
CS 4440 A

Emerging Database

Technologies

Lecture 3

01/21/26

Announcements

● Assignment 1

○ Preference survey: We will use this to determine technology presentation (assignment 3) grouping

● Office hours

○ Instructor: Thursdays 1:00-2:00, KACB 3322

○ Yihao: Tuesdays 2:00-3:00, in the common area next to Klaus 3324

○ Tianji: Fridays 2:00-3:00, in the common area next to Klaus 3324

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 3: Design Theory for Relational Databases

(3.1 – 3.3)

3

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)

taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis

Agenda

1. Normal forms & functional dependencies

2. Finding functional dependencies

3. Closures, superkeys & keys

4

1. Normal forms & functional

dependencies

5

Normal Forms

● 1st Normal Form (1NF) = All tables are flat

● 2nd Normal Form = disused

● Boyce-Codd Normal Form (BCNF)

● 3rd Normal Form (3NF)

● 4th and 5th Normal Forms = see textbooks

1st Normal Form (1NF)

Student Courses

Mary {CS4440,CS6422}

Joe {CS4440,CS6400}

… …

Violates 1NF.

1NF Constraint: Types must be atomic!

Student Courses

Mary CS4440

Mary CS6422

Joe CS4440

Joe CS6400

In 1st NF

Normal Forms

● 1st Normal Form (1NF) = All tables are flat

● 2nd Normal Form = disused

● Boyce-Codd Normal Form (BCNF)

● 3rd Normal Form (3NF)

● 4th and 5th Normal Forms = see textbooks

DB designs based on

functional

dependencies,

intended to prevent

data anomalies

Our focus

in this

lecture +

next one

Data Anomalies

Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

..

If every course is

in only one room,

contains

redundant

information!

A poorly designed database causes anomalies:

Data Anomalies

Student Course Room

Mary CS6400 B01

Joe CS6400 C12

Sam CS6400 B01

..

If we update the room

number for one tuple,

we get inconsistent

data = an update

anomaly

A poorly designed database causes anomalies:

Data Anomalies

A poorly designed database causes anomalies:

Student Course Room

..

If everyone drops the class, we lose

what room the class is in!

= a delete anomaly

Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

..

Similarly, we can’t

reserve a room

without students

= an insert anomaly

… CS6422 C12

Data Anomalies

A poorly designed database causes anomalies:

Student Course

Mary CS6400

Joe CS6422

Sam CS6400

.. ..

Course Room

CS6400 B01

CS6422 C12

Goal: develop theory to understand why this design may be

better and how to find this decomposition…

Eliminate anomalies by

decomposing relations.

• Redundancy?

• Update anomaly?

• Delete anomaly?

• Insert anomaly?

Data Anomalies

Functional Dependencies

Functional dependency (FD)

15

t

u

A’s B’s

If t and u

agree here,

they must

agree here

A->B means that

“whenever two tuples agree on

A then they agree on B.”

Definition: if two tuples of R agree on all the attributes A1, A2, …, An,

they must also agree on (or functionally determine) B1, B2, …, Bm

• Denoted as A1A2 … An → B1B2 ... Bm

Splitting/combining rule

● Splitting/combining can be applied to the right sides of FD’s

16

A1A2 … An → B1B2 … Bm

A1A2 … An → B1, A1A2 … An → B2, …, A1A2 … An → Bm

Splitting rule Combining rule

Splitting/combining rule

● For example,

17

title year → length genre studioName

title year → length

title year → genre

title year → studioName

Splitting rule

● Splitting rule does not apply to the left sides of FD’s

18

title year → length

title → length

year → length

Functional Dependencies as Constraints

Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

..

Note: The FD

{Course} -> {Room}

holds on this instance

A functional dependency is a
form of constraint

• Holds on some instances (but
not others) – can check
whether there are violations

• Part of the schema, helps
define a valid instance

Recall: an instance of a schema is a

multiset of tuples conforming to that

schema, i.e. a table

Functional Dependencies as Constraints

Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

..

