Machine Learning For Databases: Learned Indexes

- Aryan Mittal
- Ansel Erol
- Sarah Chae
- Edward Chen
- Adithya Peruvemba

Introduction

Traditional Indexes

Traditional indexes accelerate data retrieval

- Enable rapid search and access to specific data without scanning entire tables
- Improve query performance, especially in large datasets
- Implemented with B-Trees, B+ Trees, LSM Trees, Hash Indexes, R Trees, etc.

Learned indexes use ML to predict data locations

Why Learned Indexes?

- Faster Lookups
 - Make searches faster than traditional indexing methods
 - Especially for read-heavy workloads
- Space Efficiency
 - $_{\odot}$ Use less memory than traditional indexes
 - $_{\odot}$ Especially when the dataset follows a predictable distribution
- Adaptability
 - $_{\odot}$ Dynamically adjust to different data distributions
 - $_{\odot}$ Improve performance on specific workloads

Learned Index Basics

- 1. Training a Model
 - ML model learns data distribution
 - $_{\odot}$ Builds mapping from keys to their approximate positions in storage/memory
- 2. Making Predictions
 - $_{\odot}$ When a query searches for a key, model predicts its approximate location
- 3. Refinement
 - System refines prediction using localized search methods
 - \circ E.g., binary search or small secondary indexes

⇒ Hierarchical Structure

- $_{\odot}$ Learned indexes can be organized in layers
- $_{\odot}$ Top-level models predict which low-level models should be used for precision
- Similar to B-Trees

This Presentation

- Products Overview
- Technical Details
- Sample Applications
- Market Analysis
- Future Trends

Products Overview

https://arxiv.org/html/2403.06456v1 (Purdue, 2024)

1D, Space-efficient Indices

• Recursive Model Index (RMI):[MIT]

- First proposed model
- Hierarchically approximates position of keys with sorted data instead of using B-trees
- In joins, 2-3x less comparisons than standard equijoin algorithm
- PGM (Piecewise geometric) Index[U of Pisa, ICML]
 - Splines instead of lines
 - Automatically finds optimal number of splines given error tolerance
- Radix Splines[MIT]
 - Improvement to PGM that reduces complexity of index building
 - Higher performance on range queries

Dynamic Learned Index

- Traditional learned indices don't adapt to inserts/updates
- ALEX (Adaptive Learned Index) [Microsoft Research]
 - Expands dynamically while maintaining lookup efficiency
 - On insert, predicts leaf node of next child and splits if full (retraining the node)
- LIPP (Learned Index with Precise Positioning)[Tsinghua]
 - Optimized for workloads that are write-heavy instead of read heavy
 - On insert, predicts leaf node and adds a new node if full faster

Google Bigtable

- Google BigTable (2005) is a NoSQL service in GCP, supporting a range of other Google products
- Integrated learned indices to augment traditional indexing strategies in 2020
- Performance Gains:
 - Optimized for large-scale disk-based storage
 - ML models reduce size while maintaining lookup speed less IOs for index blocks
- First (and only) large scale, real-world deployment of learned indices in a distributed setting
 - Insight for distributed, large scale deployment, savings on index size and simpler prefetching matter more than faster lookup

Specialized, Multi-Dimensional, etc.

- Flood and Tsunami [MIT]
 - Works in multiple-dimensions and adapts to dataset characteristics
 - Outperforms R-Trees, the standard approach in multiple dimensions
- Learned Bloom Filters:
 - Existence queries with machine learning
 - Achieves 100% recall with higher precision than the traditional algorithm

Applications

• Geographic Databases, spatial queries, in high dimensions

Comparison

Product	Category	Dynamic Support	Space Efficiency	Real-World Deployment	Primary Use Case
Google Bigtable Learned Index	Distributed / Enterprise	Yes	High	Yes (integrated in Google Bigtable)	Large-scale, disk-based storage & analytics
ALEX (Adaptive Learned Index)	Dynamic / Updatable	Yes	Med-High	Prototype / Research	KV store w/ frequent updates
PGM (Piece-wise Geometric)	Space-Efficient / Immutable	No	Very High	Prototype / Research	Read-only, analytical workload
RadixSpline (RS)	Space-Efficient / Immutable	No	Very High	Prototype / Research	Read-only, in- memory + range queries
Recursive Model Index (RMI)	Pure learned / Immutable	No	Medium	Prototype / Research	Read only point + range queries

