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Announcements

● Assignment 1

○ Preference survey: We will use this to determine technology presentation (assignment 3) grouping 

● Office hours

○ Instructor: Thursdays 1:00-2:00, KACB 3322

○ Yihao: Tuesdays 2:00-3:00, in the common area next to Klaus 3324

○ Tianji: Fridays 2:00-3:00, in the common area next to Klaus 3324



Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 3: Design Theory for Relational Databases 

(3.1 – 3.3)
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 

taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis



Agenda

1. Normal forms & functional dependencies

2. Finding functional dependencies

3. Closures, superkeys & keys
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1. Normal forms & functional 

dependencies
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Normal Forms

● 1st Normal Form (1NF) = All tables are flat

● 2nd Normal Form = disused

● Boyce-Codd Normal Form (BCNF)

● 3rd Normal Form (3NF)

● 4th and 5th Normal Forms = see textbooks



1st Normal Form (1NF)

Student Courses

Mary {CS4440,CS6422}

Joe {CS4440,CS6400}

… …

Violates 1NF. 

1NF Constraint: Types must be atomic!

Student Courses

Mary CS4440

Mary CS6422

Joe CS4440

Joe CS6400

In 1st NF



Normal Forms

● 1st Normal Form (1NF) = All tables are flat

● 2nd Normal Form = disused

● Boyce-Codd Normal Form (BCNF)

● 3rd Normal Form (3NF)

● 4th and 5th Normal Forms = see textbooks

DB designs based on 

functional 

dependencies, 

intended to prevent 

data anomalies

Our focus 

in this 

lecture + 

next one



Data Anomalies

Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

.. .. ..

If every course is 

in only one room, 

contains 

redundant

information!

A poorly designed database causes anomalies:



Data Anomalies

Student Course Room

Mary CS6400 B01

Joe CS6400 C12

Sam CS6400 B01

.. .. ..

If we update the room 

number for one tuple, 

we get inconsistent 

data = an update 

anomaly

A poorly designed database causes anomalies:



Data Anomalies

A poorly designed database causes anomalies:

Student Course Room

.. .. ..

If everyone drops the class, we lose 

what room the class is in! 

= a delete anomaly



Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

.. .. ..

Similarly, we can’t 

reserve a room 

without students 

= an insert anomaly

… CS6422 C12

Data Anomalies

A poorly designed database causes anomalies:



Student Course

Mary CS6400

Joe CS6422

Sam CS6400

.. ..

Course Room

CS6400 B01

CS6422 C12

Goal: develop theory to understand why this design may be  

better and how to find this decomposition…

Eliminate anomalies by 

decomposing relations.

• Redundancy? 

• Update anomaly? 

• Delete anomaly?

• Insert anomaly?

Data Anomalies



Functional Dependencies



Functional dependency (FD)
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t

u

A’s B’s

If t and u 

agree here,

they must 

agree here

A->B means that 

“whenever two tuples agree on 

A then they agree on B.”

Definition: if two tuples of R agree on all the attributes A1, A2, …, An, 

they must also agree on (or functionally determine) B1, B2, …, Bm

• Denoted as A1A2 … An → B1B2 ... Bm



Splitting/combining rule

● Splitting/combining can be applied to the right sides of FD’s
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A1A2 … An → B1B2 … Bm

A1A2 … An → B1,   A1A2 … An → B2,   …,   A1A2 … An → Bm

Splitting rule Combining rule



Splitting/combining rule

● For example,
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title year → length genre studioName

title year → length

title year → genre

title year → studioName



Splitting rule

● Splitting rule does not apply to the left sides of FD’s
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title year → length

title → length

year → length



Functional Dependencies as Constraints

Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

.. .. ..

Note: The FD 

{Course} -> {Room} 

holds on this instance

A functional dependency is a 
form of constraint

• Holds on some instances (but 
not others) – can check 
whether there are violations

• Part of the schema, helps 
define a valid instance

Recall: an instance of a schema is a 

multiset of tuples conforming to that 

schema, i.e. a table



Functional Dependencies as Constraints

Student Course Room

Mary CS6400 B01

Joe CS6400 B01

Sam CS6400 B01

.. .. ..

However, cannot prove that 

the FD {Course} -> {Room} is 

part of the schema

Note that:

• You can check if an FD is 
violated by examining a single 
instance;

• However, you cannot prove that 
an FD is part of the schema by 
examining a single instance. 

• This would require checking 
every valid instance



Trivial functional dependencies

A constraint is trivial if it holds for every possible instance of the relation.
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u

C’s

t

A’s

B’s

If t and u 

agree on 

the As

Then they 

must agree 

on the Bs

And surely they 

agree on the Cs

Trivial FDs: 

A1A2 … An → B1 B2 … Bm such that

{B1, B2, … Bm} ⊆ {A1,A2, … ,An}

Trivial dependency rule: 

A1A2 … An → B1 B2 … Bm is equivalent 

to A1A2 … An → C1 C2 … Ck, where the 

C’s are the B’s that are not also A’s



22

In-class Exercise

Q1: Find an FD that holds on this instance

Q2: Find an FD that is violated on this instance

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer



2. Finding functional 

dependencies

23



FDs for Relational Schema Design

High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema

1. One which minimizes possibility of anomalies

This part can 

be tricky!



There can be a large number of FDs…

Let’s start with this problem:

Given a set of FDs, F = {f1,…fn}, does an FD g hold?

