Emerging Database
Technologies

Lecture 3
01/21/26



Announcements

e Assignment 1

o Preference survey: We will use this to determine technology presentation (assignment 3) grouping

e Office hours
o Instructor: Thursdays 1:00-2:00, KACB 3322
o Yihao: Tuesdays 2:00-3:00, in the common area next to Klaus 3324

o Tianji: Fridays 2:00-3:00, in the common area next to Klaus 3324



Reading Materials

Database Systems: The Complete Book (2nd edition)

e Chapter 3: Design Theory for Relational Databases : %/;E?EQSSE

(3.1-3.3) B

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis



Agenda
1. Normal forms & functional dependencies
2. Finding functional dependencies

3. Closures, superkeys & keys



1. Normal forms & functional
dependencies



Normal Forms

e 1t Normal Form (1NF) = All tables are flat

e 29 Normal Form = disused

e Boyce-Codd Normal Form (BCNF)

e 3" Normal Form (3NF)

e 4" and 5™ Normal Forms = see textbooks




18t Normal Form (1NF)

Student Courses
Mary {CS4440,CS6422)
Joe {CS4440,CS6400}

Violates 1NF.

Student | Courses

Mary CS4440

Mary CS6422

Joe CS4440

Joe CS6400
In 1t NF

1NF Constraint: Types must be atomic!




Normal Forms

e 1t Normal Form (1NF) = All tables are flat

e 2" Normal Form = disused

e Boyce-Codd Normal Form (BCNF)

e 3 Normal Form (3NF)

—

e 4" and 5™ Normal Forms = see textbooks

DB designs based on
functional
dependencies,
intended to prevent
data anomalies

Our focus
in this
lecture +
next one



Data Anomalies

A poorly designed database causes anomalies:

Student | Course ! Room

Mary CS6400 | BO1 If every course is
in only one room,

Joe CS6400 | BO1 S

Sam CS6400 {BO1 redundant

information!




Data Anomalies

A poorly designed database causes anomalies:

Student | Course | Room
If we update the room

number for one tuple,

Mary CS6400 | BO1 we get inconsistent
Joe CS6400| C12 data = an update
Sam CS6400 | BO1 anomaly




Data Anomalies

A poorly designed database causes anomalies:

Student | Course | Room

If everyone drops the class, we lose
what room the class is in!
= a delete anomaly




Data Anomalies

A poorly designed database causes anomalies:

Student | Course | Room

Similarly, we can’t
Mary CS6400 | BO1 reserve a room

Joe CS6400 | BO1 without students
= an insert anomaly

CS6422 | C12 Sam CS6400 | BO1




Data Anomalies

Student | Course Eliminate anomalies by
decomposing relations.
Mary CS6400 Course | Room - Redundancy?
Joe CS6422 « Update anomaly?
Sam CS6400 CS6400 | BO1 > Deleie alicimiellyy
* Insert anomaly?
CS6422 |C12

Goal: develop theory to understand why this design may be
better and how to find this decomposition. ..



Functional Dependencies



Functional dependency (FD)

Definition: if two tuples of R agree on all the attributes A4, A,, ..., A,
they must also agree on (or functionally determine) B4, B, ..., B,

* DenotedasA/A,... A,— BB, ... B,

A’s

T
b | | A->B means that
u : : : “whenever two tuples agree on
: : ! A then they agree on B.”
'Jftandu !

agree here,

15



Splitting/combining rule

e Splitting/combining can be applied to the right sides of FD's

A1A2 An — B1B2 Bm
Splitting rule Combining rule

A1A2...An—>B1, A1A2...An—>82, ceay A1A2...An—>Bm

16



Splitting/combining rule
e For example,

title year — length genre studioName

title year — length
title year — genre
title year — studioName

17



Splitting rule
e Splitting rule does not apply to the left sides of FD’s

title year — length

*

title — length
year — length

18



Functional Dependencies as Constraints

A functional dependency is a
form of constraint

» Holds on some instances (but
not others) — can check
whether there are violations

