
CS 4440 A

Emerging Database

Technologies

Lecture 4

01/26/26

Recap: Functional dependency (FD)

2

t

u

A’s B’s

If t and u

agree here,

they must

agree here

A->B means that

“whenever two tuples agree on

A then they agree on B.”

Definition: if two tuples of R agree on all the attributes A1, A2, …, An,

they must also agree on (or functionally determine) B1, B2, …, Bm

• Denoted as A1A2 … An → B1B2 ... Bm

Recap: Closure of attributes

3

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

AB → C

 BC → AD

 D → E

 CF → B

{A, B}+

A, B, C, D, E

Cannot be expanded

further, so this is a closure

Recap: Keys and Superkeys

A superkey is a set of attributes A1, …, An

s.t.

for any other attribute B in R,

we have {A1, …, An} → B

A key is a minimal

superkey

i.e. all attributes are

functionally

determined by a

superkey

This means that no subset of a key

is also a superkey

(i.e., dropping any attribute from the

key makes it no longer a superkey)

5

Back to Design Theory

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables

until no more bad FDs

3. When done, the database schema is normalized

Recall: there are several normal forms…

Normal Forms

1st Normal Form (1NF) = All tables are flat

2nd Normal Form = disused

Boyce-Codd Normal Form (BCNF)

3rd Normal Form (3NF)

4th and 5th Normal Forms = see text books

DB designs based

on functional

dependencies,

intended to prevent

data anomalies

Our focus

in this

lecture

Agenda

1. Boyce-Codd Normal Form

2. Properties of Decomposition

3. 3NF

4. MVDs

7

1. BCNF

8

Boyce-Codd Normal Form (BCNF)

Main idea is that we define “good” and “bad” FDs as follows:

○ X → A is a “good FD” if X is a (super)key

■ In other words, if A is the set of all attributes

○ X → A is a “bad FD” otherwise

We will try to eliminate the “bad” FDs!

Boyce-Codd Normal Form (BCNF)

Why does this definition of “good” and “bad” FDs make sense?

○ X → A: each value of X is associated with exactly one value of A

If X is not a (super)key, it functionally determines some of the attributes; therefore,

those other attributes can be duplicated

○ Recall: this means there is redundancy

○ And redundancy like this can lead to data anomalies!

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

“bad FD”: Position → Phone

11

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {A1, ..., An} → B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

Equivalently: ∀ sets of attributes X, either (X+ = X) or (X+ = all attributes)

12

Example

What is the key?

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield

Joe 987-65-4321 908-555-1234 Westfield

SSN → Name,City

⟹ Not in BCNF

This FD is bad

because it is not

a superkey

{SSN, PhoneNumber}

13

Example

Name SSN City

Fred 123-45-6789 Seattle

Joe 987-65-4321 Madison

SSN PhoneNumber

123-45-6789 206-555-1234

123-45-6789 206-555-6543

987-65-4321 908-555-2121

987-65-4321 908-555-1234

Let’s check anomalies:

• Redundancy?

• Update?

• Delete?

SSN → Name,City

Now in BCNF!

This FD is now

good because it

is the key

Boyce-Codd Normal Form (BCNF)

Special case: Any two-attribute relation is in BCNF

○ If there are no nontrivial FDs, BCNF holds

○ If A → B holds, but not B → A, the only nontrivial FD has A (i.e., the key) on the left

○ Symmetric case when B → A holds, but not A → B

○ If both A → B and B → A hold, any nontrivial FD has A or B (both are keys) on the left

14

empID → SSN

SSN → empID
Employee(empID, SSN)

BCNF Decomposition Algorithm

15

BCNFDecomp(R):
• Find an FD X → Y that violates BCNF

 (X and Y are sets of attributes)

• Compute the closure X+

• let Y = X+ - X, Z = (X+)C

Let Y be the attributes that

X functionally determines

(+ that are not in X)

And let Z be the

complement, the other

attributes that it doesn’t

BCNF Decomposition Algorithm

16

BCNFDecomp(R):
• Find an FD X → Y that violates BCNF

 (X and Y are sets of attributes)

• Compute the closure X+

• let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

X ZY

R1 R2

Split into one relation (table)

with X plus the attributes

that X determines (Y)…

BCNF Decomposition Algorithm

17

BCNFDecomp(R):
• Find an FD X → Y that violates BCNF

 (X and Y are sets of attributes)

• Compute the closure X+

• let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

• Recursively decompose R1 and R2

X ZY

R1 R2

And one relation with X plus

the attributes it does not

determine (Z)

Note: Projection of FDs

Let F be the set of FDs in the relation R. What FD’s hold for R1 = πL(R) ?

