
CS 4440 A

Emerging Database
Technologies

Lecture 5

01/28/26

Overview of this section

• Transactions are a programming abstraction that enables
the DBMS to handle recovery and concurrency for users.

• Application: Transactions are critical for users
• Even casual users of data processing systems!

• Fundamentals: The basics of how TXNs work
• Transaction processing is part of the debate around new data

processing systems

• Give you enough information to understand how TXNs work, and
the main concerns with using them

Reading Materials

Fundamental of Database Systems (7th Edition)

• Chapter 20 - Introduction to Transaction
Processing Concepts and Theory

3

Acknowledgement:

The following slides have been created adapting the instructor material of the

[RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

Agenda

1. Transaction Basics

2. ACID properties

3. Using transactions in SQL

4

High-level: Disk vs. Main Memory

• Disk:

• Slow

• Sequential access

• (although fast sequential reads)

• Durable
• We will assume that once on disk, data is safe!

• Cheap

5

Platters

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

• Random Access Memory (RAM) or Main Memory:

• Fast
• Random access, byte addressable

• ~10x faster for sequential access

• ~100,000x faster for random access!

• Volatile
• Data can be lost if e.g. crash occurs, power goes out, etc!

• Expensive
• For $100, get 16GB of RAM vs. 2TB of disk!

6

High-level: Disk vs. Main Memory

• Keep in mind the tradeoffs here as motivation for the
mechanisms we introduce

• Main memory: fast but limited capacity, volatile

• Vs. Disk: slow but large capacity, durable

7

High-level: Disk vs. Main Memory

How do we effectively utilize both ensuring certain critical guarantees?

1. Transaction Basics

8

Transactions: Basic Definition

A transaction (“TXN”) is a sequence of

one or more operations (reads or

writes) which reflects a single real-

world transition.

START TRANSACTION
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’
COMMIT

In the real world, a TXN

either happened

completely or not at all

Transactions: Basic Definition

A transaction (“TXN”) is a sequence of one

or more operations (reads or writes) which

reflects a single real-world transition.

In the real world, a TXN

either happened

completely or not at all

Examples:

• Transfer money between accounts

• Purchase a group of products

• Register for a class (either waitlist or allocated)

11

Transactions in SQL

In “ad-hoc” SQL:
• Default: each statement = one transaction

• No need to explicitly start or end a transaction.

In a program, multiple statements can be grouped together as a
transaction:

START TRANSACTION
 UPDATE Bank SET amount = amount – 100
 WHERE name = ‘Bob’
 UPDATE Bank SET amount = amount + 100
 WHERE name = ‘Joe’
COMMIT

Model of Transaction in this class

We assume that the DBMS is only concerned about reads and
writes to data

• It doesn’t care about what the user’s program does with the
data outside the database.

A transaction is the DBMS’s abstract view of a user program
• The same program executed multiple times would be considered as

different transactions

• The DBMS does not really understand the “semantics” of the data, it
only cares about read and write sequences

Motivation for Transactions

Grouping user actions (reads & writes) into transactions helps
with two goals:

1. Recovery & Durability: Keeping the DBMS data consistent
and durable in the face of crashes, aborts, system
shutdowns, etc.

2. Concurrency: Achieving better performance by parallelizing
TXNs without creating anomalies

Motivation

1. Recovery & Durability of user data is essential for
reliable DBMS usage

• The DBMS may experience crashes (e.g. power outages, etc.)

• Individual TXNs may be aborted (e.g. by the user)

Idea: Make sure that TXNs are either durably stored in full, or
not at all; keep log to be able to “roll-back” TXNs

15

Protection against crashes / aborts

Client 1:
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

What goes wrong?

Crash / abort!

16

Protection against crashes / aborts

Client 1:
 START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99
 COMMIT OR ROLLBACK

Now we’d be fine!

Motivation

2. Concurrent execution of user programs is
essential for good DBMS performance.

• Disk accesses may be frequent and slow- optimize for
throughput (# of TXNs), trade for latency (time for any one
TXN)

• Users should still be able to execute TXNs as if in isolation and
such that consistency is maintained

Idea: Have the DBMS handle running several user
TXNs concurrently, in order to keep CPUs buzy…

18

Multiple users: single statements

Client 1: UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2: UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Two managers attempt to discount products concurrently-
What could go wrong?

19

Multiple users: single statements

Client 1: START TRANSACTION
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’
 COMMIT

Client 2: START TRANSACTION
 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’
 COMMIT

Now works like a charm - we’ll see how / why in the following lectures…

2. ACID Properties

20

Desirable Properties of Transactions: ACID

Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

Durability: Once a transaction changes the database and the changes are
committed, these changes must never be lost because of subsequent
failure.