PGM ALEX BinarySearch RMI RS BTree 1000ns 900ns 800ns 700ns 600ns Latency 500ns 400ns 300ns 200ns 100ns 20040 500 Mills 20 MM 10 2001 All 200 50 to BIN 2 MB 24

Size-Latency Pareto Plot on dataset Books (64-bit)

Index Size

<u>https://learnedsystems.github.io/SOSDLeaderboard/leaderboard/ [MIT]</u>

Technical Details

Taxonomy of Learned Indexes

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes. https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf

The Case of Learned Index Structure [SIGMOID'18]

- Introduced the idea that "Indexes are models"
- Replace traditional database indexes by learned models
- Approximate the Cumulative Distribution Function (CDF) of the underlying (sorted) data
- Proposed Recursive Model Index (RMI), a multi-stage ML model
- Combine simpler ML models
 - The first stage model will make an initial prediction of the CDF for a specific key
 - The next stage models will be selected to refine this initial prediction
- Proposed Learned Index Structures: Range Index, Point Index, and Existence Index

[2] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The Case for Learned Index Structures. *arXiv:1712.01208 [cs.DB]*.

The Case of Learned Index Structure [SIGMOID'18]

- Limitations:
 - Focus on in-memory read-only workloads
 - The structure of RMI is static
 - Does not support updates (e.g., insertion, deletion)
- This leads to the development of Dynamic Learned Indexes

Immutable vs. Mutable Learned Indexes

Challenges of Updates:

- Training Times: Learning indexes require significant time to train
- Data Changes: New data necessitates retraining as it alters the data order

Classification based on Update Support:

1. Immutable Learned Indexes:

- **Support:** Does not support inserts, updates, or deletes
- Once built, the structure remains static
- Best suited for stable datasets where changes are infrequent

2. Mutable Learned Indexes:

- **Support:** Allows for inserts, updates, and deletes
- Dynamic and adaptable to changing data
- Essential for environment where data frequently changes

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes. https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf

ALEX: An Updatable Adaptive Learned Index [SIGMOID'20]

- Dynamic, updatable learned index to handle dynamic workload
- Adaptive RMI as Model Hierarchy
- Linear Regression Models as Node
- Gapped Array or Packed Memory Array as Node Layout

[1] Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y., Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D., Lomet, D., & Kraska, T. (2020). ALEX: An Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD'20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA. https://doi.org/10.1145/3318464.3389711

ALEX: An Updatable Adaptive Learned Index [SIGMOID'20]

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes. https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf Gr Georgia Tech

25

Sample Applications

- Challenge: Can learned indexes be implemented in a real-world database system?
- Abu-Libdeh et al. demonstrate that the learned index can be integrated into Google Bigtable
- Improves end-to-end latency and throughput

- Google Bigtable uses a SSTable with key-value pairs stored in blocks
- Use model to define which
 records are stored in which block
 - Train a model to predict number of bytes a record stores
 - Use linear regression model (strength in simplicity)

• Positive impacts:

- Significant improvement in read performance compared to two-level index (Bigtable default)
- Reduces CPU resource usage and block accesses
- Overall cascading benefits from smaller size and simple usage
- Limitations:
 - Training overhead and maintenance
 - Is not compatible with dynamic operations, e.g. write/updates

Market Analysis

Current Market Positioning

- Major players in learned indexing
 - Google (Bigtable)
 - Microsoft (ALEX)
 - Academics (e.g., Radix Spline, PGM)
- Traditional B-Trees and Hash Indexes still dominate enterprise solutions
- Learned indexes show promise in read-heavy and analytical workloads
 - Business intelligence reporting
 - Large scale search

