

CS 4440 A

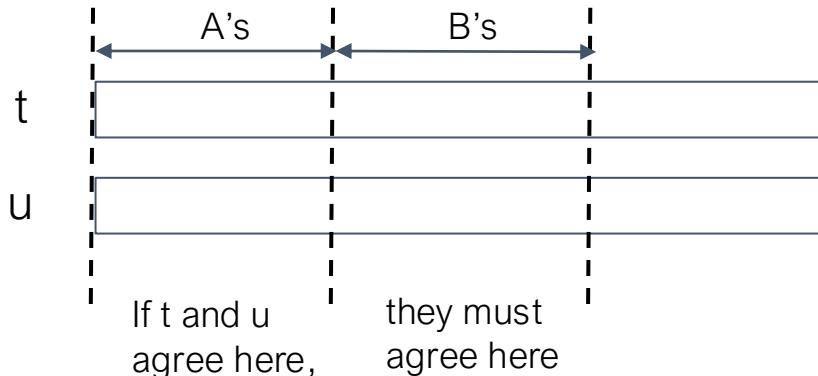
Emerging Database Technologies

Lecture 4
01/26/26

Recap: Functional dependency (FD)

Definition: if two tuples of R agree on all the attributes A_1, A_2, \dots, A_n , they must also agree on (or functionally determine) B_1, B_2, \dots, B_m

- Denoted as $A_1A_2 \dots A_n \rightarrow B_1B_2 \dots B_m$



$A \rightarrow B$ means that
“whenever two tuples agree on
A then they agree on B.”

Recap: Closure of attributes

Given a set of attributes A_1, \dots, A_n and a set of FDs F ,
the closure, $\{A_1, \dots, A_n\}^+$ is the set of attributes B where
 $\{A_1, \dots, A_n\} \rightarrow B$ follows from the FDs in F

$$AB \rightarrow C$$

$$BC \rightarrow AD$$

$$D \rightarrow E$$

$$CF \rightarrow B$$

$$\{A, B\}^+$$

A, B, C, D, E

Cannot be expanded
further, so this is a closure

Recap: Keys and Superkeys

A superkey is a set of attributes A_1, \dots, A_n
s.t.
for any other attribute B in R ,
we have $\{A_1, \dots, A_n\} \rightarrow B$

i.e. all attributes are
functionally
determined by a
superkey

A key is a minimal
superkey

This means that no subset of a key
is also a superkey
(i.e., dropping any attribute from the
key makes it no longer a superkey)

Back to Design Theory

Now that we know how to find FDs, it's a straight-forward process:

1. Search for “bad” FDs
2. If there are any, then *keep decomposing the table into sub-tables* until no more bad FDs
3. When done, the database schema is *normalized*

Recall: there are several normal forms...

Normal Forms

1st Normal Form (1NF) = All tables are flat

2nd Normal Form = disused

Boyce-Codd Normal Form (BCNF)

3rd Normal Form (3NF)

DB designs based
on functional
dependencies,
intended to prevent
data anomalies

4th and 5th Normal Forms = see text books

Our focus
in this
lecture

Agenda

1. Boyce-Codd Normal Form
2. Properties of Decomposition
3. 3NF
4. MVDs

1. BCNF

Boyce-Codd Normal Form (BCNF)

Main idea is that we define “good” and “bad” FDs as follows:

- $X \rightarrow A$ is a “*good FD*” if X is a (super)key
 - In other words, if A is the set of all attributes
- $X \rightarrow A$ is a “*bad FD*” otherwise

We will try to eliminate the “bad” FDs!

Boyce-Codd Normal Form (BCNF)

Why does this definition of “good” and “bad” FDs make sense?

- $X \rightarrow A$: each value of X is associated with exactly one value of A

If X is *not* a (super)key, it functionally determines *some* of the attributes; therefore, those other attributes can be duplicated

- Recall: this means there is redundancy
- And redundancy like this can lead to data anomalies!

“bad FD”: $Position \rightarrow Phone$

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:

if $\{A_1, \dots, A_n\} \rightarrow B$ is a non-trivial FD in R

then $\{A_1, \dots, A_n\}$ is a superkey for R

Equivalently: \forall sets of attributes X, either $(X^+ = X)$ or $(X^+ = \text{all attributes})$

In other words: there are no “bad” FDs

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

$SSN \rightarrow Name, City$

This FD is bad
because it is not
a superkey

\Rightarrow Not in BCNF

What is the key?

$\{SSN, PhoneNumber\}$

Example

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Madison

$SSN \rightarrow Name, City$

This FD is now good because it is the key

<u>SSN</u>	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

Let's check anomalies:

- Redundancy?
- Update?
- Delete?

Now in BCNF!