» Part of the schema, helps
define a valid instance

Recall: an instance of a schema is a
multiset of tuples conforming to that
schema, i.e. a table

Student | Course

Room

Mary

CS6400

BO1

Joe

CS6400

BO1

Sam

CS6400

BO1

Note: The FD

{Course} -> {Room}
holds on this instance




Functional Dependencies as Constraints

Note that;

* You cancheck ifanFD is
violated by examining a single
instance;

« However, you cannot prove that
an FD is part of the schema by
examining a single instance.

« This would require checking
every valid instance

Student | Course | Room
Mary CS6400 | BO1
Joe CS6400 | BO1
Sam CS6400 | BO1

However, cannot prove that
the FD {Course} -> {Room} is
part of the schema




Trivial functional dependencies

A constraint is trivial if it holds for every possible instance of the relation.

Trivial FDs:
A1A2 An — B1 82 Bm such that
By By, ... B} C{AA, .. Al

Trivial dependency rule:

AA, ... A,— By B, ... B,is equivalent
toAA,... A, — C; Cy ... G, where the
C’s are the B’s that are not also A’s

| 1 1 |
1 A’s (I 1
IA | ‘I |
| | I | 1
| I T i
Lo |
L |
| | I | 1
| 11 1
| | | |
! o !
Iftand u Then they
agree on must agree
the As on the

And surely they
agree on the

21



In-class Exercise

Q1: Find an FD that holds on this instance
Q2: Find an FD that is violated on this instance

EmpID |Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer




2. Finding functional
dependencies



FDs for Relational Schema Design

High-level idea: why do we care about FDs?

1. Start with some relational schema
This part can

2. Find out its functional dependencies (FDs) be tricky!
3. Use these to design a better schema

1. One which minimizes possibility of anomalies



Finding Functional Dependencies

There can be a large number of FDs...

Let’s start with this problem:
Given a set of FDs, F = {f;,...f,}, does an FD g hold?

Three simple rules called Armstrong’s Rules.
1. Reflexivity,

2. Augmentation,

3. Transitivity



Armstrong’s axioms

You can derive any FDs that follows from a given set using these axioms:

1. Reﬂexivity: This means that a set of attributes
If Y is a subset of X, then X - Y always determines a subset of itself
2 Augmentation' This means we can add the same
| If X Y then XZ — YZ f 7 attributes to both sides of a functional
— Y. ihen = ol el dependency.
3. Transitivity: This allows us to chain functional

fX—>YandY —Z,thenX -7/ dependencies.

26



Armstrong’'s axioms

e Does AB — D follow from the FDs below?

AB > C
BC > AD
D2>E

CF->B

1. AB — C (given)
2. BC — AD (given)

27



Armstrong’'s axioms

e Does AB — D follow from the FDs below?

AB > C
BC > AD
D2>E

CF->B

1. AB — C (given)
2. BC — AD (given)
3. AB — BC (Augmentation on 1)

28



Armstrong’'s axioms

e Does AB — D follow from the FDs below?

AB > C
BC > AD
D2>E

CF->B

N~

AB — C (given)

BC — AD (given)

AB — BC (Augmentation on 1)
AB — AD (Transitivity on 2,3)

29



Armstrong’'s axioms

e Does AB — D follow from the FDs below?

AB > C
BC > AD
D2>E

CF->B

SRR e A

AB — C (given)

BC — AD (given)

AB — BC (Augmentation on 1)
AB — AD (Transitivity on 2,3)
AD — D (Reflexivity)

30



Armstrong’'s axioms

e Does AB — D follow from the FDs below?

AB > C
BC > AD
D2>E

CF->B

L o i

AB — C (given)

BC — AD (given)

AB — BC (Augmentation on 1)
AB — AD (Transitivity on 2,3)
AD — D (Reflexivity)

AB — D (Transitivity on 4,5)

Can we find an algorithmic way to do this?

