Emerging Database
lTechnologies

Lecture 5
01/28/26

Overview of this section

 Transactions are a programming abstraction that enables
the DBMS to handle recovery and concurrency for users.

 Application: Transactions are critical for users
« Even casual users of data processing systems!

 Fundamentals: The basics of how TXNs work

 Transaction processing is part of the debate around new data
processing systems

» Give you enough information to understand how TXNs work, and
the main concerns with using them

Reading Materials

Fundamental of Database Systems (7th Edition)

» Chapter 20 - Introduction to Transaction
Processing Concepts and Theory

Acknowledgement:
The following slides have been created adapting the instructor material of the

[RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

Agenda

1. Transaction Basics
2. ACID properties

3. Using transactions in SQL

High-level: Disk vs. Main Memory

* Disk:

e Slow

« Sequential access
 (although fast sequential reads)

e Durable
* We will assume that once on disk, data is safe!

* Cheap

Cylinder

Disk head

() —spindle
< } Tracks

——— ™
/‘ \\D Sector
2

¢ ’ Platters
Arm movement
]
_/

Arm assembly

High-level: Disk vs. Main Memory

« Random Access Memory (RAM) or Main Memory:

e fast

« Random access, byte addressable
» ~10x faster for sequential access
 ~100,000x faster for random access!

 Volatile
« Data can be lost if e.g. crash occurs, power goes out, etc!

« Expensive
« For $100, get 16GB of RAM vs. 2TB of disk!

High-level: Disk vs. Main Memory

« Keep in mind the tradeoffs here as motivation for the
mechanisms we introduce

« Main memory: fast but limited capacity, volatile

* \/s. Disk: slow but large capacity, durable

How do we effectively utilize both ensuring certain critical guarantees?

1. Transaction Basics

Transactions: Basic Definition

A transaction (“TXN") is a sequence of
one or more operations (reads or
writes) which reflects a single real-
world transition.

In the real world, a TXN
either happened
completely or not at all

START TRANSACTION
Product
Price = Price —1.99
pname = ‘Gizmo’
COMMIT

Transactions: Basic Definition

A transaction (“TXN”) is a sequence of one In the real world, a TXN
or more operations (reads or writes) which e'therlhtalfipe”edt -
reflects a single real-world transition. cOMPpIStely or not at 4

Examples:

 Transfer money between accounts

* Purchase a group of products

« Register for a class (either waitlist or allocated)

Transactions in SQL

In “ad-hoc” SQL:

» Default: each statement = one transaction
* No need to explicitly start or end a transaction.

In a program, multiple statements can be grouped together as a
transaction:

START TRANSACTION
Bank amount = amount — 100
name = ‘Bob’
Bank amount = amount + 100

name = ‘Joe’
COMMIT

Model of Transaction in this class

We assume that the DBMS is only concerned about reads and
writes to data

* |t doesn’t care about what the user’s program does with the
data outside the database.

A transaction is the DBMS’s abstract view of a user program

* The same program executed multiple times would be considered as
different transactions

« The DBMS does not really understand the “semantics” of the data, it
only cares about read and write sequences

Motivation for Transactions

Grouping user actions (reads & writes) into fransactions helps
with two goals:

1. Recovery & Durability: Keeping the DBMS data consistent
and durable in the face of crashes, aborts, system

shutdowns, etc.

2. Concurrency: Achieving better performance by parallelizing
TXNs without creating anomalies

Motivation

1. Recovery & Durability of user data is essential for

reliable DBMS usage
- The DBMS may experience crashes (e.g. power outages, etc.)

- Individual TXNs may be aborted (e.g. by the user)

ldea: Make sure that TXNs are either durably stored in full, or
not at all; keep log to be able to “roll-back” TXNs

Protection against crashes / aborts

Client 1:
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99 Crash / abort!
_— ¥ o P oephbhaofn 6 i a i i il P o a P L P P P
Product
price <=0.99

What goes wrong?

15

Protection against crashes / aborts

Client 1:
START TRANSACTION
SmallProduct(name, price)
pname, price
Product
price <=0.99

Product
price <=0.99
COMMIT OR ROLLBACK

Now we’d be fine!