Boyce-Codd Normal Form (BCNF)

Special case: Any [two-attribute](#) relation is in BCNF

- If there are no nontrivial FDs, BCNF holds
- If $A \rightarrow B$ holds, but not $B \rightarrow A$, the only nontrivial FD has A (i.e., the key) on the left
- Symmetric case when $B \rightarrow A$ holds, but not $A \rightarrow B$
- If both $A \rightarrow B$ and $B \rightarrow A$ hold, any nontrivial FD has A or B (both are keys) on the left

Employee(empID, SSN)

$\text{empID} \rightarrow \text{SSN}$
 $\text{SSN} \rightarrow \text{empID}$

BCNF Decomposition Algorithm

BCNFDecomp(R):

- Find an FD $X \rightarrow Y$ that violates BCNF
(X and Y are sets of attributes)
- Compute the closure X^+
- let $Y = X^+ - X$, $Z = (X^+)^C$

Let Y be the attributes that X functionally determines (+ that are not in X)

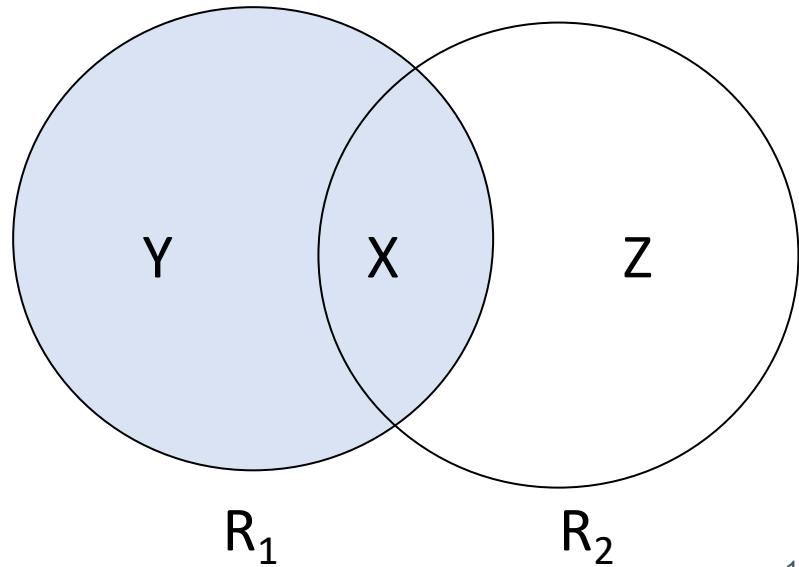
And let Z be the complement, the other attributes that it doesn't

BCNF Decomposition Algorithm

BCNFDekomp(R):

- Find an FD $X \rightarrow Y$ that violates BCNF
(X and Y are sets of attributes)
- Compute the closure X^+
- let $Y = X^+ - X$, $Z = (X^+)^C$
decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Split into one relation (table)
with X plus the attributes
that X determines (Y)...

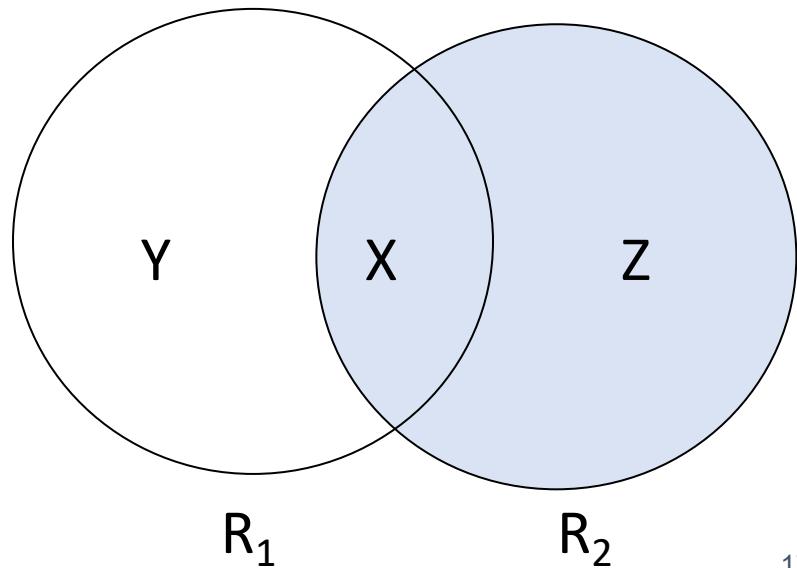


BCNF Decomposition Algorithm

BCNFDecomp(R):

- Find an FD $X \rightarrow Y$ that violates BCNF
(X and Y are sets of attributes)
- Compute the closure X^+
- let $Y = X^+ - X$, $Z = (X^+)^C$
decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$
- Recursively decompose R_1 and R_2

And one relation with X plus
the attributes it does not
determine (Z)



Note: Projection of FDs

Let F be the set of FDs in the relation R . What FD's hold for $R_1 = \pi_L(R)$?