Performance & Revenue Impact

- Time Reduction: 1.5—3x query performance improvements

 Microsoft ALEX reports 1.5—3x faster point lookups compared to B-trees in experiments [1]
 Google reports 1.5—2.2x performance improvements over B+ trees [2]
- Infrastructure Cost Reduction
 - FLOOD reports 15-45% storage efficiency improvements [7]
- Lower Total Cost of Ownership
 - Reduced hardware and energy requirements

Future Trends

Advancements in Mutable and Hybrid Learned Indexes

Kev

(e.g., Id)

1. Evolution of Dynamic and Fully Mutable Learned Indexes

- Trend: Increasing focus on fully mutable learned indexes for realtime updates.
- Key Innovation: ALEX and selective retraining techniques.
- Future Direction: Incremental learning and error correction to 0 minimize retraining.

2. Hybrid Learned Indexes with Predictive Optimization

- Trend: Integration of B-trees, hash-based indexes, and learned models for efficiency.
- Key Innovation: Hybrid RMI and cache-aware strategies to reduce CPU cache misses.
- Future Direction: Adaptive hybrid indexes that adjust to real-time 0 workloads.

[2] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The Case for Learned Index Structures. Proceedings of the 2018 ACM SIGMOD International Conference on Management of Data. https://doi.org/10.1145/3183713.3196909

Multi-Dimensional and Self-Optimizing Indexes

- 1. Advancements in Multi-Dimensional and Spatial Learnec Indexes
 - Trend: Expansion into GIS, IoT, and spatial databases.
 - $\circ~$ Key Innovation: FLOOD and Tsunami for adaptive grid-based indexing.
 - Future Direction: Correlation-aware and space-filling curve-based indexes.

2. Self-Optimizing Learned Indexes with AI and

Reinforcement Learning

- Trend: Development of self-tuning indexes using reinforcement learni
 (RL).
- $\circ~$ Key Innovation: UpLIF and LITune for autonomous index optimization.
- Future Direction: Continuous online learning for real-time adaptability

[5] Heidari, A., Lissandrini, M., & Aref, W. G. (2024). UpLIF: An Updatable Self-Tuning Learned Index Framework. arXiv preprint arXiv:2408.04113. https://arxiv.org/abs/2408.04113

Georgia Tech

Cloud-Native Adoption and Scalability Challenges

- 1. Learned Indexes in Cloud-Native and Distributed Databases
 - Trend: Increasing adoption in cloud-native databases for efficiency.
 - Key Innovation: Learned indexing layers in Google Bigtable for lower latency.
 - Future Direction: Self-driving indexing services for cloud environments.

2. Reducing Retraining Costs and Enhancing Scalability

- Trend: Minimizing retraining overhead and memory use in mutable indexes.
- Key Innovation: Amortized retraining and partial updates.
- Future Direction: Distributed learned indexes for scalable cloud deployments.

BigTable Architecture

References

[1] Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y., Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D., Lomet, D., & Kraska, T. (2020). ALEX: An Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD'20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA. https://doi.org/10.1145/3318464.3389711

[2] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The Case for Learned Index Structures. *arXiv:1712.01208* [cs.DB].

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes. https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf

[4] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, X. (S.) Li, A. Ly, and C. Olston, "Learned Indexes for a Google-scale Disk-based Database," Workshop on ML for Systems, Vancouver, Canada, December 2020.

[5] Heidari, A., Lissandrini, M., & Aref, W. G. (2024). UpLIF: An Updatable Self-Tuning Learned Index Framework. arXiv preprint arXiv:2408.04113. https://arxiv.org/abs/2408.04113

[6] Wang, W., Zhang, Y., Chen, S., & Li, C. (2022). Are Updatable Learned Indexes Ready?. Proceedings of the VLDB Endowment, 15(11), 3004-3016. https://doi.org/10.14778/3551793.3551811

[7] Nathan, V., Ding, J., Alizadeh, M., & Kraska, T. (2020). Learning multi-dimensional indexes. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 985–1000. https://doi.org/10.1145/3318464.3380579