Motivation

2. Concurrent execution of user programs is
essential for good DBMS performance.

- Disk accesses may be frequent and slow- optimize for
tTh>2c|<IL5|ghput (# of TXNs), trade for latency (time for any one

- Users should still be able to execute TXNs as if in isolation and
such that consistency is maintained

ldea: Have the DBMS handle running several user
TXNs concurrently, in order to keep CPUs buzy...

Multiple users: single statements

Client 1: Product
Price = Price — 1.99
pname = ‘Gizmo’

Client 2: Product
Price = Price*0.5
pname=‘Gizmo’

Two managers attempt to discount products concurrently-
What could go wrong?

Multiple users: single statements

Client 1: START TRANSACTION
Product
Price = Price —1.99
pname = ‘Gizmo’

COMMIT

Client 2: START TRANSACTION
Product
Price = Price*0.5
pname=‘Gizmo’
COMMIT

Now works like a charm - we’ll see how / why in the following lectures...

2. ACID Properties

Desirable Properties of Transactions: ACID

Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

Durability: Once a transaction changes the database and the changes are
committed, these changes must never be lost because of subsequent
failure.

ACID: Atomicity

TXN'’s activities are atomic: all or nothing

. Intuitivel,¥: in the real world, a transaction is something that
would either occur completely or not at all

Two possible outcomes for a TXN
* [t commits: all the changes are made

* [t aborts: no changes are made

ACID: Consistency

The tables must always satisty user-specified integrity constraints

* Examples:
« Account number is unique
« Stock amount can't be negative
« Sum of debits and of credits is O

How consistency is achieved:

* Programmer makes sure a txn takes a consistent state to a consistent
state

« System makes sure that the txn is atomic

ACID: Isolation

A transaction executes concurrently with other transactions

|solation: the effect is as if each transaction executes in

Isolation of the others.

» A user should be able to observe changes from other transactions during
the run

ACID: Durability

The effect of a TXN must continue to exist (“persist”) after
the TXN
* And after the whole program has terminated

* And even if there are power failures, crashes, etc.
* And etc...

Change on the horizon?

* Means: Write data to disk Non-Volatile Ram (NVRam).
Byte addressable.

INn-class Exercise

e Scenario: You place an order and receive confirmation. Five
minutes later, the data center experiences a power outage. When
the system comes back online, your order is still in the system.

* Q: Which ACID property ensures your order wasn't lost?

INn-class Exercise

« Scenario: Two customers simultaneously try to book the last seat
on a flight. Both see 'seat available', but only one successftully
completes the booking. The other gets an error message saying
the seat is no longer available.

« Q: Which ACID property prevented double-booking?

INn-class Exercise

 Scenario: You're transferring $500 from your checking account to
savings. The system deducts $500 from checking, but crashes
before adding it to savings. When the system restarts, the $500
has been restored to your checking account.

« Q: Which ACID property prevented you from losing $5007

INn-class Exercise

« Scenario: An e-commerce system sells electronics. After
processing an order, the inventory count is updated from 10 to 9
items. The database also maintains a rule that inventory can never
be negative, and total_items_sold must equal (starting_inventory -
current_inventory). The transaction successfully commits.

* Q: Which ACID property ensures all these business rules remain
satisfied?

—nsuring Consistency

START TRANSACTION

, o . . accounts

User's responsibility to maintain the balance = balance - 100 id =
. : . 1;

integrity constraints, as the DBMS may | oy

not be able to catch such errors in

user program’s logic Database ends up inconsistent

(money disappeared)

However, the DBMS may be in inconsistent state “during a
transaction” between actions

* which iIs ok, but it should leave the database at a consistent state
when it commits or aborts

The Correctness Principle

A fundamental assumption about transaction is:

It a transaction executes in the absence of any other
transactions or system errors, and it starts with the database in
a consistent state, then the database is also in a consistent
state when the transactions ends.