31



Closures



Closure of attributes

Given a set of attributes A4, ..., A, and a set of FDs F,
the closure,

A,

IS the set of attributes B where

.., A,} = B follows from the FDs in F

AB > C
BC 2> AD
D2>E

CF-> B

A, B

33



Closure of attributes

Given a set of attributes A4, ..., A, and a set of FDs F,
the closure,

A,

IS the set of attributes B where

.., A,} = B follows from the FDs in F

AB > C
BC 2> AD
D2>E

CF-> B

A, B, C

34



Closure of attributes

Given a set of attributes A4, ..., A, and a set of FDs F,
the closure,

A,

IS the set of attributes B where

.., A,} = B follows from the FDs in F

AB > C
BC 2> AD
D2>E

CF-> B

A B, CD

35



Closure of attributes

Given a set of attributes A4, ..., A, and a set of FDs F,
the closure,

A,

IS the set of attributes B where

.., A,} = B follows from the FDs in F

AB > C
BC 2> AD
D2>E

CF-> B

A B, CD,E

36



Closure of attributes

Given a set of attributes A4, ..., A, and a set of FDs F,
the closure,

A,

IS the set of attributes B where

.., A,} = B follows from the FDs in F

AB > C
BC 2> AD
D2>E

CF-> B

A B CD,E

Cannot be expanded
further, so this is a closure

37



Closure algorithm

Helps to split the FD’s of F, so
Start with X ={A,, ..., A} and set of FDs F. «— each FD has a single atiribute
on the right

Repeat until X doesn’t change; do:

if {B, ..., B,} 2 Cis entailed by F
and {By, ..., B,} € X

then add C to X. Closure
Return X as X* ’\ /‘
Initial set of
The algorithm (proof in book) attributes

o only produces true FDs
o discovers all true FDs




3. Closures, Superkeys & Keys



Why Do We Need the Closure?

With closure we can find all FD’s easily

Tocheck if X > A

1. Compute X*

2. Check if A@)(+

Note here that X is a set of
attributes, but A is a single attribute.
Why does considering FDs of this
form suffice?

Recall the split/combine rule:
X2A, .., X2A,

implies

X2{Aq, ..., AL}




Using Closure to Infer ALL FDs

Step 1: Compute X*, for every set of attributes X:

Example:
Given F =

{AB}>C
{AD}—> B
{B} =D

{A}"={A}

{B}" = {B,D}

{Cr=1{C}

{D}* = {D}

{A,B} = {A,B,C,D}

{ACH ={AC}

{A,D}* = {A,B,C,D}

{A,B,C} = {AB,D} = {A,C,D} = {A,B,C,D}{B,C,D} = {B,C,D}
{A,B,C,D}" = {A,B,C,D}

41



Using Closure to Infer ALL FDs

Example:
, Given F =
Step 1: Compute X*, for every set of attributes X:

{A}"={A}, {B}"={B,D}, {C}" = {C}, {D}" = {D}, {A,B}"= {A,B,C,D},
{A,C}={A,C}, {A,D} = {A,B,C,D}, {A,B,C}' = {A,B,D} = {A,C,D} =
{A,B,C,D}, {B,C,D}'={B,C,D}, {AB,C,D}*={A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, st.Yc X*and XNnY = &:

{AB}=>C
{AD}—>B
{B} =D




Using Closure to Infer ALL FDs

Example:
Given F =

Step 1: Compute X*, for every set of attributes X:

Step 2: Enumerate all FDs X 2 Y, st. Y c X"and X n Y = &:

{A,B} = {C,D}, {A,D} = {B,C},
{A,B,C} = {D}, {A,B,D} = {C},
{A,C,D} > {B}

{AB}>C
{AD}> B
{B} =D

Yis in the
closure of X

The FD
X 2Yis

non-trivial

43



Minimal basis

The full set of implied FDs can be large and redundant...