An FD X → Y from the original relation R will hold in the project R1 iff

● Attributes in X and Y are all contained with R1

● X → Y is logical implied by the original set F

Example

● Suppose R(A, B, C, D) has FDs F = {A → B, B → C, C → D}

● Then the FD’s for R1(A, C, D) are

○ A → C: Implied by F

○ C → D: Inherited from F

18

Example: BCNF Decomposition

● In general, there can be multiple decompositions

19

R(title,year,studioName,president,presAddr) title year → studioName

studioName → president

president → presAddr

R’s FDs

What is R’s key?

Example: BCNF Decomposition

● In general, there can be multiple decompositions

20

title year → studioName

studioName → president

president → presAddr
BCNF

violations

Key

R’s FDs
R(title,year,studioName,president,presAddr)

● In general, there can be multiple decompositions

Example: BCNF Decomposition

21

R2(title,year,studioName)R1(studioName,president,presAddr)

title year → studioName

studioName → president

president → presAddr
BCNF

violations

Key

R’s FDs
R(title,year,studioName,president,presAddr)

title year → studioNameR2’s FDs

Is R2 in BCNF?

● In general, there can be multiple decompositions

Example: BCNF Decomposition

22

R2(title,year,studioName)R1(studioName,president,presAddr)

title year → studioName

studioName → president

president → presAddr
BCNF

violations

Key

R’s FDs
R(title,year,studioName,president,presAddr)

What is R1’s FDs? studioName → president

president → presAddr

Example: BCNF Decomposition

● In general, there can be multiple decompositions

23

R2(title,year,studioName)

studioName → president

president → presAddrBCNF

violation

Key

R1’s FDs
R(title,year,studioName,president,presAddr)

R1(studioName,president,presAddr)

Is R1 in BCNF?

Example: BCNF Decomposition

● In general, there can be multiple decompositions

24

R2(title,year,studioName)

studioName → president

president → presAddrBCNF

violation

Key

R1’s FDs

R3(president,presAddr) R4(president,studioName)

R(title,year,studioName,president,presAddr)

R1(studioName,president,presAddr)

Q: Is this algorithm guaranteed to terminate successfully?

In-class Exercise

Decompose into relations satisfying BCNF

25

R(A,B,C,D,E)

A → BC
C → DR(A,B,C,D,E)

 {A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
 {C}+ = {C,D} ≠ {A,B,C,D}

R11(C,D) R12(A,B,C)

R2(A,E)

2. Properties of Decomposition

26

Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to data

anomalies

2. We developed mechanisms to detect and remove redundancies by

decomposing tables into BCNF

1. BCNF decomposition is standard practice - very powerful & widely used!

3. However, sometimes decompositions can lead to more subtle unwanted

effects…

27
When does this happen?

28

Recovering information from a decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Price

Gizmo 19.99

OneClick 24.99

Gizmo 19.99

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

i.e. it is a Lossless

decomposition

Sometimes a

decomposition is

“correct”

29

Recovering information from a decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

What’s wrong

here?

However sometimes

it isn’t

Lossless Decompositions

A decomposition R to (R1, R2) is lossless
if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R2 = the projection of R on A1, ..., An, C1, ..., Cp

Lossless Decompositions

31

BCNF decomposition is always lossless. Why?

Note: don’t need

A1, ..., An → C1, ..., Cp

If A1, ..., An → B1, ..., Bm

Then the decomposition is lossless

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R(A1,...,An,B1,...,Bm,C1,...,Cp)

32

A Problem with BCNF

Unit → Company
Company,Product → Unit

We do a BCNF decomposition

on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD Company,Product → Unit!!

Unit Company Product

… … …

Unit Company

… …

Unit Product

… …

Unit → Company

33

So Why is that a Problem?

No problem so far.

All local FD’s are

satisfied.

Unit Company

Galaga99 UW

Bingo UW

Unit Product

Galaga99 Databases

Bingo Databases

Unit Company Product

Galaga99 UW Databases

Bingo UW Databases

Let’s put all the

data back into a

single table again:

Unit → Company

Violates the FD Company,Product → Unit!!

34

The problem with BCNF

● We started with a table R and FDs F

● We decomposed R into BCNF tables R1, R2, …

with their own FDs F1, F2, …

● We insert some tuples into each of the relations—which satisfy their local FDs

but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must

reconstruct R—on each insert!