An FD $X \rightarrow Y$ from the original relation R will hold in the project R_1 iff

- Attributes in X and Y are all contained with R_1
- $X \rightarrow Y$ is logical implied by the original set F

Example

- Suppose $R(A, B, C, D)$ has FDs $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- Then the FD's for $R_1(A, C, D)$ are
 - $A \rightarrow C$: Implied by F
 - $C \rightarrow D$: Inherited from F

Example: BCNF Decomposition

- In general, there can be multiple decompositions

$R(\text{title, year, studioName, president, presAddr})$

What is R's key?

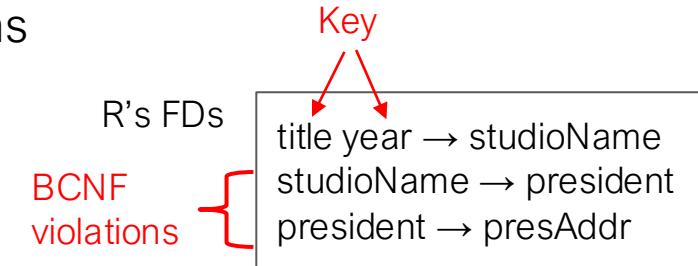
R's FDs

$\text{title year} \rightarrow \text{studioName}$
 $\text{studioName} \rightarrow \text{president}$
 $\text{president} \rightarrow \text{presAddr}$

Example: BCNF Decomposition

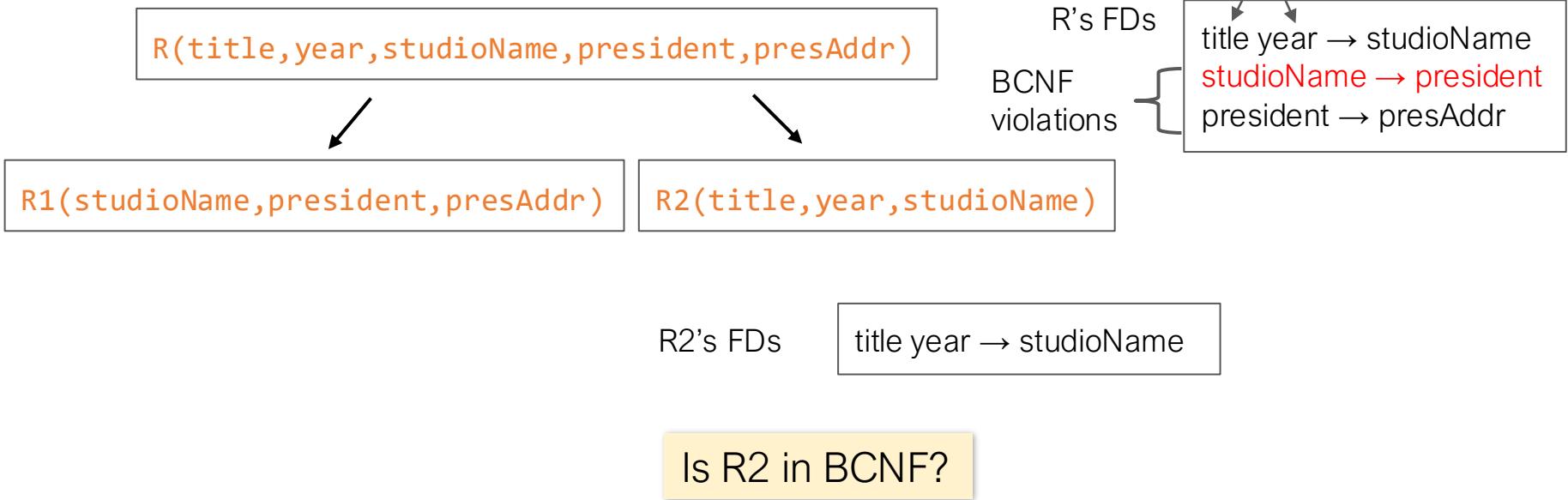
- In general, there can be multiple decompositions

