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Agenda

Course logistics and overview

A brief history of databases
* 1960s — 2020s



The essentials

Instructor: Kexin Rong
« Office: Klaus 3322

TAs:
* Yihao Mal
* Tianji Yang

How to reach us: cs4440-staff@groups.gatech.edu
« The above email reaches all of the course staff. You are strongly
encouraged to use this, instead of emailing individual course staft.



mailto:cs6400-staff@groups.gatech.edu
mailto:cs6400-staff@groups.gatech.edu
mailto:cs6400-staff@groups.gatech.edu

The essentials

Course website: https://kexinrong.github.io/sp26-cs4440/
schedule and course material

Canvas/Gradescope : submitting assignments

Plazza: discussing course contents
 https://piazza.com/gatech/spring2026/cs4440a/home

Email: special requests

OH: Starting next week. Time will be announced.


https://kexinrong.github.io/sp26-cs4440/
https://kexinrong.github.io/sp26-cs4440/
https://kexinrong.github.io/sp26-cs4440/
https://piazza.com/gatech/spring2026/cs4440a/home
https://piazza.com/gatech/spring2026/cs4440a/home

Course materials

o lextbooks:

- Database Systems: The Complete
Book (2nd edition)

- Fundamentals of Database Systems

- Can use interchangeably

o Both books have international
versions and have PDFs
searchable online
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Course Learning Objectives

Learn about advanced and emerging database technologies
beyond what is covered in C54400.

Multiple ways to learn: (>
 Through lectures on database fundamentals Q

* Through surveying technologies in the wild
* Through hands-on implementations




Grading

Assignments — 58%
« Combination of individual and group assignments

Exams — 40%
« Midterm (in-class) — 20%
* Final (take-home) — 20%
Participation - 2%
« Based on attendance/participation for required lectures

https://kexinrong.github.io/sp26-cs4440/erading/
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Assignments Overview

AS1: Technology Review (5%)
* Released this Wednesday

AS2: Failure Recovery (15%)

* Programming assignment

AS3: Technology Presentation (8%)
» Group-based

AS4: Postgres Parquet Extension (15%)

* Programming assignment

AS5: NL2SQL (15%)

« Open-ended assignment



-Xams

Written tests based on material covered in lectures
« Exam 1:in-class (Feb 16) — 20%

« Exam 2: take-home (final's week) — 20%
« focus on materials that are not covered by Exam 1



Attendance

| don't believe in mandatory attendance. But in the past we noticed...
» People who did not attend did worse ®
» People who did not attend used more course resources ®
» People who did not attend were less happy with the course ®

This year’s policy:
« Required attendance will be announced in advance for a few classes

(guest lectures, student presentations).
« Attendance at these required sessions counts toward your participation grade.

 Voluntary attendance for all other class sessions.



Course Policy - IMPORTANT

Follow the Georgia Tech Honor Code!

Late policy: . Otherwise 10%
deduction per 24 hours. Does not apply to group assignments ana
exams.

Makeup exam policy: NO makeup exam for midterm.

Generative Al policy: Clearly attribute Al-generated contents (e.g., direct
quotes, different color text). Do not use generative Al tools to write code

for you.

Details: https://kexinrong.github.io/sp26-cs4440/policy/
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Course Outline

1. How can one use a DBMS (programmer’s/designer’s perspective)

« We will NOT teach SQL
« Design a good database (design theory)

2. How does a DBMS work (system’s perspective, also for programmers

for writing better queries)
« Transactions: concurrency control and recovery

* Physical design: storage and index
* Query processing and optimization

3. Beyond relational databases

« Parallel and distributed DBMS
« Map Reduce, Spark, NoSQL, NewSQL
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A brief history of
databases
(1960s-2020s)

—— What Goes Around Comes Around.

—| Readings in DB Systems. 2006.

Acknowledgement: The following slides were adapted from Prof. Andy Pavlo (CMU)


https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf

Main takeaway: history repeats itself

Old database issues are still relevant today.
« Many of the ideas in today’s database systems are not new.

Someone invents a "SQL replacement” every decade. It then fails
and/or SQL absorbs the key ideas into standards.

 The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.

« Spoiler: The relational model almost always wins.



1960s - IDS

* Integrated Data Store

» Developed internally at GE in the early
1960s.

* GE sold their computing division to
Honeywell in 1969.

* One of the first DBMSs:

* Network data model.

 Tuple-at-a-time queries. H 0 n eywel I
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1960s - CODASYL -

’ O Turing Award 1973

« COBOL people got together and proposed
a standard for how programs will access a
database. Lead by Charles Bachman.

* Network data model.
 Tuple-at-a-time queries.

« Bachman also worked at Culliane
Database Systems in the 1970s to help
build IDMS.