Desirable properties of decomposition

35

(1) Elimination of anomalies: redundancy, update anomaly, delete anomaly

(2) Recoverability of information: can we recover the original relation by joining?

(3) Preservation of dependencies: if we check the projected FD’s in the

decomposed relations, does the reconstructed relation satisfy the original FD’s

● BCNF gives (1) and (2), but not necessarily (3)

● 3NF gives (2) and (3), but not necessarily (1)

● In fact, there is no way to get all three at once!

3. 3NF

36

Third normal form (3NF)

Example:

○ The keys are AB and AC

○ B → C is a BCNF violation, but not

a 3NF violation because C is prime

(part of the key AC)

37

A relation R is in 3NF if:

For every non-trivial FD A1, ..., An → B, either

• {A1, ..., An} is a superkey for R

• B is a prime attribute (i.e., B is part of some candidate key of R)

R(A,B,C)

AC → B
B → C

3NF Decomposition Algorithm

38

3NFDecomp(R, F):
• Find minimal basis for F, say G

• For each FD X → A in G, if there is no relation that contains XA,

 create a new relation (X, A)

• Eliminate any relation that is a proper subset of another relation.

• If none of the resulting schemas are superkeys,

 add one more relation whose schema is a key for R

R(A,B,C,D,E)

AB → C
C → B
A → D

R1(A,B,C)

R2(B,C)

R3(A,D)
ABE,ACE

Keys:

Minimal basis:

R4(A,B,E)

Exercise #2

● What are the 3NF violations of the FDs?

● Decompose into relations satisfying 3NF

39

R(A, B, C, D) AB → C
C → D
D → A

BCNF vs 3NF

● Given a non-trivial FD X → B (X is a set of attributes)

○ BCNF: X must be a superkey

○ 3NF: X must be a superkey or B is prime

● Use 3NF over BCNF if you need dependency preservation

● However, 3NF may not remove all redundancies and anomalies

40

3NF

BCNF

F: B → C, AC → BA B C

1 2 3

3 2 3

2 3 1

3NF relation:

Can have redundancy and update anomalies

Can have deletion anomalies

4. MVDs

41

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

Are there any

functional

dependencies that

might hold here?

And yet it seems like there is some pattern / dependency…

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

For a given movie

star…

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

For a given movie

star…

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

For a given movie

star…

Any address / movie

combination is

possible!

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

More formally, we write {A}

↠ {B} if for any tuples t1,t2

s.t. t1[A] = t2[A], there is a

tuple t3 s.t.

• t3[A] = t1[A]

t1

t2

t3

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

More formally, we write {A}

↠ {B} if for any tuples t1,t2

s.t. t1[A] = t2[A], there is a

tuple t3 s.t.

• t3[A] = t1[A]

• t3[B] = t1[B]

t1

t2

t3

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

More formally, we write {A}

↠ {B} if for every pair of

tuples t1,t2 s.t. t1[A] =

t2[A], there exisits a tuple t3

s.t.

• t3[A] = t1[A]

• t3[B] = t1[B]

• and t3[R\B] = t2[R\B]

Where R\B is “R minus B”

i.e. the attributes of R not

in B.

t1

t2

t3

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

t2

t1

t3

Note this also works!

An MVD holds over a

relation or an instance,

so defn. must hold for

every applicable pair…

*There are no restrictions

on t1, t2, t3. They can be

the same or different.

MVDs: Movie Star Example
Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Kate Winslet Los Angeles Titanic

Kate Winslet Los Angeles The Reader

Kate Winslet London Titanic

Kate Winslet London The Reader

This expresses a sort of

dependency (= data

redundancy) that we can’t

express with FDs

*Actually, it expresses

conditional independence

(between address and

movie given movie star)!

Multi-Value Dependencies (MVDs)

A multi-value dependency (MVD) is another type of dependency that could

hold in our data, which is not captured by FDs

○ Every FD is an MVD

Definition:

○ Given a relation R, attribute set A, and two sets of attributes 𝐗, 𝒀 ⊆ 𝑨

○ The multi-value dependency (MVD) 𝑿 ↠ 𝒀 holds on R if for any tuples 𝒕𝟏, 𝒕𝟐 ∈ 𝑹 s.t.