$R(\text{title, year, studioName, president, presAddr})$



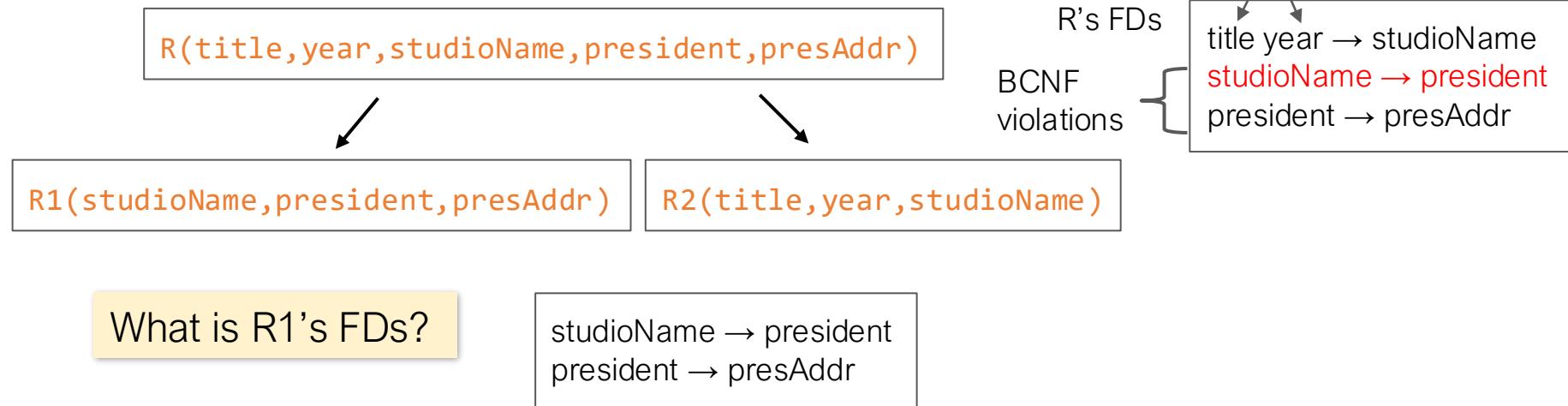
Example: BCNF Decomposition

- In general, there can be multiple decompositions



Example: BCNF Decomposition

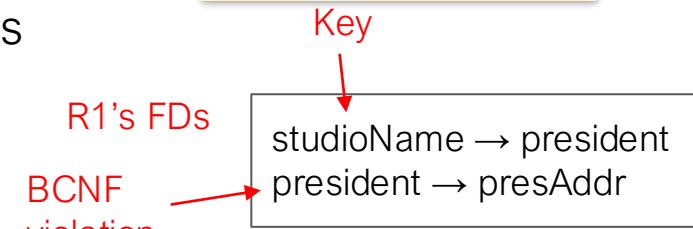
- In general, there can be multiple decompositions



Example: BCNF Decomposition

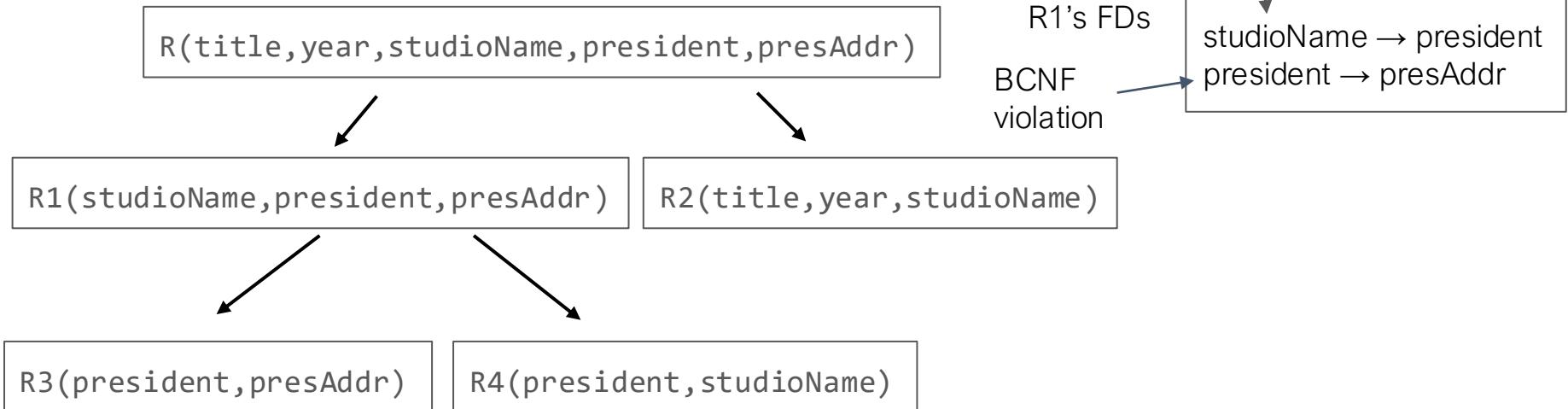
- In general, there can be multiple decompositions

Is $R1$ in BCNF?