Bachman

16


https://en.wikipedia.org/wiki/Charles_Bachman

Network data model - schema

SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
[ SUPPLIES } [ SUPPLIED BY }

SUPPLY
(qty, price)

17



Network data model - instance

SUPPLIER

sno sname scity sstate
1001 |[Dirty Rick New York |NY
1002 |Squirrels Boston MA
SUPPLIES

parent

child

| qty
10

SUPPLY

PART

pno

pname

psize

999

Batteries

Large

SURPLIED_BY

pargnt

child

price

$100

— I

14

$99

18




1960s — IBM IMS

* Information Management System

 Early database system developed to keep track of purchase
orders for Apollo moon mission.
 Hierarchical data model.
* Programmer-defined physical storage format.
 Tuple-at-a-time queries.




Hierarchical Data Model

Schema nstance
4 ) sho Shame scity sstate |[parts
SUPPLIER 1001 |Dirty Rick New York |NY
(sno, sname, scity, sstate) Squirrels Boston MA
N J
pname
e ™ Batteries
(pno, pname, psize, qty, price) pno [pname psize qty price
999 Batteries |[Large 14 $99

20



1970s - Relational data model -
» Ted Codd was a mathematician working at IBM ‘) Turing Award 1981

Research. He saw developers spending their 1
time rewriting IMS and CODASYL programs |
every time the database's schema or layout \

changed. F
, e
i‘) @
» Database abstraction to avoid this maintenance: |
« Store database in simple data structures. ( __ > " i“
* Access data through set-at-a-time high-level \} &
language. N R
 Physical storage left up to implementation. 7
Codd

From Jim Gray -


https://www.youtube.com/watch?v=y9aPyk0ORXM&ab_channel=TuringAwardeeClips
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Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San J. ose, California

Future users of large data banks must be protected from
aving to know how the datq is organized in the machine (the

unaffected when the internal repr tation
and even when some cts of the external ¢ ]

are changed, Chonges in data representation will often be
needed as a resylt of changes in query, update, and report

are discussed. A model based on n-ary relotions, & normal
form for data base relations, and the concept of a universal
data sublanguage are introduced, In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
ond applied to the probl of redynd, cy and i Y
in the user's model,

KEY WORDS AND PHRASES: date bonk, dote bese, datg structure, dota

organization, hierarchies of data, networks of data, relations, derivability,
i, " i b I di
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caleulus, security, data integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4,22, 4.29

1. Relational Model and Normal Form

L1 INTRODUCTION
This paper is concerned with the application of ele-

access to large banks of formatted data, Exeept for g paper
by Childs [1], the principal application of relations to data
systems has been to deductive question-answering systems,
Levein and Maron [2] provide numerous references to work
in this ares,

In contrast, the problems treated here are those of datq
2 —the independence of application programs
and terminal sotivities from growth in daty types and

even in nondeduetive systems.

Volume 13 / Number 6 / June, 1970

The relational view (or model) of data described in

inferential systems. It provides & means of describing data
with its natural strueture only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis fop treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other band, has spawned g
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”),

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint ) of competing representations of data within g
single system, Examples of this clearer perspective are
cited in various parts of this paper, Implementations of
systems to support the relational model are not diseussed.

12, Dama DereNpeNciEs 1y PreseNt Sysreus

The provision of data deseription tables in recently de-
veloped information systems represents g major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data repre-

data representation characteristies which can be changed
without logically mpairing some application programs is
still quite limited, Further, the model of data with which
users interact is still clutte with representational prop-

the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not, clearly separable from one another,

L21. Ordering Dependence, Elements of data in g

data bank may be stored in g variety of ways, some involy-

of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to forisa subordering of ) the

Communications of the ACM 377

81
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Relational Data Model - schema

N

SUPPLIER

(sno, sname, scity, sstate)

J

PART

(pno, pname, psize)

NS

SUPPLY

(sno, pno, qty, price)

23




Relational Data Model - instance

SUPPLIER PART
sho sname scity sstate pno pname psize
1001 |[Dirty Rick New York [NY 999 Batteries |Large
1002 |[Squirrels Boston MA

SUPPLY

sno |pno qty price

1001 |999 10 $100

1002 |999 $99

24



1970s — Relational Model

 Early implementations of relational DBMS:

* Peterlee Relational Test Vehicle — IBM Research (UK)
« System R — IBM Research

* INGRES — U.C. Berkeley
* Oracle — Larry Ellison

Turing Award 1998

Gray
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1980s - Relational model

e The relational model wins.
* |IBM first releases SQL/DS in 1981.
* |IBM then turns out DB2 in 1983.

« “SEQUEL” becomes the standard (SQL).

« Many new “enterprise” DBMSs but
Oracle wins marketplace.