𝒕𝟏 𝑿 = 𝒕𝟐[𝑿], there exists a tuple 𝒕3
s.t.:

■ t1[X] = t2[X] = t3[X]

■ t1[Y] = t3[Y]

■ t2[A\Y] = t3[A\Y]
A \ B means “elements

of set A not in set B”

Multi-Value Dependencies (MVDs)

One less formal, literal way to phrase the definition of an MVD:

The MVD 𝐗 ↠ 𝒀 holds on R if for any pair of tuples with the same X values,

the tuples with the same X values, but the other permutations of Y and A\Y

values, is also in R

x y z

1 0 1

1 1 0

1 0 0

1 1 1

x y z

1 0 1

1 1 0 For 𝑿 ↠ 𝒀 to hold

must have…

Ex: X = {x}, Y = {y}:

Multi-Value Dependencies (MVDs)

Another way to understand MVDs, in terms of conditional independence:

The MVD 𝐗 ↠ 𝒀 holds on R if given X, Y is conditionally independent of A \ Y

and vice versa…

x y z

1 0 1

1 1 0

1 0 0

1 1 1

x y z

1 0 1

1 1 0

Here, given x = 1, we

know for ex. that:

y = 0 → z = 1

I.e. z is conditionally

dependent on y given x

Here, this is not the

case!

I.e. z is conditionally

independent of y

given x

Further Readings (Chapter 3.6)

4NF: Remove MVD redundancies

54

3NF

BCNF

4NF

Property 3NF BCNF 4NF

Lossless join Y Y Y

Eliminates FD redundancies N Y Y

Eliminates MVD redundancies N N Y

Preserves FD’s Y N N

Preserves MVD’s N N N

Summary

Good schema design is important

○ Avoid redundancy and anomalies

○ Functional dependencies

Normal forms describe how to remove this redundancy by decomposing relations

○ BCNF gives elimination of anomalies and lossless join

○ 3NF gives lossless join and dependency preservation

BCNF is intuitive and most widely used in practice

55

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Recap: Functional dependency (FD)
	Slide 3: Recap: Closure of attributes
	Slide 4: Recap: Keys and Superkeys
	Slide 5: Back to Design Theory
	Slide 6: Normal Forms
	Slide 7: Agenda
	Slide 8: 1. BCNF
	Slide 9: Boyce-Codd Normal Form (BCNF)
	Slide 10: Boyce-Codd Normal Form (BCNF)
	Slide 11: Boyce-Codd Normal Form
	Slide 12: Example
	Slide 13: Example
	Slide 14: Boyce-Codd Normal Form (BCNF)
	Slide 15: BCNF Decomposition Algorithm
	Slide 16: BCNF Decomposition Algorithm
	Slide 17: BCNF Decomposition Algorithm
	Slide 18: Note: Projection of FDs
	Slide 19: Example: BCNF Decomposition
	Slide 20: Example: BCNF Decomposition
	Slide 21: Example: BCNF Decomposition
	Slide 22: Example: BCNF Decomposition
	Slide 23: Example: BCNF Decomposition
	Slide 24: Example: BCNF Decomposition
	Slide 25: In-class Exercise
	Slide 26: 2. Properties of Decomposition
	Slide 27: Decompose to remove redundancies
	Slide 28: Recovering information from a decomposition
	Slide 29: Recovering information from a decomposition
	Slide 30: Lossless Decompositions
	Slide 31: Lossless Decompositions
	Slide 32: A Problem with BCNF
	Slide 33: So Why is that a Problem?
	Slide 34: The problem with BCNF
	Slide 35: Desirable properties of decomposition
	Slide 36: 3. 3NF
	Slide 37: Third normal form (3NF)
	Slide 38: 3NF Decomposition Algorithm
	Slide 39: Exercise #2
	Slide 40: BCNF vs 3NF

	mvd
	Slide 41: 4. MVDs
	Slide 42: MVDs: Movie Star Example
	Slide 43: MVDs: Movie Star Example
	Slide 44: MVDs: Movie Star Example
	Slide 45: MVDs: Movie Star Example
	Slide 46: MVDs: Movie Star Example
	Slide 47: MVDs: Movie Star Example
	Slide 48: MVDs: Movie Star Example
	Slide 49: MVDs: Movie Star Example
	Slide 50: MVDs: Movie Star Example
	Slide 51: Multi-Value Dependencies (MVDs)
	Slide 52: Multi-Value Dependencies (MVDs)
	Slide 53: Multi-Value Dependencies (MVDs)
	Slide 54: Further Readings (Chapter 3.6)
	Slide 55: Summary