Example: BCNF Decomposition

- In general, there can be multiple decompositions



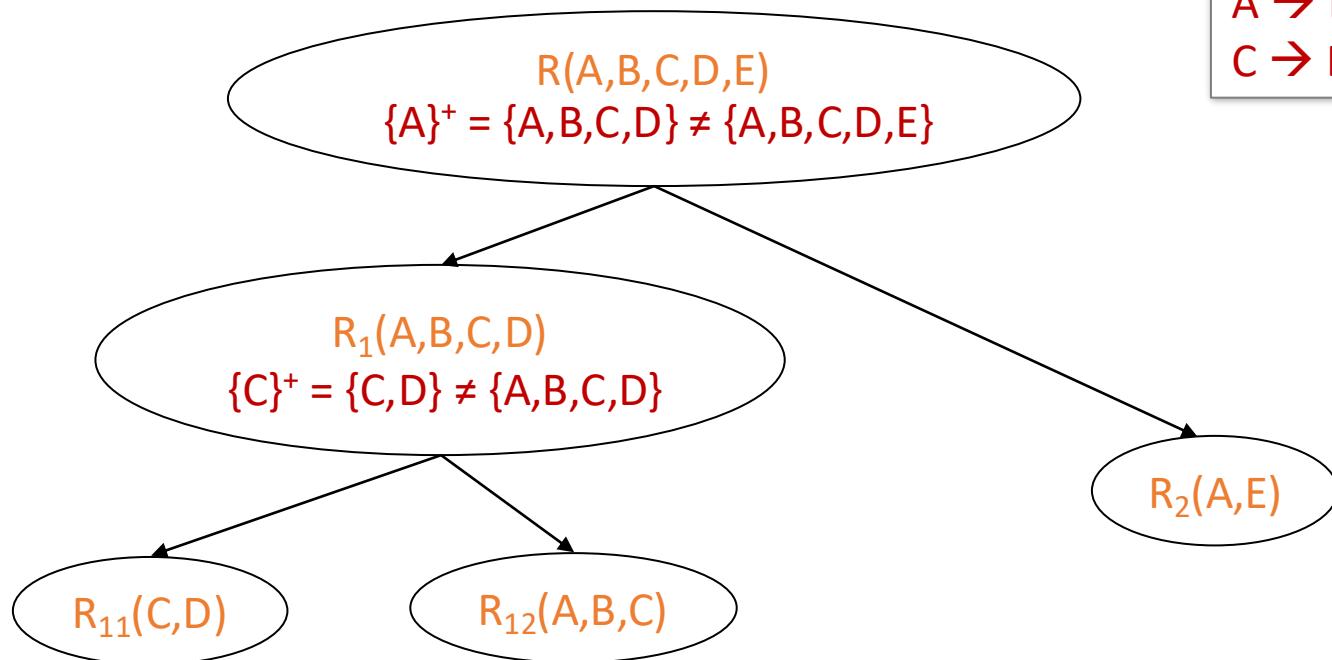
Q: Is this algorithm guaranteed to terminate successfully?

In-class Exercise

$R(A,B,C,D,E)$

Decompose into relations satisfying BCNF

$A \rightarrow BC$
 $C \rightarrow D$



2. Properties of Decomposition

Decompose to remove redundancies

1. We saw that **redundancies** in the data (“bad FDs”) can lead to data anomalies
2. We developed mechanisms to **detect and remove redundancies** by **decomposing tables into BCNF**
 1. BCNF decomposition is *standard practice* - very powerful & widely used!
3. However, sometimes decompositions can lead to **more subtle unwanted effects...**

When does this happen?

Recovering information from a decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Sometimes a decomposition is “correct”

i.e. it is a Lossless decomposition

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Recovering information from a decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

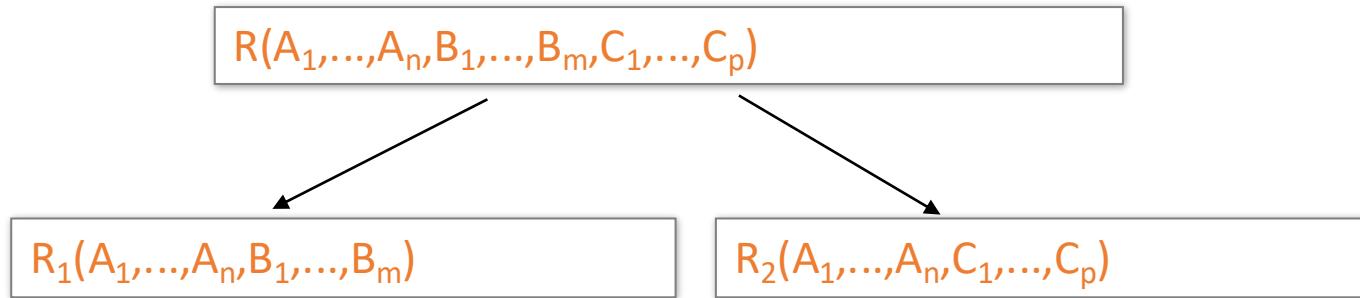
However sometimes
it isn't

What's wrong
here?

