 16>
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 16>

<COMMIT T> !
FLUSH LOG Crash
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

59

Recovery with redo logging

« Scan log forward and redo committed transactions

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 16>
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8

Crash

WRITE(B, t) 16 | 16| 16 8 8 | <T, B, 16>

<COMMIT T>
FLUSH LOG
OUTPUT(A) 16 | 16| 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

60

Recovery with redo logging

Scan log forward and redo committed transactions

Memory Disk
Action t A B A B | Log
<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 16>
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T, B, 16>
<COMMIT T>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16

Do nothing

Crash

Recovery

61

Nonquiescent checkpointing for redo log
« Write to disk all DB elements modified by committed transactions

<START T1>

<T1, A, 5

<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>

Nonquiescent checkpointing for redo log
« Write to disk all DB elements modified by committed transactions

<START T1>

<T1, A, 5>

<START T2>

<COMMIT T1>

<T2, B, 10>

<START CKPT (T2)>

<12, C, 15> Write to disk all DB elements by transactions
<START T3> that already committed when START CKPT was

<T3, D, 20> written to log (i.e., T1)
<END CKPT>

63

Nonquiescent checkpointing for redo log
« Write to disk all DB elements modified by committed transactions

<START T1>

<T1, A, 5>

<START T2>

<COMMIT T1>

<T2, B, 10>

<START CKPT (T2)>

<12, C, 15> Write to disk all DB elements by transactions
<START T3> that already committed when START CKPT was

<T3, D, 20> written to log (i.e., T1)
<END CKPT>

<COMMIT T2>
<COMMIT T3>

64

Nonquiescent checkpointing for redo log

o After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Nonquiescent checkpointing for redo log

After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>

<COMMIT T3>

Crash

Only redo writes by T2
Write <ABORT T3> in log after recovery

66

4. Undo/redo logging

Undo/redo logging

More flexible than undo or redo logging in ordering actions
<T,X,v,w>:Tchanged value of X from v to

One rule: <T, X, v, w> must appear on disk before modifying X on disk

Undo/redo logging

Example
Memory Disk

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8, 16>
READ(B, t) 8| 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16| 16 8 8 | <T, B, 8, 16>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8

<COMMIT T>
OUTPUT(B) 16 | 16 | 16 | 16 | 16

69

Recovery with undo/redo logging

Redo all committed transactions and undo all incomplete transactions

Memory Disk

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, S8, 16>
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T,B, 8, 16>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8

<COMMIT T>
OUTPUT(B) 16 | 16| 16| 16 | 16

Crash

Recovery

70

Recovery with undo/redo logging

o Redo all committed transactions and undo all incomplete transactions

Memory Disk Recovery

Action t A B A B | Log

<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, 8, 16>
READ(B, t) 8 | 16 8 8 8 _ _
WRITE(B, 16| 16| 16 3 8 | <T.B 8 16> Redo by writing the valug 16
FLUSH LOG for both A and B to the disk.
OUTPUT(A) 16 | 16 | 16 | 16 8 !

<COMMIT T> Crash
OUTPUT(B] 16 [16 | 16 | 16 | 16 ras

71

Recovery with undo/redo logging

o Redo all committed transactions and undo all incomplete transactions

Memory Disk Recovery
Action t A B A B | Log
<START T>
READ(A, t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A, t) 16 | 16 8 8 | <T, A, S8, 16>
READ(B, t) 8 | 16 8 8 8
ti=t*2 16 | 16 8 8 8
WRITE(B, t) 16 | 16 | 16 8 8 | <T,B, 8, 16>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8 Crash
<COMMIT T>
OUTPUT(B) 16 | 16 | 16 | 16 | 16

72

Recovery with undo/redo logging

o Redo all committed transactions and undo all incomplete transactions

Memory Disk Recovery

Action t A B A B | Log

<START T> 1
READ(A, t) 8| 8 8| 8
ti=t*2 16| 8 8| 8
WRITE(A, t) 16 | 16 8 8 | <T,A 8 16>
READ(B, t) 8| 16 8 8 8 T is incomplete
t:=t*2 16 | 16 8 8 8 Undo by resetting A and B to
WRITE(B, t) 16116 161 81 8] </, 88 16> the previous value of 8
FLUSH LOG
OUTPUT(A) 16| 16| 16| 16| 8 c

rash

<COMMIT T>

OUTPUT(B) 16| 16| 16| 16| 16

73

Nonquiescent checkpointing for undo/redo logging

« Simpler than other logging methods

<START T1>

<T1, A 4, 5>
<START T2>
<COMMIT T1>
<T12,B,9, 10>
<START CKPT (T2)>

74

Nonquiescent checkpointing for undo/redo logging

« Simpler than other logging methods

<START T1>

<T1 A 4, 5>

<START T2>

<COMMIT T1>

<T12,B,9, 10>

<START CKPT (T2)>

<12, C, 14, 15>

<START T3> Write to disk all the buffers that are dirty
<T3, D, 19, 20>

<END CKPT>

75

Nonquiescent checkpointing for undo/redo logging

« Simpler than other logging methods

<START T1>

<T1 A 4, 5>
<START T2>
<COMMIT T1>
<T12,B,9, 10>
<START CKPT (T2)>
<12, C, 14, 15>
<START T3> Write to disk all the buffers that are dirty
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