However, cannot prove that

the FD {Course} -> {Room} is

part of the schema

Note that:

• You can check if an FD is
violated by examining a single
instance;

• However, you cannot prove that
an FD is part of the schema by
examining a single instance.

• This would require checking
every valid instance

Trivial functional dependencies

A constraint is trivial if it holds for every possible instance of the relation.

21

u

C’s

t

A’s

B’s

If t and u

agree on

the As

Then they

must agree

on the Bs

And surely they

agree on the Cs

Trivial FDs:

A1A2 … An → B1 B2 … Bm such that

{B1, B2, … Bm} ⊆ {A1,A2, … ,An}

Trivial dependency rule:

A1A2 … An → B1 B2 … Bm is equivalent

to A1A2 … An → C1 C2 … Ck, where the

C’s are the B’s that are not also A’s

22

In-class Exercise

Q1: Find an FD that holds on this instance

Q2: Find an FD that is violated on this instance

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

2. Finding functional

dependencies

23

FDs for Relational Schema Design

High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema

1. One which minimizes possibility of anomalies

This part can

be tricky!

There can be a large number of FDs…

Let’s start with this problem:

Given a set of FDs, F = {f1,…fn}, does an FD g hold?

Finding Functional Dependencies

Three simple rules called Armstrong’s Rules.
1. Reflexivity,

2. Augmentation,

3. Transitivity

Armstrong’s axioms

26

1. Reflexivity:

If Y is a subset of X, then X → Y

2. Augmentation:

If X → Y, then XZ → YZ for any Z

3. Transitivity:

If X → Y and Y → Z, then X → Z

You can derive any FDs that follows from a given set using these axioms:

This means that a set of attributes

always determines a subset of itself

This means we can add the same

attributes to both sides of a functional

dependency.

This allows us to chain functional

dependencies.

● Does AB → D follow from the FDs below?

Armstrong’s axioms

27

1. AB → C (given)

2. BC → AD (given)

AB → C

BC → AD

D → E

CF → B

● Does AB → D follow from the FDs below?

Armstrong’s axioms

28

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

AB → C

BC → AD

D → E

CF → B

● Does AB → D follow from the FDs below?

Armstrong’s axioms

29

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

AB → C

BC → AD

D → E

CF → B

● Does AB → D follow from the FDs below?

Armstrong’s axioms

30

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

5. AD → D (Reflexivity)

AB → C

BC → AD

D → E

CF → B

● Does AB → D follow from the FDs below?

Armstrong’s axioms

31

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

5. AD → D (Reflexivity)

6. AB → D (Transitivity on 4,5)

Can we find an algorithmic way to do this?

AB → C

BC → AD

D → E

CF → B

Closures

Closure of attributes

33

{A, B}+

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD

D → E

CF → B

A, B

Closure of attributes

34

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C

Closure of attributes

35

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C, D

Closure of attributes

36

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C, D, E

Closure of attributes

37

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD

D → E

CF → B

{A, B}+

A, B, C, D, E

Cannot be expanded

further, so this is a closure

38

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

if {B1, …, Bn} → C is entailed by F

and {B1, …, Bn} ⊆ X

then add C to X.

Return X as X+

Closure algorithm

Initial set of

attributes

Closure

The algorithm (proof in book)

○ only produces true FDs

○ discovers all true FDs

Helps to split the FD’s of F, so

each FD has a single attribute

on the right

3. Closures, Superkeys & Keys

39

40

Why Do We Need the Closure?

With closure we can find all FD’s easily

To check if X → A

1. Compute X+

2. Check if A  X+

Note here that X is a set of

attributes, but A is a single attribute.

Why does considering FDs of this

form suffice?