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossless Decompositions

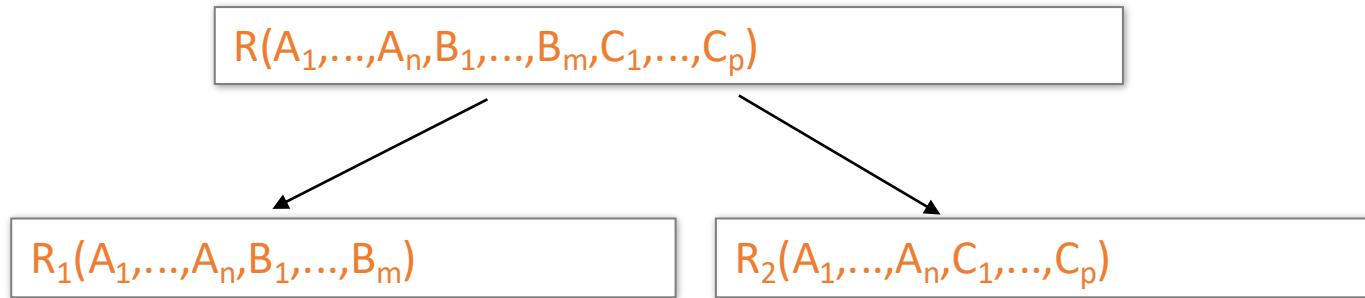


R_1 = the *projection* of R on $A_1, \dots, A_n, B_1, \dots, B_m$

R_2 = the *projection* of R on $A_1, \dots, A_n, C_1, \dots, C_p$

A decomposition R to (R_1, R_2) is lossless
if $R = R_1 \text{ Join } R_2$

Lossless Decompositions



If $A_1, \dots, A_n \rightarrow B_1, \dots, B_m$
Then the decomposition is lossless

Note: don't need
 $A_1, \dots, A_n \rightarrow C_1, \dots, C_p$

BCNF decomposition is always lossless. Why?

A Problem with BCNF

Unit	Company	Product
...

<u>Unit</u>	Company
...	...

Unit	Product
...	...

$\text{Unit} \rightarrow \text{Company}$
 $\text{Company, Product} \rightarrow \text{Unit}$

We do a BCNF decomposition on a “bad” FD:
 $\{\text{Unit}\}^+ = \{\text{Unit, Company}\}$

$\text{Unit} \rightarrow \text{Company}$

We lose the FD $\text{Company, Product} \rightarrow \text{Unit}!!$

So Why is that a Problem?

Unit	Company
Galaga99	UW
Bingo	UW

Unit	Product
Galaga99	Databases
Bingo	Databases

No problem so far.
All local FD's are satisfied.

Unit	Company	Product
Galaga99	UW	Databases
Bingo	UW	Databases

Let's put all the data back into a single table again:

Violates the FD **Company,Product → Unit!!**

The problem with BCNF

- We started with a table R and FDs F
- We decomposed R into BCNF tables R_1, R_2, \dots with their own FDs F_1, F_2, \dots
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD **across** tables!

Practical Problem: To enforce FD, must reconstruct R —on each insert!

Desirable properties of decomposition

- (1) **Elimination of anomalies:** redundancy, update anomaly, delete anomaly
- (2) **Recoverability of information:** can we recover the original relation by joining?
- (3) **Preservation of dependencies:** if we check the projected FD's in the decomposed relations, does the reconstructed relation satisfy the original FD's

- BCNF gives (1) and (2), but not necessarily (3)
- 3NF gives (2) and (3), but not necessarily (1)
- In fact, there is no way to get all three at once!

3. 3NF

Third normal form (3NF)

A relation R is in 3NF if:

For every non-trivial FD $A_1, \dots, A_n \rightarrow B$, either

- $\{A_1, \dots, A_n\}$ is a superkey for R
- B is a prime attribute (i.e., B is part of some candidate key of R)

Example:

- The keys are AB and AC
- $B \rightarrow C$ is a BCNF violation, but not a 3NF violation because C is prime (part of the key AC)

$R(A, B, C)$

$AC \rightarrow B$
 $B \rightarrow C$

3NF Decomposition Algorithm

3NFDecomp(R, F):

- Find minimal basis for F , say G
- For each FD $X \rightarrow A$ in G , if there is no relation that contains XA , create a new relation (X, A)
- Eliminate any relation that is a proper subset of another relation.
- If none of the resulting schemas are superkeys, add one more relation whose schema is a key for R

Keys:

ABE, ACE

Minimal basis:

$AB \rightarrow C$
 $C \rightarrow B$
 $A \rightarrow D$

$R(A, B, C, D, E)$

$R_1(A, B, C)$

$R_2(B, C)$

$R_3(A, D)$

$R_4(A, B, E)$

Exercise #2

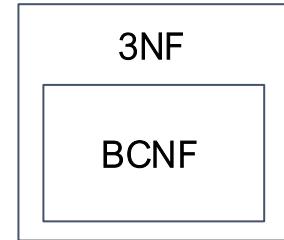
- What are the 3NF violations of the FDs?
- Decompose into relations satisfying 3NF

