
CS 4440 A

Emerging Database
Technologies

Lecture 2

01/14/26

Announcements

Assignment 1 will be released tonight
• Individual assignment

• Due Feb 2

Reading Materials

Database Systems: The Complete Book (2nd edition)
• Chapter 2.1: An Overview of Data Models

• Chapter 2.2: Basics of the Relation Model

• Chapter 2.4: An Algebraic Query Language

3

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big
Data Systems) taught by Peter Bailis.

Today’s Class

1. Data Model

2. Relational Algebra: Basic Operators

3. Relational Algebra Pt. II

4

1. Data Model

5

Data model

A notation for describing data or information.

The description generally consists of three parts:

● Structure of the data

● Operations on the data

● Constraints on the data

6

Adapted from KAIST EE477 from Steven Whang

Data models

● Relational

● Key/Value
● Graph
● Document (Semi-structured)
● Column-family

● Array/Matrix/Vector

● Hierarchical
● Network

7

RDBMS

NoSQL

AI

Obsolete

Adapted from KAIST EE477 from Steven Whang

1st Part of the Model: Structure of the data

● Referred to as a “conceptual model” of the data
● Higher level than “physical data models” or data structures like

arrays and lists

8

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Example: a relation

consists of a schema,

attributes, and tuples

The Relational Model: Schema

• Relational Schema:

Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc. are the

domains of the attributes

Relation name

10

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or

column) is a typed

data entry present

in each tuple in the

relation

The number of

attributes is the arity

of the relation

11

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a single

entry in the table having the attributes

specified by the schema

The number

of tuples is

the cardinality

of the relation

12

The Relational Model: Data

Student

A relational instance is a set of tuples all

conforming to the same schema

Note: In practice

DBMSs relax the

set requirement,

and use multisets.

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Equivalent representations of a relation

● A relation is a set of tuples (not a list)
● A schema is a set of attributes (not a list)
● Hence, the order of tuples or attributes of a relation is immaterial

13

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

name sid gpa

Joe 002 2.8

Mary 003 3.8

Alice 004 3.5

Bob 001 3.2

In-class exercise

How many ways are there to represent this relation?

14

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

• A relational schema describes the data that is contained in
a relational instance

To Reiterate

Let R(f1:Dom1,…,fm:Domm) be a relational schema then,

an instance of R is a subset of Dom1 x Dom2 x … x Domn

In this way, a relational schema R is a total function from

attribute names to types

A relational database

• A relational database schema is a set of relational schemata, one
for each relation

• A relational database instance is a set of relational instances, one
for each relation

Two conventions:

1. We call relational database instances as simply databases

2. We assume all instances are valid, i.e., satisfy the domain constraints

2nd Part of the Model: Operations on the data

Usually a limited set of operations that can be performed
○ Queries (operations that retrieve information)
○ Modifications (operations that change the database)

This is a strength, not a weakness
○ Programmers can describe operations at a very high level
○ The DBMS implements them efficiently
○ Not easy to do when coding in C

17

Adapted from KAIST EE477 from Steven Whang

The Relational Model: Operations

“Find names of all students

with GPA > 3.5”

We specify how or where to get

the data - just what we want,

i.e., Querying is declarative

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to

translate the declarative query

into a series of operators…

The operations normally

associated with the relational

model forms relational algebra

Comparison: the relational model

Structure
○ Based on tables (relations)

Operations
○ Relational Algebra

Constraints
○ Key constraints, referential

integrity constraints

19

Adapted from KAIST EE477 from Steven Whang

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Comparison: the key-value model

Structure
○ (key, value) pairs
○ Key is a string or integer
○ Value can be any blob of data

Operations
○ get (key), put(key, value)
○ Operations on values not supported

Constraints
○ e.g., key is unique, value is not NULL

20

key value

1000 (Bob, 3.2)

1001 (Joe, 2.8)

1002 (Mary, 3.8)

1003 (Alice, 3.5)

Adapted from KAIST EE477 from Steven Whang

Comparison of data models

Let’s compare the relational model and the key-value model in
the following aspects. Which one is better?

• Flexibility?

• Queryability?

• Performance?

Key-value

Relational

Relational

2. Relational Algebra

22

The big picture: RDBMS Architecture

How does a SQL engine work ?

SQL

Query

Relational

Algebra

(RA) Plan

Optimized

RA Plan
Execution

Declarative
query (from

user)

Translate to
relational algebra

expression

Find logically
equivalent- but

more efficient-

RA expression

Execute each
operator of the

optimized plan!

The big picture: RDBMS Architecture

How does a SQL engine work ?

SQL

Query

Relational

Algebra

(RA) Plan

Optimized

RA Plan
Execution

Relational Algebra allows us to translate declarative

(SQL) queries into precise and optimizable expressions!