22

ACID: Atomicity

TXN’s activities are atomic: all or nothing

• Intuitively: in the real world, a transaction is something that
would either occur completely or not at all

Two possible outcomes for a TXN

• It commits: all the changes are made

• It aborts: no changes are made

23

ACID: Consistency

The tables must always satisfy user-specified integrity constraints
• Examples:

• Account number is unique

• Stock amount can’t be negative

• Sum of debits and of credits is 0

How consistency is achieved:
• Programmer makes sure a txn takes a consistent state to a consistent

state

• System makes sure that the txn is atomic

24

ACID: Isolation

A transaction executes concurrently with other transactions

Isolation: the effect is as if each transaction executes in
isolation of the others.

• A user should be able to observe changes from other transactions during
the run

25

ACID: Durability

The effect of a TXN must continue to exist (“persist”) after
the TXN

• And after the whole program has terminated

• And even if there are power failures, crashes, etc.

• And etc…

• Means: Write data to disk
Change on the horizon?
Non-Volatile Ram (NVRam).
Byte addressable.

In-class Exercise

• Scenario: You place an order and receive confirmation. Five
minutes later, the data center experiences a power outage. When
the system comes back online, your order is still in the system.

• Q: Which ACID property ensures your order wasn't lost?

26

In-class Exercise

• Scenario: Two customers simultaneously try to book the last seat
on a flight. Both see 'seat available', but only one successfully
completes the booking. The other gets an error message saying
the seat is no longer available.

• Q: Which ACID property prevented double-booking?

27

In-class Exercise

• Scenario: You're transferring $500 from your checking account to
savings. The system deducts $500 from checking, but crashes
before adding it to savings. When the system restarts, the $500
has been restored to your checking account.

• Q: Which ACID property prevented you from losing $500?

28

In-class Exercise

• Scenario: An e-commerce system sells electronics. After
processing an order, the inventory count is updated from 10 to 9
items. The database also maintains a rule that inventory can never
be negative, and total_items_sold must equal (starting_inventory -
current_inventory). The transaction successfully commits.

• Q: Which ACID property ensures all these business rules remain
satisfied?

29

Ensuring Consistency

However, the DBMS may be in inconsistent state “during a
transaction” between actions

• which is ok, but it should leave the database at a consistent state
when it commits or aborts

30

START TRANSACTION
UPDATE accounts
SET balance = balance - 100 WHERE id =
1;
COMMIT;

User’s responsibility to maintain the

integrity constraints, as the DBMS may

not be able to catch such errors in

user program’s logic Database ends up inconsistent
(money disappeared)

The Correctness Principle
A fundamental assumption about transaction is:

31

DB in consistent state

Txn

DB in consistent stateRun in isolation

If a transaction executes in the absence of any other

transactions or system errors, and it starts with the database in

a consistent state, then the database is also in a consistent

state when the transactions ends.

Ensuring Atomicity

A transaction interrupted in the middle can leave the database in an
inconsistent state

• DBMS has to remove the effects of partial transactions from the database

DBMS ensures atomicity by “undoing” the actions of incomplete
transactions

DBMS maintains a “log” of all changes to do so

32

Ensuring Durability

The log also ensures durability

If the system crashes before the changes made by a completed
transactions are written to the disk, the log is used to remember
and restore these changes when the system restarts

“recovery manager”
• takes care of atomicity and durability

33

Ensuring Isolation

DBMS guarantees isolation
• If T1 and T2 are executed concurrently, either the effect would be

T1->T2 or T2->T1 (as if they ran serially)

DBMS provides no guarantee on which of these order is chosen,
just that the result is equivalent to some serial order.

Often ensured by “locks” but there are other methods too

34

A Note: ACID is contentious!

Many debates over ACID, both historically
and currently

Many “NoSQL” DBMSs relax ACID

In turn, now “NewSQL” reintroduces ACID
compliance to NoSQL-style DBMSs…

ACID is an extremely important & successful
paradigm, but still debated!

3. Using Transactions in SQL

36

Using Transactions in SQL

● SQL allows the programmer to
group several statements in a
single transaction

● Either all operations are performed
or none are

● A single SQL statement is always
considered to be atomic.

37

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

COMMIT;

Causes transaction to

end successfully

Marks beginning

of transaction

Using Transactions in SQL

● ROLLBACK causes the transaction
to abort and undo any changes

38

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

ROLLBACK;

We find that there are

insufficient funds to make

transfer

Using Transactions in SQL

39

SET TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

• ISOLATION LEVEL {
 SERIALIZABLE
 | REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED }

• READ WRITE | READ ONLY

Source: https://www.postgresql.org/docs/current/sql-set-transaction.html

Isolation Levels

• With SERIALIZABLE: the interleaved
execution of transactions will adhere
to our notion of serializability.

• However, if any transaction executes
at a lower level, then serializability
may be violated.