$R(A, B, C, D)$

$AB \rightarrow C$
 $C \rightarrow D$
 $D \rightarrow A$

BCNF vs 3NF

- Given a non-trivial FD $X \rightarrow B$ (X is a set of attributes)
 - BCNF: X must be a superkey
 - 3NF: X must be a superkey **or B is prime**
- Use 3NF over BCNF if you need dependency preservation
- However, 3NF may not remove all redundancies and anomalies



3NF relation:

A	B	C
1	2	3
3	2	3
2	3	1

$F: B \rightarrow C, AC \rightarrow B$

Can have redundancy and update anomalies

Can have deletion anomalies

4. MVDs

MVDs: Movie Star Example

Movie_ Star (A)	Address (B)	Movie (C)
Leonardo DiCaprio	Los Angeles	Titanic
Leonardo DiCaprio	Los Angeles	Inception
Leonardo DiCaprio	New York	Titanic
Leonardo DiCaprio	New York	Inception
Kate Winslet	Los Angeles	Titanic
Kate Winslet	Los Angeles	The Reader
Kate Winslet	London	Titanic
Kate Winslet	London	The Reader

Are there any functional dependencies that might hold here?

And yet it seems like there is some pattern / dependency...

MVDs: Movie Star Example

Movie_ Star (A)	Address (B)	Movie (C)
Leonardo DiCaprio	Los Angeles	Titanic
Leonardo DiCaprio	Los Angeles	Inception
Leonardo DiCaprio	New York	Titanic
Leonardo DiCaprio	New York	Inception
Kate Winslet	Los Angeles	Titanic
Kate Winslet	Los Angeles	The Reader
Kate Winslet	London	Titanic
Kate Winslet	London	The Reader

For a given movie star...

MVDs: Movie Star Example

Movie_Star (A)	Address (B)	Movie (C)
Leonardo DiCaprio	Los Angeles	Titanic
	Los Angeles	Inception
	New York	Titanic
	New York	Inception
Kate Winslet	Los Angeles	Titanic
Kate Winslet	Los Angeles	The Reader
Kate Winslet	London	Titanic
Kate Winslet	London	The Reader

For a given movie star...

MVDs: Movie Star Example

Movie_Star (A)	Address (B)	Movie (C)
Leonardo DiCaprio	Los Angeles	Titanic
	Los Angeles	Inception
	New York	Titanic
	New York	Inception
Kate Winslet	Los Angeles	Titanic
Kate Winslet	Los Angeles	The Reader
Kate Winslet	London	Titanic
Kate Winslet	London	The Reader

For a given movie star...

Any address / movie combination is possible!

MVDs: Movie Star Example

	Movie_ Star (A)	Address (B)	Movie (C)
t_1	Leonardo DiCaprio	Los Angeles	Titanic
t_3	Leonardo DiCaprio	Los Angeles	Inception
	Leonardo DiCaprio	New York	Titanic
t_2	Leonardo DiCaprio	New York	Inception
	Kate Winslet	Los Angeles	Titanic
	Kate Winslet	Los Angeles	The Reader
	Kate Winslet	London	Titanic
	Kate Winslet	London	The Reader

More formally, we write $\{A\} \twoheadrightarrow \{B\}$ if for any tuples t_1, t_2 s.t. $t_1[A] = t_2[A]$, there is a tuple t_3 s.t.

- $t_3[A] = t_1[A]$

MVDs: Movie Star Example

	Movie_ Star (A)	Address (B)	Movie (C)
t_1	Leonardo DiCaprio	Los Angeles	Titanic
t_3	Leonardo DiCaprio	Los Angeles	Inception
	Leonardo DiCaprio	New York	Titanic
t_2	Leonardo DiCaprio	New York	Inception
	Kate Winslet	Los Angeles	Titanic
	Kate Winslet	Los Angeles	The Reader
	Kate Winslet	London	Titanic
	Kate Winslet	London	The Reader

More formally, we write $\{A\} \twoheadrightarrow \{B\}$ if for any tuples t_1, t_2 s.t. $t_1[A] = t_2[A]$, there is a tuple t_3 s.t.

- $t_3[A] = t_1[A]$
- $t_3[B] = t_1[B]$

MVDs: Movie Star Example

	Movie_ Star (A)	Address (B)	Movie (C)
t_1	Leonardo DiCaprio	Los Angeles	Titanic
t_3	Leonardo DiCaprio	Los Angeles	Inception
	Leonardo DiCaprio	New York	Titanic
t_2	Leonardo DiCaprio	New York	Inception
	Kate Winslet	Los Angeles	Titanic
	Kate Winslet	Los Angeles	The Reader
	Kate Winslet	London	Titanic
	Kate Winslet	London	The Reader

More formally, we write $\{A\} \twoheadrightarrow \{B\}$ if for every pair of tuples t_1, t_2 s.t. $t_1[A] = t_2[A]$, there exists a tuple t_3 s.t.