DB in consistent state Run in isolation DB in consistent state

Ei@m = @

—nsuring Atomicity

A transaction interrupted in the middle can leave the database in an
iInconsistent state

 DBMS has to remove the effects of partial transactions from the database

DBMS ensures atomicity by “undoing” the actions of incomplete
transactions

DBMS maintains a “log” of all changes to do so

-nsuring Durabllity
The log also ensures durabillity

If the system crashes before the changes made by a completed
transactions are written to the disk, the log is used to remember
and restore these changes when the system restarts

“recovery manager”
 takes care of atomicity and durability

-nsuring Isolation

DBMS guarantees isolation

 If T1 and T2 are executed concurrently, either the effect would be
T1->T2 or T2->T1 (as if they ran serially)

DBMS provides no guarantee on which of these order is chosen,
just that the result is equivalent to some serial order.

Often ensured by “locks” but there are other methods too

A Note: ACID iIs contentious!

Many debates over ACID, both historically
and currently

y y Google Bigtable . g
Many “NoSQL” DBMSs relax ACID S sriak e
e redis .mongoDB
}gzzgp‘lhjdambase
In turn, now “NewSQL” reintroduces ACID ¥ ™
compliance to NoSQL-style DBMSs... 193 71
amazon :
CoucHBase webservices™ K‘?!(h)tou(]abmet

ACID is an extremely important & successful
paradigm, but still debated!

3. Using Transactions in SQL

Using Transactions in SQL

Marks beginning
/ of transaction

e SQL allows the programmer to

group several statements in a START TRANSACTION
single transaction
Accounts
- - balance = balance + 100
o Either all operations are performed AcCtNO = 456:
Or none are
E Accounts
o Asingle SQL statement is always balance = balance - 100
considered to be atomic. acctNo = 123;
COMMIT;
R

Causes transaction to
end successfully

Using Transactions in SQL

e ROLLBACK causes the transaction

to abort and undo any changes START TRANSACTION

Accounts
balance = balance + 100
— acctNo =456;
We find that there are
insufficient funds to make —
transfer

— | ROLLBACK;

38

Using Transactions in SQL

transaction_mode |, ...]

where transaction_mode is one of:

* |SOLATION LEVEL {
SERIALIZABLE
| REPEATABLE READ
| READ COMMITTED
| READ UNCOMMITTED }

 READ WRITE | READ ONLY

Isolation Levels

« With SERIALIZABLE: the interleaved
execution of transactions will adhere
to our notion of serializability.

« However, if any transaction executes
at a lower level, then serializability
may be violated.

Access Mode

 The defaultis READ WRITE
unless the isolation level of READ
UNCOMITTED is specified, in
which case READ ONLY is
assumed.

Source: https://www.postgresqgl.org/docs/current/sqgl-set-transaction.html 39

https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html

Read-only transactions

Transactions that only read data and do not write can be executed in parallel

Tell DBMS before running transaction:

READ ONLY;

Dirty reads
Reading data written by a transaction that has not yet committea

Consider this seat selection example:

1. Find available seat and reserve by setting seatStatus to ‘occupied’

2. Ask customer for approval of seat

a. If SO, commit
b. If NOt, release seat by setting seatStatus to ‘available” and repeat Step (1)

Dirty read

If we allow dirty reads, this can happen

User 1 finds seat 22A empty and
reserves it (22A is occupied)

User 2 1s told that seat 22A 1s
already occupied (dirty read)

time

User 1 disapproves the 22A
reservation

Dirty reads

If this result is acceptable, the transaction processing can be done faster
- DBMS does not have to prevent dirty reads
- Allows more parallelism

Tell DBMS before running transaction:

READ WRITE
ISOLATION LEVEL READ UNCOMMITTED;

Read committed

Only allow reads from committed data, but same query may get different answers

ISOLATION LEVEL READ COMMITTED;

Transaction 1 Transaction 2
read x
result = 10
time update x = 20
commit
read X
result = 20

Repeatable read

Any tuple that was retrieved will be retrieved again if the same query is repeated,
even though other transactions may modify the individual rows that were read.

ISOLATION LEVEL REPEATABLE READ;

Transaction 1 Transaction 2
read x
result = 10
time update x = 20
commit
read X
result = 10

Repeatable read

May allow “phantom” tuples, which are new tuples inserted between queries

Transaction 1 Transaction 2

Size = size = N
COUNT(Flights)

Insert new flights
time

Size = size = N + 1
COUNT(Flights)

46

Repeatable Read

Guarantee: rows read by a transaction will not change if read again
In that transaction.
* Doesn’t guarantee anything about rows that weren't originally read.