Finding Functional Dependencies

Three simple rules called Armstrong’s Rules.
1. Reflexivity,

2. Augmentation, 

3. Transitivity



Armstrong’s axioms
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1. Reflexivity:  

If Y is a subset of X, then X → Y

2. Augmentation: 

If X → Y, then XZ → YZ for any Z

3. Transitivity: 

If X → Y and Y → Z, then X → Z

You can derive any FDs that follows from a given set using these axioms:

This means that a set of attributes 

always determines a subset of itself 

This means we can add the same 

attributes to both sides of a functional 

dependency.

This allows us to chain functional 

dependencies.



● Does AB → D follow from the FDs below?

Armstrong’s axioms
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1. AB → C (given)

2. BC → AD (given)

AB → C

BC → AD 

D → E

CF → B



● Does AB → D follow from the FDs below?

Armstrong’s axioms
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1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

AB → C

BC → AD 

D → E

CF → B



● Does AB → D follow from the FDs below?

Armstrong’s axioms
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1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

AB → C

BC → AD 

D → E

CF → B



● Does AB → D follow from the FDs below?

Armstrong’s axioms
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1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

5. AD → D (Reflexivity)

AB → C

BC → AD 

D → E

CF → B



● Does AB → D follow from the FDs below?

Armstrong’s axioms

31

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

5. AD → D (Reflexivity)

6. AB → D (Transitivity on 4,5)

Can we find an algorithmic way to do this?

AB → C

BC → AD 

D → E

CF → B



Closures



Closure of attributes

33

{A, B}+

Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where 

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD 

D → E

CF → B

A, B



Closure of attributes
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Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where 

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD 

D → E

CF → B

{A, B}+

A, B, C



Closure of attributes
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Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where 

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD 

D → E

CF → B

{A, B}+

A, B, C, D



Closure of attributes
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Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where 

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD 

D → E

CF → B

{A, B}+

A, B, C, D, E



Closure of attributes
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Given a set of attributes A1, …, An and a set of FDs F,

the closure, {A1, …, An}
+ is the set of attributes B where 

{A1, …, An} → B follows from the FDs in F

AB → C

BC → AD 

D → E

CF → B

{A, B}+

A, B, C, D, E

Cannot be expanded 

further, so this is a closure
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Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

if {B1, …, Bn} → C is entailed by F 

and {B1, …, Bn} ⊆ X

then add C to X.

Return X as X+

Closure algorithm

Initial set of 

attributes

Closure

The algorithm (proof in book)

○ only produces true FDs

○ discovers all true FDs 

Helps to split the FD’s of F, so 

each FD has a single attribute 

on the right



3. Closures, Superkeys & Keys
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Why Do We Need the Closure?

With closure we can find all FD’s easily

To check if X → A

1. Compute X+

2. Check if A  X+

Note here that X is a set of 

attributes, but A is a single attribute.  

Why does considering FDs of this 

form suffice?

Recall the split/combine rule:

X → A1, …, X → An

implies

X → {A1, …, An}
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Using Closure to Infer ALL FDs
{A,B} → C
{A,D} → B
{B}   → D

Example:
Given F =

Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D} {B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}



Step 1: Compute X+, for every set of attributes X:
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{A,B} → C
{A,D} → B
{B}   → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, 
{A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = 
{A,B,C,D}, {B,C,D}+ = {B,C,D},    {A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y  X+ and X  Y = :

Using Closure to Infer ALL FDs



Step 1: Compute X+, for every set of attributes X:
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{A,B} → C
{A,D} → B
{B}   → D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, 
{A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = 
{A,B,C,D}, {B,C,D}+ = {B,C,D},    {A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X → Y, s.t. Y  X+ and X  Y = :

{A,B} → {C,D}, {A,D} → {B,C},
{A,B,C} → {D}, {A,B,D} → {C},
{A,C,D} → {B}

Using Closure to Infer ALL FDs

Y is in the 

closure of X

The FD 

X → Y is 

non-trivial



Minimal basis
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Given a set of FD’s F, any set of FD’s 

equivalent to F is a basis for F

For the purpose of data normalization, it’s often easier to work with the 

cleanest, smallest set of FDs.

A minimal basis (or minimal cover) for a set of FDs F is a simplified set of FDs G that 

satisfies the following conditions:

- No redundant/extraneous FDs 

- RHS has a single attribute

- No extraneous attributes on the LHS

The full set of implied FDs can be large and redundant...



Minimal basis generation

Input: F = {A → AB, AB → C}

1. Split FD’s so that they have singleton right sides

G = {A → B, A → A, AB → C}

2. Remove trivial FDs

G = {A → B, AB → C}

3. Minimize the left sides of each FD

G = {A → B, A → C}

4. Remove redundant FDs

G = {A → B, A → C}

45

For each FD X → A in F: 

For each attribute B in X: 

If (X - {B})+ contains A, 

remove B from X.

Step 3: 
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Why Do We Need the Closure?

With closure we can find keys and superkeys of a relation

For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key



Keys and Superkeys

A superkey is a set of attributes A1, …, An

s.t.

for any other attribute B in R,

we have  {A1, …, An} → B

A key is a minimal 

superkey

i.e. all attributes are 

functionally determined 

by a superkey

This means that no subset of a key 

is also a superkey

(i.e., dropping any attribute from the 

key makes it no longer a superkey)



Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

What is a key?



Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

{name, category}+ = {name, price, category, color}

⟹ this is a superkey

⟹ this is a key, since neither name nor category alone is a superkey

1. Is a key always 

guaranteed to exist?

2. Can we have more 

than one key?



In-class Exercise 

Given R(A, B, C, D) and FD’s AB → C, C → D, D → A
○ What are all keys of R?
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