Access Mode
• The default is READ WRITE

unless the isolation level of READ
UNCOMITTED is specified, in
which case READ ONLY is
assumed.

https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html

Read-only transactions

Transactions that only read data and do not write can be executed in parallel

Tell DBMS before running transaction:

40

SET TRANSACTION READ ONLY;

Dirty reads

Reading data written by a transaction that has not yet committed

Consider this seat selection example:

1. Find available seat and reserve by setting seatStatus to ‘occupied’

2. Ask customer for approval of seat
a. If so, commit
b. If not, release seat by setting seatStatus to ‘available’ and repeat Step (1)

41

Dirty read

If we allow dirty reads, this can happen

42

User 1 finds seat 22A empty and

reserves it (22A is occupied)

User 1 disapproves the 22A

reservation

time User 2 is told that seat 22A is

already occupied (dirty read)

Dirty reads

If this result is acceptable, the transaction processing can be done faster
○ DBMS does not have to prevent dirty reads
○ Allows more parallelism

Tell DBMS before running transaction:

43

SET TRANSACTION READ WRITE
 ISOLATION LEVEL READ UNCOMMITTED;

Read committed

Only allow reads from committed data, but same query may get different answers

44

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

read x

result = 10

update x = 20

commit

read x

result = 20

time

Transaction 1 Transaction 2

Repeatable read
Any tuple that was retrieved will be retrieved again if the same query is repeated,
even though other transactions may modify the individual rows that were read.

45

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

read x

result = 10

update x = 20

commit

read x

result = 10

time

Transaction 1 Transaction 2

Repeatable read

May allow “phantom” tuples, which are new tuples inserted between queries

46

size =

COUNT(Flights)

time

Transaction 1 Transaction 2

size =

COUNT(Flights)

size = N

size = N + 1

Insert new flights

Repeatable Read

Guarantee: rows read by a transaction will not change if read again
in that transaction.

• Doesn’t guarantee anything about rows that weren't originally read.

Why Phantom Reads Can Occur
• Locking: Repeatable read typically locks the rows it reads, but not the

gaps between rows.

• New Inserts: Without gap locking, new rows could be inserted that match
your WHERE clause.

47

Comparison of SQL isolation levels

48

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

Comparison of SQL isolation levels

49

• Rarely used in practice,
as the performance is

not much better than

other levels

• In fact, PostgreSQL
doesn’t support this

isolation level

• No lock on data

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

Comparison of SQL isolation levels

50

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

• Fast and simple to use;
adequate for many

applications

• Shared lock (read lock) on

rows when they are read,
exclusive lock (write lock)

on rows when they are
being modified

Comparison of SQL isolation levels

51

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

• Good for reporting,
data warehousing

types of workload

• Shared locks on all

rows read by a
transaction

Comparison of SQL isolation levels

52

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

• Recommended only when
updating transactions

contain logic sufficiently

complex that they might
give wrong answers in

READ COMMITED mode

• Locking the entire range of
rows that could potentially

be accessed by a
transaction's queries

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Overview of this section
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: High-level: Disk vs. Main Memory
	Slide 6
	Slide 7
	Slide 8: 1. Transaction Basics
	Slide 9: Transactions: Basic Definition
	Slide 10: Transactions: Basic Definition
	Slide 11: Transactions in SQL
	Slide 12: Model of Transaction in this class
	Slide 13: Motivation for Transactions
	Slide 14: Motivation
	Slide 15: Protection against crashes / aborts
	Slide 16: Protection against crashes / aborts
	Slide 17: Motivation
	Slide 18: Multiple users: single statements
	Slide 19: Multiple users: single statements

	ACID
	Slide 20: 2. ACID Properties
	Slide 21: Desirable Properties of Transactions: ACID
	Slide 22: ACID: Atomicity
	Slide 23: ACID: Consistency
	Slide 24: ACID: Isolation
	Slide 25: ACID: Durability
	Slide 26: In-class Exercise
	Slide 27: In-class Exercise
	Slide 28: In-class Exercise
	Slide 29: In-class Exercise
	Slide 30: Ensuring Consistency
	Slide 31: The Correctness Principle
	Slide 32: Ensuring Atomicity
	Slide 33: Ensuring Durability
	Slide 34: Ensuring Isolation
	Slide 35: A Note: ACID is contentious!

	Transaction in SQL
	Slide 36: 3. Using Transactions in SQL
	Slide 37: Using Transactions in SQL
	Slide 38: Using Transactions in SQL
	Slide 39: Using Transactions in SQL
	Slide 40: Read-only transactions
	Slide 41: Dirty reads
	Slide 42: Dirty read
	Slide 43: Dirty reads
	Slide 44: Read committed
	Slide 45: Repeatable read
	Slide 46: Repeatable read
	Slide 47: Repeatable Read
	Slide 48: Comparison of SQL isolation levels
	Slide 49: Comparison of SQL isolation levels
	Slide 50: Comparison of SQL isolation levels
	Slide 51: Comparison of SQL isolation levels
	Slide 52: Comparison of SQL isolation levels