76

Nonquiescent checkpointing for undo/redo logging

o After a crash, redo committed transactions, and undo
uncommitted ones

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T12,B,9, 10>
<START CKPT (T2)>
<12, C, 14, 15>
<START T3>
<T3,D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Nonquiescent checkpointing for undo/redo logging

o After a crash, redo committed transactions, and undo

uncommitted ones

<START T1>

<T1, A 4, 5>
<START T2>
<COMMIT T1>
<T12,B,9, 10>
<START CKPT (T2)>
<T2,C, 14, 15>
<START T3>

<T3, D, 19, 20>
<END CKPT>

<COMMIT T2> Crash

<COMMIT T3>

Redo T2 by setting C to 15 on disk
(No need to set B to 10 thanks to CKPT)
Undo T3 by setting D to 19 on disk

78

Summary

Write-ahead logging protocol
 Log before data
* Force log on commit

Logging and Recovering Mechanisms
» Undo logging
* Redo logging
« Undo/redo logging
« Checkpointing

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements

	Recovery
	Slide 3: Desirable Properties of Transactions: ACID
	Slide 4: Failure modes and solutions
	Slide 5: Summary of Recovery Mechanism
	Slide 6: Reading Materials
	Slide 7: Agenda
	Slide 8: 1. Write-Ahead Logging (WAL) TXN Commit Protocol
	Slide 9
	Slide 10: Our model: Three Types of Regions of Memory
	Slide 11: Basic Idea: Logging
	Slide 12: Why do we need logging for atomicity?
	Slide 13: A picture of logging
	Slide 14: A picture of logging
	Slide 15: A picture of logging
	Slide 16: What is the correct way to write this all to disk?
	Slide 17: Incorrect Commit Protocol #1
	Slide 18: Incorrect Commit Protocol #2
	Slide 19: Write-ahead Logging (WAL) Commit Protocol
	Slide 20: Write-ahead Logging (WAL) Commit Protocol
	Slide 21: Write-Ahead Logging (WAL)
	Slide 22: Logging Mechanisms
	Slide 23: Transaction primitives
	Slide 24: Recall: The Correctness Principle
	Slide 25: Transaction primitives
	Slide 26: Transaction primitives
	Slide 27: Transaction primitives

	Undo logging
	Slide 28: 2. Undo logging
	Slide 29: Undo logging
	Slide 30: Undo logging
	Slide 31: Undo logging
	Slide 32: Undo logging
	Slide 33: Recovery using undo logging
	Slide 34: Recovery using undo logging
	Slide 35: Recovery using undo logging
	Slide 36: Recovery using undo logging
	Slide 37: Recovery using undo logging
	Slide 38: Recovery using undo logging
	Slide 39: Recovery using undo logging
	Slide 40: Recovery using undo logging
	Slide 41: Recovery using undo logging
	Slide 42: Recovery using undo logging
	Slide 43: Recovery using undo logging
	Slide 44: What happens if the system crashes during the recovery?
	Slide 45: In-class Exercise

	checkpoint
	Slide 46: Checkpointing
	Slide 47: Checkpointing
	Slide 48: Checkpointing
	Slide 49: Checkpointing
	Slide 50: Checkpointing
	Slide 51: Checkpointing
	Slide 52: Nonquiescent checkpointing
	Slide 53: Nonquiescent checkpointing
	Slide 54: Nonquiescent checkpointing

	redo
	Slide 55: 3. Redo logging
	Slide 56: Redo logging
	Slide 57: Redo logging
	Slide 58: Recovery with redo logging
	Slide 59: Recovery with redo logging
	Slide 60: Recovery with redo logging
	Slide 61: Recovery with redo logging
	Slide 62: Nonquiescent checkpointing for redo log
	Slide 63: Nonquiescent checkpointing for redo log
	Slide 64: Nonquiescent checkpointing for redo log
	Slide 65: Nonquiescent checkpointing for redo log
	Slide 66: Nonquiescent checkpointing for redo log

	undo/redo
	Slide 67: 4. Undo/redo logging
	Slide 68: Undo/redo logging
	Slide 69: Undo/redo logging
	Slide 70: Recovery with undo/redo logging
	Slide 71: Recovery with undo/redo logging
	Slide 72: Recovery with undo/redo logging
	Slide 73: Recovery with undo/redo logging
	Slide 74: Nonquiescent checkpointing for undo/redo logging
	Slide 75: Nonquiescent checkpointing for undo/redo logging
	Slide 76: Nonquiescent checkpointing for undo/redo logging
	Slide 77: Nonquiescent checkpointing for undo/redo logging
	Slide 78: Nonquiescent checkpointing for undo/redo logging
	Slide 79: Summary

