
Machine Learning For Databases:
Learned Indexes

• Aryan Mittal

• Ansel Erol

• Sarah Chae

• Edward Chen

• Adithya Peruvemba

Introduction

• Traditional indexes accelerate data retrieval
o Enable rapid search and access to specific data without scanning entire tables

o Improve query performance, especially in large datasets

o Implemented with B-Trees, B+ Trees, LSM Trees, Hash Indexes, R Trees, etc.

• Learned indexes use ML to predict data locations

Traditional Indexes

• Faster Lookups
o Make searches faster than traditional indexing methods

o Especially for read-heavy workloads

• Space Efficiency
o Use less memory than traditional indexes

o Especially when the dataset follows a predictable distribution

• Adaptability
o Dynamically adjust to different data distributions

o Improve performance on specific workloads

Why Learned Indexes?

1. Training a Model
o ML model learns data distribution
o Builds mapping from keys to their approximate positions in storage/memory

2. Making Predictions
o When a query searches for a key, model predicts its approximate location

3. Refinement
o System refines prediction using localized search methods
o E.g., binary search or small secondary indexes

⇒ Hierarchical Structure
o Learned indexes can be organized in layers
o Top-level models predict which low-level models should be used for precision
o Similar to B-Trees

Learned Index Basics

• Products Overview

• Technical Details

• Sample Applications

• Market Analysis

• Future Trends

This Presentation

Products Overview

https://arxiv.org/html/2403.06456v1 (Purdue, 2024)

https://arxiv.org/html/2403.06456v1

Types of "Products"
Large-Scale Distributed

Systems

Hybrid

Dynamic/Updatable Indices

Auxiliary Uses

Google

BigTable

RadixSpline

Learned

Bloom

Filters

CDF +

RMI

joins

PGM Index

LIPP

ALEX

Tsunami

SoSD

Benchmarking

RMI

1D, Space-efficient Indices

• Recursive Model Index (RMI):[MIT]

• First proposed model
• Hierarchically approximates position of keys with sorted data instead of using B-trees
• In joins, 2-3x less comparisons than standard equijoin algorithm

• PGM (Piecewise geometric) Index[U of Pisa, ICML]

• Splines instead of lines
• Automatically finds optimal number of splines given error tolerance

• Radix Splines[MIT]

• Improvement to PGM that reduces complexity of index building
• Higher performance on range queries

Dynamic Learned Index

• Traditional learned indices don’t adapt to inserts/updates

• ALEX (Adaptive Learned Index) [Microsoft Research]

• Expands dynamically while maintaining lookup efficiency

• On insert, predicts leaf node of next child and splits if full (retraining the node)

• LIPP (Learned Index with Precise Positioning)[Tsinghua]

• Optimized for workloads that are write-heavy instead of read heavy

• On insert, predicts leaf node and adds a new node if full – faster

Google Bigtable

• Google BigTable (2005) is a NoSQL service in GCP, supporting a range of
other Google products

• Integrated learned indices to augment traditional indexing strategies in 2020

• Performance Gains:
• Optimized for large-scale disk-based storage

• ML models reduce size while maintaining lookup speed – less IOs for index blocks

• First (and only) large scale, real-world deployment of learned indices in a
distributed setting

• Insight – for distributed, large scale deployment, savings on index size and simpler
prefetching matter more than faster lookup

Specialized, Multi-Dimensional, etc.

• Flood and Tsunami [MIT]

• Works in multiple-dimensions and adapts to dataset characteristics

• Outperforms R-Trees, the standard approach in multiple dimensions

• Learned Bloom Filters:
• Existence queries with machine learning

• Achieves 100% recall with higher precision than the traditional algorithm

Applications
• Geographic Databases, spatial queries, in high dimensions

Product Category
Dynamic

Support

Space

Efficiency

Real-World

Deployment
Primary Use Case

Google Bigtable

Learned Index

Distributed /

Enterprise
Yes High

Yes (integrated in

Google Bigtable)

Large-scale,

disk-based storage &

analytics

ALEX (Adaptive

Learned Index)

Dynamic /

Updatable

Yes Med-High Prototype / Research KV store w/ frequent

updates

PGM (Piece-wise

Geometric)

Space-Efficient

/ Immutable

No Very High Prototype / Research Read-only, analytical

workload

RadixSpline (RS) Space-Efficient

/ Immutable

No Very High Prototype / Research Read-only, in-

memory + range

queries

Recursive Model

Index (RMI)

Pure learned /

Immutable

No Medium Prototype / Research Read only point +

range queries

Comparison

https://learnedsystems.github.io/SOSDLeaderboard/leaderboard/ [MIT]

https://learnedsystems.github.io/SOSDLeaderboard/leaderboard/

Technical Details

Taxonomy of Learned Indexes

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes.

https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf

The Case of Learned Index Structure [SIGMOID’18]

[2] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The Case for Learned Index
Structures. arXiv:1712.01208 [cs.DB].