• Five basic operators:

1. Selection: 

2. Projection: 

3. Cartesian Product: 

4. Union: 

5. Difference: -

• Derived or auxiliary operators:

• Intersection, complement

• Joins (natural,equi-join, theta join, semi-join)

• Renaming: 

• Grouping: 𝛾

Relational Algebra (RA)

We’ll look at these first!

And also at one example of

a derived operator (natural

join) and a special operator

(renaming)

Note: RA operates on sets!

• RDBMSs use multisets, however in relational algebra formalism we
will consider sets!

• Also: we will consider the named perspective, where every
attribute must have a unique name
• →attribute order does not matter…

Now on to the basic RA operators…

• Returns all tuples which satisfy a
condition

• Notation: c(R)

• Examples

• Salary > 40000 (Employee)

• name = “Smith” (Employee)

• The condition c can be =, <, ,
>, , <>

1. Selection (𝜎)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:

𝜎𝑔𝑝𝑎 >3.5(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

Salary > 400000 (Employee)

SSN Name Salary

1234545 John 200000

5423341 Smith 600000

4352342 Fred 500000

SSN Name Salary

5423341 Smith 600000

4352342 Fred 500000

Another example:

• Eliminates columns, then
removes duplicates

• Notation:  A1,…,An (R)

• Example: project social-security
number and names:
•  SSN, Name (Employee)

• Output schema: Answer(SSN,
Name)

2. Projection (Π)

SELECT DISTINCT
 sname,
 gpa
FROM Students;

SQL:

RA:

Π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

 Name,Salary (Employee)

SSN Name Salary

1234545 John 200000

5423341 John 600000

4352342 John 200000

Name Salary

John 200000

John 600000

Another example:

Note that RA Operators are Compositional!

SELECT DISTINCT
 sname,
 gpa
FROM Students
WHERE gpa > 3.0;

Students(sid,sname,gpa)

How do we represent

this query in RA?

Π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝜎𝑔𝑝𝑎>3.0(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎𝑔𝑝𝑎>3.0(Π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

• Each tuple in R1 with each tuple
in R2

• Notation: R1  R2

• Example:
• Employee  Dependents

• Rare in practice; mainly used to
express joins

3. Cross-Product (×)

SELECT *
FROM Students, People;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 × 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

ssn pname address

1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa

001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 × 𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa

1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

• Changes the schema, not the
instance

• A ‘special’ operator - neither
basic nor derived

• Notation:  B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
•  A1→B1,…,An→Bn (R)

Renaming (𝜌)

SELECT
 sid AS studId,
 sname AS name,
 gpa AS gradePtAvg
FROM Students;

SQL:

RA:
𝜌𝑠𝑡𝑢𝑑𝐼𝑑,𝑛𝑎𝑚𝑒,𝑔𝑟𝑎𝑑𝑒𝑃𝑡𝐴𝑣𝑔(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

sid sname gpa

001 John 3.4

002 Bob 1.3

𝜌𝑠𝑡𝑢𝑑𝐼𝑑,𝑛𝑎𝑚𝑒,𝑔𝑟𝑎𝑑𝑒𝑃𝑡𝐴𝑣𝑔(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg

001 John 3.4

002 Bob 1.3

Students

Another example:

• R1 ⋈ R2: Joins R1 and R2 on equality of all
shared attributes
• If R1 has attribute set A, and R2 has attribute set

B, and they share attributes A ⋂ B = C, can also
be written: R1 ⋈ 𝐶 R2

• Our first example of a derived RA operator:
• R1 ⋈ R2 = A U B( C=D (𝜌𝐶→𝐷(R1)  R2))

• Where:

• The rename 𝜌𝐶→𝐷 renames the shared attributes in
one of the relations

• The selection C=D checks equality of the shared
attributes

• The projection A U B eliminates the duplicate
common attributes

Natural Join (⋈)

SELECT DISTINCT
 ssid, S.name, gpa,
 ssn, address
FROM
 Students S,
 People P
WHERE S.name = P.name;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

ssn P.name address

1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa

001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address

001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:

In class exercise

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema
of R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

Example: Converting SFW Query -> RA

SELECT DISTINCT
 gpa,
 address
FROM Students S,
 People P
WHERE gpa > 3.5 AND
 S.name = P.name;

How do we represent

this query in RA?

Π𝑔𝑝𝑎,𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝜎𝑔𝑝𝑎>3.5(𝑆 ⋈ 𝑃))

Students(sid,name,gpa)
People(ssn,name,address)

2. Relational Algebra Pt. II

40

• Five basic operators:

1. Selection: 

2. Projection: 

3. Cartesian Product: 

4. Union: 

5. Difference: -

• Derived or auxiliary operators:

• Intersection, complement

• Joins (natural, equi-join, theta join, semi-join)

• Renaming: 

• Grouping: 𝛾

Relational Algebra (RA)

We’ll look at these

And also at some

of these derived

operators

Union () and Difference (–)

• R1  R2

• Example:
• ActiveEmployees  RetiredEmployees

• R1 – R2

• Example:
• AllEmployees -- RetiredEmployees

R1 R2

R1 R2

What about Intersection () ?