Why Phantom Reads Can Occur

* Locking: Repeatable read typically locks the rows it reads, but not the
gaps between rows.

* New Inserts: Without gap locking, new rows could be inserted that match
your WHERE clause.

Comparison of SQL isolation levels

|solation Level Dirty Reads | Nonrepeatable | Phantoms
Reads

READ 7 4 4

UNCOMMITTED

READ) 4 7

COMMITTED

REPEATABLE READ | O 4

SERIALIZABLE O O

Comparison of SQL isolation levels

|solation Level Dirty Reads | Nonrepeatable | Phantoms
Reads

READ 4 4 4

UNCOMMITTED

READ O 4 4

COMMITTED

REPEATABLE READ | © O L4

SERIALIZABLE O O O

Rarely used in practice,
as the performance is
not much better than
other levels

In fact, PostgreSQL
doesn't support this
Isolation level

No lock on data

49

Comparison of SQL isolation levels

|solation Level Dirty Reads | Nonrepeatable | Phantoms
Reads

READ 4 4 4

UNCOMMITTED

READ O 4 4

COMMITTED

REPEATABLE READ | © O 4

SERIALIZABLE O O O

Fast and simple to use;
adequate for many
applications

Shared lock (read lock) on
rows when they are read,
exclusive lock (write lock)
on rows when they are
being modified

50

Comparison of SQL isolation levels

|solation Level Dirty Reads | Nonrepeatable | Phantoms
Reads

READ 4 4 4

UNCOMMITTED

READ O 4 4

COMMITTED

REPEATABLE READ | © O L4

SERIALIZABLE O O O

Good for reporting,
data warehousing
types of workload

Shared locks on all
rows read by a
transaction

51

Comparison of SQL isolation levels

|solation Level Dirty Reads | Nonrepeatable | Phantoms
Reads

READ 4 4 4

UNCOMMITTED

READ) 4 7

COMMITTED

REPEATABLE READ | O 4

SERIALIZABLE O O

Recommended only when
updating transactions
contain logic sufficiently
complex that they might
give wrong answers in
READ COMMITED mode

Locking the entire range of
rows that could potentially
be accessed by a
transaction’s queries

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Overview of this section
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: High-level: Disk vs. Main Memory
	Slide 6
	Slide 7
	Slide 8: 1. Transaction Basics
	Slide 9: Transactions: Basic Definition
	Slide 10: Transactions: Basic Definition
	Slide 11: Transactions in SQL
	Slide 12: Model of Transaction in this class
	Slide 13: Motivation for Transactions
	Slide 14: Motivation
	Slide 15: Protection against crashes / aborts
	Slide 16: Protection against crashes / aborts
	Slide 17: Motivation
	Slide 18: Multiple users: single statements
	Slide 19: Multiple users: single statements

	ACID
	Slide 20: 2. ACID Properties
	Slide 21: Desirable Properties of Transactions: ACID
	Slide 22: ACID: Atomicity
	Slide 23: ACID: Consistency
	Slide 24: ACID: Isolation
	Slide 25: ACID: Durability
	Slide 26: In-class Exercise
	Slide 27: In-class Exercise
	Slide 28: In-class Exercise
	Slide 29: In-class Exercise
	Slide 30: Ensuring Consistency
	Slide 31: The Correctness Principle
	Slide 32: Ensuring Atomicity
	Slide 33: Ensuring Durability
	Slide 34: Ensuring Isolation
	Slide 35: A Note: ACID is contentious!

	Transaction in SQL
	Slide 36: 3. Using Transactions in SQL
	Slide 37: Using Transactions in SQL
	Slide 38: Using Transactions in SQL
	Slide 39: Using Transactions in SQL
	Slide 40: Read-only transactions
	Slide 41: Dirty reads
	Slide 42: Dirty read
	Slide 43: Dirty reads
	Slide 44: Read committed
	Slide 45: Repeatable read
	Slide 46: Repeatable read
	Slide 47: Repeatable Read
	Slide 48: Comparison of SQL isolation levels
	Slide 49: Comparison of SQL isolation levels
	Slide 50: Comparison of SQL isolation levels
	Slide 51: Comparison of SQL isolation levels
	Slide 52: Comparison of SQL isolation levels