« Stonebraker creates Postgres as an
“object-relational” DBMS

Informix
D
N SYBASE

INGR=S

ORACLE
/1|TANDEM

|ERADATA

InterBase

26



1980s - Object-oriented databases

 Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

* Few of these original DBMSs from the 1980s still exist today but
many of the technologies exist in other forms (JSON, XML)

VERSAN T 0 b] e CtStO [e. '.MarkLogic*

27



Object-oriented Model

Application Code

Relational Schema

class Student {
int id;
String name;
String email;
String phonel[];

STUDENT

(id, name, email)

|

id name email
1001 M.O.P. ante@up.com

sid phone

STUDENT_PHONE
(sid, phone)

1001 444-444-4444

1001 555-555-5555

28



Object-oriented Model

Application Code
class Student { Student
int id; {

»

"id": 1001,
"name": "M.O.P.",

String name;
String email;
String phone[]; "phone": [

} “444-444-4444”

“555-555-5555"
]

}

"email": "ante@up.com",

29



1990s - Boring days

* No major advancements in database systems or application
workloads.
« Microsoft forks Sybase and creates SQL Server.
« MySQL is written as a replacement for mSQL.
» Postgres gets SQL support.
« SQLite started in early 2000.

« Some DBMSs introduced pre-computed data cubes for faster
analytics.

PostgreSQL

MW%erver My R

SQLite

30


https://en.wikipedia.org/wiki/Data_cube

2000s - Internet boom

* All the big players were heavyweight and expensive. Open-
source databases were missing important features.

* Many companies wrote their own custom middleware to
scale out database across single-node DBMS instances.



2000s - Data warehouses

* Rise of the special purpose OLAP DBMSs.
* Distributed / Shared-Nothing
 Relational / SQL
» Usually closed-source.

« Significant performance benefits from using columnar data

storage model.

N)NETEZZA PARACCEI. monetdb

Greenplum DATAllegro V'||= RTIO\I
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2000s — MapReduce Systems

* Distributed programming and execution model for analyzing large
data sets.
* First proposed by Google (MapReduce).
* Yahoo! created an open-source version (Hadoop).
« Data model decided by user-written functions.

* People (eventually) realized this was a bad idea and added SQL
on top of MR. That was a bad idea too.




2000s - NoSQL Systems

 Focus on high-availability & high-scalability:
« Schemaless (i.e., “Schema Last”)

« Non-relational data models (document, key/value, etc)
* No ACID transactions

» Custom APIs instead of SQL
» Usually open-source

HEBASE Lamazon .mOHSODB O O

YRAmoLD @, NOSQL
RethinkDB K:
%i ; Q Couchbase &QDGO L) CouchDB
cassandra wrlqk ) NDB
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2010s — NewSQL Systems

* Provide same performance for OLTP workloads as NoSQL
DBMSs without giving up ACID:
 Relational / SQL
* Distributed

« Almost all the first group of systems failed

» Second wave of “distributed SQL’ systems are (potentially)
doing better

- GenieDB AbSh arols E]'Store Clustrix mTIDB
@ QSC&][QAI’C [ &&= FOUNDATIONDB § CockroachDB
Transjarrice YVOUTDB - —
o8 PZodeFutures uycs i
%pganner AMAMEMSQL deFut YUte Comdb?

NUO ScaleBase
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2010s - Cloud systems

* First database-as-a-service (DBaaS) offerings were
"containerized" versions of existing DBMSs.

 There are new DBMSs that are designed from scratch
explicitly for running in a cloud environment.

xeround  Googe
Socsnowflake Il amaen eddBntas  SOANNES

N >
.l el Amazon ®
e WFAUNA  mios 7 A7 @
at Microsoft
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2010s - Shared-disk engines

* Instead of writing a custom storage manager, the DBMS
leverages distributed storage.

« Scale execution layer independently of storage.
 Favors log-structured approaches.

 This is what most people think of when they talk about a data
lake.

- - cloudera A -
AS‘E:II—EL _Dj druid PAL A ‘? pln0|

i s
presto = [l A%

B Microsoft
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2010s - Graph systems

« Systems for storing and querying graph data.
« Similar to the network data model (CODASYL)

 Their main advantage over other data models is to provide a graph

centric query API
« SQL:2023 is adding graph query syntax (SQL/PCQG)

* Recent research (2023) demonstrated that is unclear whether there is any

benefit to using a graph-centric execution engine and storage manager.

P, . i (\ NebulaGraph ?:':E" . :.‘.'%'v?o:
@neOL,J /\ (%Em q; TigerGraph &) P St
@ @ JanusGraph P R
©) 9 Dgraph i S
gr%phbase.al Terminus DB |ﬂdraDB é} T F/’\C\ /gi FT HE
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https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf
https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf

2010s - Timeseries systems

« Specialized systems that are designed to store timeseries /
event data.

 The design of these systems make deep assumptions about
the distribution of data and workload query patterns.

@ M3 & TIMESCALE @ influxdb

(© GreptimeDB \'/MEI%ITC(S)R'A | ClickHouse @ g

:CMU-DB

«
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2010s — Specialized Systems

« Embedded DBMSs
 Multi-Model DBMSs

 Hardware Acceleration
 Array / Matrix / Vector DBMSs
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Final Thoughts

* The demarcation lines of DBMS categories will continue to blur
over time as specialized systems expand the scope of their
domains.

* Every NoSQL DBMS (except for Redis) now supports SQL

 The relational model and declarative query languages promote
better data engineering.
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