For the purpose of data normalization, it's often easier to work with the
cleanest, smallest set of FDs.

A minimal basis (or minimal cover) for a set of FDs F is a simplified set of FDs G that
satisfies the following conditions:

- No redundant/extraneous FDs

- RHS has a single attribute Given a set of FD’s F, any set of FD’s
- No extraneous attributes on the LHS equivalent to F is a basis for F

44



Minimal basis generation

Input: F = {A — AB, AB — C}

1.

Split FD’s so that they have singleton right sides
G={A—-B, A—A AB— C}

Remove trivial FDs Step 3:
G={A— B, AB— C}

inimi i Fi hFD X — AinF:
Minimize the left sides of each FD oreas i

For each attribute B in X:

G={A—>B,A—>C} If (X - {B})+ contains A,

Remove redundant FDs remove B from X.
G={A—>B, A—>C}

45



Why Do We Need the Closure?

With closure we can find keys and superkeys of a relation

For each set of attributes X
1. Compute X*
2. If X* = set of all attributes then Xis a superkey

3. If Xis minimal, then it is a key



Keys and Superkeys

A superkey is a set of attributes Ay, ..., A, i.e. all attributes are
S.t. functionally determined
for any other attribute B in R, by a superkey

we have {A4, ..., A} 2B

A key is a minimal Thls means that no subset of a key
is also a superkey
superkey

(i.e., dropping any attribute from the
key makes it no longer a superkey)



Example of Finding Keys

Product(name, price, category, color)

{name, category} = price
{category} =2 color

What is a key?



Example of Finding Keys

Product(name, price, category, color)

{name, category} = price
{category} =2 color

{name, category}* = {name, price, category, color}

= this is a superkey

1. ls a key always
guaranteed to exist?
2. Can we have more
than one key?

= this is a key, since neither name nor category alone is a superkey



In-class Exercise

Given R(A, B, C, D) and FD's AB —»C,C — D, D — A
o What are all keys of R?

50



	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: 1. Normal forms & functional dependencies
	Slide 6: Normal Forms
	Slide 7: 1st Normal Form (1NF)
	Slide 8: Normal Forms
	Slide 9: Data Anomalies
	Slide 10: Data Anomalies
	Slide 11: Data Anomalies
	Slide 12: Data Anomalies
	Slide 13: Data Anomalies
	Slide 14: Functional Dependencies
	Slide 15: Functional dependency (FD)
	Slide 16: Splitting/combining rule
	Slide 17: Splitting/combining rule
	Slide 18: Splitting rule
	Slide 19: Functional Dependencies as Constraints
	Slide 20: Functional Dependencies as Constraints
	Slide 21: Trivial functional dependencies
	Slide 22: In-class Exercise
	Slide 23: 2. Finding functional dependencies
	Slide 24: FDs for Relational Schema Design
	Slide 25: Finding Functional Dependencies
	Slide 26: Armstrong’s axioms
	Slide 27: Armstrong’s axioms
	Slide 28: Armstrong’s axioms
	Slide 29: Armstrong’s axioms
	Slide 30: Armstrong’s axioms
	Slide 31: Armstrong’s axioms
	Slide 32: Closures
	Slide 33: Closure of attributes
	Slide 34: Closure of attributes
	Slide 35: Closure of attributes
	Slide 36: Closure of attributes
	Slide 37: Closure of attributes
	Slide 38: Closure algorithm
	Slide 39: 3. Closures, Superkeys & Keys
	Slide 40: Why Do We Need the Closure?
	Slide 41: Using Closure to Infer ALL FDs
	Slide 42
	Slide 43
	Slide 44: Minimal basis
	Slide 45: Minimal basis generation
	Slide 46: Why Do We Need the Closure?
	Slide 47: Keys and Superkeys
	Slide 48: Example of Finding Keys
	Slide 49: Example of Finding Keys
	Slide 50: In-class Exercise 