- $t_3[A] = t_1[A]$
- $t_3[B] = t_1[B]$
- and $t_3[R \setminus B] = t_2[R \setminus B]$

Where $R \setminus B$ is “ R minus B ” i.e. the attributes of R not in B

MVDs: Movie Star Example

	Movie_ Star (A)	Address (B)	Movie (C)
t_2	Leonardo DiCaprio	Los Angeles	Titanic
	Leonardo DiCaprio	Los Angeles	Inception
t_3	Leonardo DiCaprio	New York	Titanic
t_1	Leonardo DiCaprio	New York	Inception
	Kate Winslet	Los Angeles	Titanic
	Kate Winslet	Los Angeles	The Reader
	Kate Winslet	London	Titanic
	Kate Winslet	London	The Reader

Note this also works!

An MVD holds over a relation or an instance, so defn. must hold for *every applicable pair*...

*There are no restrictions on t_1 , t_2 , t_3 . They can be the same or different.

MVDs: Movie Star Example

Movie_Star (A)	Address (B)	Movie (C)
Leonardo DiCaprio	Los Angeles	Titanic
	Los Angeles	Inception
	New York	Titanic
	New York	Inception
Kate Winslet	Los Angeles	Titanic
Kate Winslet	Los Angeles	The Reader
Kate Winslet	London	Titanic
Kate Winslet	London	The Reader

This expresses a sort of dependency (= data redundancy) that we can't express with FDs

*Actually, it expresses conditional independence (between address and movie given movie star)!

Multi-Value Dependencies (MVDs)

A multi-value dependency (MVD) is another type of dependency that could hold in our data, *which is not captured by FDs*

- Every FD is an MVD

Definition:

- Given a relation R , attribute set A , and two sets of attributes $\mathbf{X}, \mathbf{Y} \subseteq A$
- The multi-value dependency (MVD) $\mathbf{X} \twoheadrightarrow \mathbf{Y}$ holds on R if for any tuples $\mathbf{t}_1, \mathbf{t}_2 \in R$ s.t. $\mathbf{t}_1[\mathbf{X}] = \mathbf{t}_2[\mathbf{X}]$, there exists a tuple \mathbf{t}_3 s.t.:
 - $\mathbf{t}_1[\mathbf{X}] = \mathbf{t}_2[\mathbf{X}] = \mathbf{t}_3[\mathbf{X}]$
 - $\mathbf{t}_1[\mathbf{Y}] = \mathbf{t}_3[\mathbf{Y}]$
 - $\mathbf{t}_2[A \setminus \mathbf{Y}] = \mathbf{t}_3[A \setminus \mathbf{Y}]$

$A \setminus B$ means “elements of set A not in set B ”

Multi-Value Dependencies (MVDs)

One less formal, literal way to phrase the definition of an MVD:

The MVD $X \twoheadrightarrow Y$ holds on R if for any pair of tuples with the same X values, the tuples with the same X values, but the other permutations of Y and $A \setminus Y$ values, is also in R

Ex: $X = \{x\}$, $Y = \{y\}$:

x	y	z
1	0	1
1	1	0

For $X \twoheadrightarrow Y$ to hold
must have...

x	y	z
1	0	1
1	1	0
1	0	0
1	1	1

Multi-Value Dependencies (MVDs)

Another way to understand MVDs, in terms of conditional independence:

The MVD $X \twoheadrightarrow Y$ holds on R if given X, Y is conditionally independent of $A \setminus Y$ and vice versa...

Here, given $x = 1$, we know for ex. that:
 $y = 0 \rightarrow z = 1$

I.e. z is conditionally *dependent* on y given x

x	y	z
1	0	1
1	1	0

Here, this is not the case!

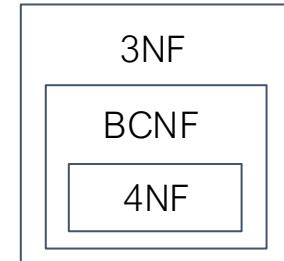
I.e. z is conditionally *independent* of y given x

x	y	z
1	0	1
1	1	0
1	0	0
1	1	1

Further Readings (Chapter 3.6)

4NF: Remove MVD redundancies

Property	3NF	BCNF	4NF
Lossless join	Y	Y	Y
Eliminates FD redundancies	N	Y	Y
Eliminates MVD redundancies	N	N	Y
Preserves FD's	Y	N	N
Preserves MVD's	N	N	N



Summary

Good schema design is important

- Avoid redundancy and anomalies
- Functional dependencies

Normal forms describe how to **remove** this redundancy by **decomposing** relations

- BCNF gives elimination of anomalies and lossless join
- 3NF gives lossless join and dependency preservation

BCNF is intuitive and most widely used in practice