• It is a derived operator

• R1  R2 = R1 – (R1 – R2)

• Also expressed as a join!
• If R1 and R2 have exactly the same schema, then R1  R2 is

equivalent to R1 ⋈ R2

• Example
• UnionizedEmployees  RetiredEmployees

R1 R2

Theta Join (⋈)

• A join that involves a predicate

• R1 ⋈ R2 =   (R1  R2)

• Here  can be any condition

SELECT *
FROM
 Students,People
WHERE ;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈𝜃 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a

theta join + a projection.

Equi-join (⋈ A=B)

• A theta join where  is an equality

• R1 ⋈ A=B R2 =  A=B (R1  R2)

• Example:
• Employee ⋈ SSN=SSN Dependents

SELECT *
FROM
 Students S,
 People P
WHERE sname = pname;

SQL:

RA:

𝑆 ⋈𝑠𝑛𝑎𝑚𝑒=𝑝𝑛𝑎𝑚𝑒 𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join

in practice!

Semijoin (⋉)

• R ⋉ S =  A1,…,An (R ⋈ S)

• Where A1, …, An are the attributes in R

• Example:
• Employee ⋉ Dependents

SELECT DISTINCT
 sid,S.name,gpa
FROM
 Students S, People P
WHERE
 S.name = P.name;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

Semijoins in Distributed Databases

• Semijoins are often used to compute natural joins in distributed
databases

SSN Name

.

SSN Dname Age

.

Employee

Dependents

network

Employee ⋈ ssn=ssn ( age>71 (Dependents))

T =  SSN ( age>71 (Dependents))

R = Employee ⋉ T
Answer = R ⋈ Dependents

Send less data

to reduce

network

bandwidth!

Grouping (𝛾)

● The grouping operator 𝛾 consists of
○ Grouping attributes: attributes to group by
○ Aggregation attributes: attributes to which aggregation

operations are applied
■ SUM, AVG, MIN, MAX, COUNT

48

𝛾A, MIN(B)->minB, AVG(C)->avgC (R)

Grouping

attribute

Aggregation

attributes

A B C

1 1 1

1 2 3

2 3 5

R

A minB avgC

1 1 2

2 3 5

Combining operations to form queries

● RA expressions can be arbitrarily complicated by applying
operations to other results

● Multiple RA expressions may be equivalent

49

Π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

Π𝐴,𝐷 𝑇 ⋈ Π𝐴,𝐶 𝜎𝐴<10(𝑅) ⋈ 𝑆

R(A,B) S(B,C) T(C,D)

Logical optimization (will cover later): Find equivalent RA

expressions that are more efficient

Which version is

more efficient?

Expression tree

RA expressions can be represented as expression trees

50

Π𝐴,𝐷

R(A,B) S(B,C)

T(C,D

)



Π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

Bottom-up tree traversal = order of operation execution!

RA Expressions Can Get Complex!

 Person Purchase Person Product

name=fred name=gizmo

 pid ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

 name

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements
	Slide 3: Reading Materials
	Slide 4: Today’s Class
	Slide 5: 1. Data Model
	Slide 6: Data model
	Slide 7: Data models
	Slide 8: 1st Part of the Model: Structure of the data
	Slide 9: The Relational Model: Schema
	Slide 10: The Relational Model: Data
	Slide 11: The Relational Model: Data
	Slide 12: The Relational Model: Data
	Slide 13: Equivalent representations of a relation
	Slide 14: In-class exercise
	Slide 15: To Reiterate
	Slide 16: A relational database
	Slide 17: 2nd Part of the Model: Operations on the data
	Slide 18: The Relational Model: Operations
	Slide 19: Comparison: the relational model
	Slide 20: Comparison: the key-value model
	Slide 21: Comparison of data models
	Slide 22: 2. Relational Algebra
	Slide 23: The big picture: RDBMS Architecture
	Slide 24: The big picture: RDBMS Architecture
	Slide 25
	Slide 26: Note: RA operates on sets!
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Note that RA Operators are Compositional!
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: In class exercise
	Slide 39: Example: Converting SFW Query -> RA
	Slide 40: 2. Relational Algebra Pt. II
	Slide 41
	Slide 42: Union () and Difference (–)
	Slide 43: What about Intersection () ?
	Slide 44: Theta Join (bowtieq)
	Slide 45: Equi-join (bowtie A=B)
	Slide 46: Semijoin (left normal factor semidirect product)
	Slide 47: Semijoins in Distributed Databases
	Slide 48: Grouping (gamma)
	Slide 49: Combining operations to form queries
	Slide 50: Expression tree
	Slide 51: RA Expressions Can Get Complex!