Recall the split/combine rule:

X → A1, …, X → An

implies

X → {A1, …, An}

41

Using Closure to Infer ALL FDs
{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D} {B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

Step 1: Compute X+, for every set of attributes X:

42

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D},
{A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y  X+ and X  Y = :

Using Closure to Infer ALL FDs

Step 1: Compute X+, for every set of attributes X:

43

{A,B} → C
{A,D} → B
{B} → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D},
{A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ =
{A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y  X+ and X  Y = :

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

Using Closure to Infer ALL FDs

Y is in the

closure of X

The FD

X → Y is

non-trivial

Minimal basis

44

Given a set of FD’s F, any set of FD’s

equivalent to F is a basis for F

For the purpose of data normalization, it’s often easier to work with the

cleanest, smallest set of FDs.

A minimal basis (or minimal cover) for a set of FDs F is a simplified set of FDs G that

satisfies the following conditions:

- No redundant/extraneous FDs

- RHS has a single attribute

- No extraneous attributes on the LHS

The full set of implied FDs can be large and redundant...

Minimal basis generation

Input: F = {A → AB, AB → C}

1. Split FD’s so that they have singleton right sides

G = {A → B, A → A, AB → C}

2. Remove trivial FDs

G = {A → B, AB → C}

3. Minimize the left sides of each FD

G = {A → B, A → C}

4. Remove redundant FDs

G = {A → B, A → C}

45

For each FD X → A in F:

For each attribute B in X:

If (X - {B})+ contains A,

remove B from X.

Step 3:

46

Why Do We Need the Closure?

With closure we can find keys and superkeys of a relation

For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Keys and Superkeys

A superkey is a set of attributes A1, …, An

s.t.

for any other attribute B in R,

we have {A1, …, An} → B

A key is a minimal

superkey

i.e. all attributes are

functionally determined

by a superkey

This means that no subset of a key

is also a superkey

(i.e., dropping any attribute from the

key makes it no longer a superkey)

Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

What is a key?

Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

{name, category}+ = {name, price, category, color}

⟹ this is a superkey

⟹ this is a key, since neither name nor category alone is a superkey

1. Is a key always

guaranteed to exist?

2. Can we have more

than one key?

In-class Exercise

Given R(A, B, C, D) and FD’s AB → C, C → D, D → A
○ What are all keys of R?

50

	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: 1. Normal forms & functional dependencies
	Slide 6: Normal Forms
	Slide 7: 1st Normal Form (1NF)
	Slide 8: Normal Forms
	Slide 9: Data Anomalies
	Slide 10: Data Anomalies
	Slide 11: Data Anomalies
	Slide 12: Data Anomalies
	Slide 13: Data Anomalies
	Slide 14: Functional Dependencies
	Slide 15: Functional dependency (FD)
	Slide 16: Splitting/combining rule
	Slide 17: Splitting/combining rule
	Slide 18: Splitting rule
	Slide 19: Functional Dependencies as Constraints
	Slide 20: Functional Dependencies as Constraints
	Slide 21: Trivial functional dependencies
	Slide 22: In-class Exercise
	Slide 23: 2. Finding functional dependencies
	Slide 24: FDs for Relational Schema Design
	Slide 25: Finding Functional Dependencies
	Slide 26: Armstrong’s axioms
	Slide 27: Armstrong’s axioms
	Slide 28: Armstrong’s axioms
	Slide 29: Armstrong’s axioms
	Slide 30: Armstrong’s axioms
	Slide 31: Armstrong’s axioms
	Slide 32: Closures
	Slide 33: Closure of attributes
	Slide 34: Closure of attributes
	Slide 35: Closure of attributes
	Slide 36: Closure of attributes
	Slide 37: Closure of attributes
	Slide 38: Closure algorithm
	Slide 39: 3. Closures, Superkeys & Keys
	Slide 40: Why Do We Need the Closure?
	Slide 41: Using Closure to Infer ALL FDs
	Slide 42
	Slide 43
	Slide 44: Minimal basis
	Slide 45: Minimal basis generation
	Slide 46: Why Do We Need the Closure?
	Slide 47: Keys and Superkeys
	Slide 48: Example of Finding Keys
	Slide 49: Example of Finding Keys
	Slide 50: In-class Exercise