• Introduced the idea that “Indexes are models”

• Replace traditional database indexes by learned models

• Approximate the Cumulative Distribution Function (CDF)
of the underlying (sorted) data

• Proposed Recursive Model Index (RMI), a multi-stage ML
model

• Combine simpler ML models
• The first stage model will make an initial prediction of the CDF for

a specific key
• The next stage models will be selected to refine this initial

prediction

• Proposed Learned Index Structures: Range Index, Point
Index, and Existence Index

The Case of Learned Index Structure [SIGMOID’18]

[2] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The Case for Learned Index
Structures. arXiv:1712.01208 [cs.DB].

• Limitations:
• Focus on in-memory read-only

workloads

• The structure of RMI is static

• Does not support updates (e.g.,
insertion, deletion)

• This leads to the development
of Dynamic Learned Indexes

Immutable vs. Mutable Learned Indexes

• Challenges of Updates:
• Training Times: Learning indexes require significant time to train

• Data Changes: New data necessitates retraining as it alters the data order

• Classification based on Update Support:
1. Immutable Learned Indexes:

• Support: Does not support inserts, updates, or deletes

• Once built, the structure remains static

• Best suited for stable datasets where changes are infrequent

2. Mutable Learned Indexes:

• Support: Allows for inserts, updates, and deletes

• Dynamic and adaptable to changing data

• Essential for environment where data frequently changes

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes.

https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf

ALEX: An Updatable Adaptive Learned Index [SIGMOID’20]

[1] Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y., Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D., Lomet, D., & Kraska,
T. (2020). ALEX: An Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY,
USA. https://doi.org/10.1145/3318464.3389711

• Dynamic, updatable learned index to
handle dynamic workload

• Adaptive RMI as Model Hierarchy

• Linear Regression Models as Node

• Gapped Array or Packed Memory Array
as Node Layout

ALEX: An Updatable Adaptive Learned Index [SIGMOID’20]

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes.

https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf

Sample Applications

Learned Indexes for a Google-scale Disk-based Database

• Challenge: Can learned indexes be
implemented in a real-world database
system?

• Abu-Libdeh et al. demonstrate that the
learned index can be integrated into
Google Bigtable

• Improves end-to-end latency and
throughput

[4] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, X. (S.) Li, A. Ly, and C. Olston, “Learned Indexes for a

Google-scale Disk-based Database,” Workshop on ML for Systems, Vancouver, Canada, December 2020.

Learned Indexes for a Google-scale Disk-based Database

• Google Bigtable uses a SSTable
with key-value pairs stored in
blocks

• Use model to define which
records are stored in which block
o Train a model to predict number of

bytes a record stores

o Use linear regression model
(strength in simplicity)

[4] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, X. (S.) Li, A. Ly, and C. Olston, “Learned Indexes for a

Google-scale Disk-based Database,” Workshop on ML for Systems, Vancouver, Canada, December 2020.

Learned Indexes for a Google-scale Disk-based Database

[4] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, X. (S.) Li, A. Ly, and C. Olston, “Learned Indexes for a

Google-scale Disk-based Database,” Workshop on ML for Systems, Vancouver, Canada, December 2020.

Learned Indexes for a Google-scale Disk-based Database

• Positive impacts:
o Significant improvement in read performance

compared to two-level index (Bigtable default)

o Reduces CPU resource usage and block
accesses

o Overall cascading benefits from smaller size
and simple usage

• Limitations:
o Training overhead and maintenance

o Is not compatible with dynamic operations, e.g.
write/updates

[4] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, X. (S.) Li, A. Ly, and C. Olston, “Learned Indexes for a

Google-scale Disk-based Database,” Workshop on ML for Systems, Vancouver, Canada, December 2020.

Market Analysis

• Major players in learned indexing
o Google (Bigtable)

o Microsoft (ALEX)

o Academics (e.g., Radix Spline, PGM)

• Traditional B-Trees and Hash Indexes still dominate
enterprise solutions

• Learned indexes show promise in read-heavy and
analytical workloads
o Business intelligence reporting

o Large scale search

Current Market Positioning

• Time Reduction: 1.5—3x query performance improvements
o Microsoft ALEX reports 1.5—3x faster point lookups compared to B-trees in experiments [1]

o Google reports 1.5—2.2x performance improvements over B+ trees [2]

• Infrastructure Cost Reduction
o FLOOD reports 15-45% storage efficiency improvements [7]

• Lower Total Cost of Ownership
• Reduced hardware and energy requirements

Performance & Revenue Impact

Future Trends

Advancements in Mutable and Hybrid Learned Indexes

1. Evolution of Dynamic and Fully Mutable Learned Indexes

o Trend: Increasing focus on fully mutable learned indexes for real-

time updates.

o Key Innovation: ALEX and selective retraining techniques.

o Future Direction: Incremental learning and error correction to

minimize retraining.

2. Hybrid Learned Indexes with Predictive Optimization

o Trend: Integration of B-trees, hash-based indexes, and learned

models for efficiency.

o Key Innovation: Hybrid RMI and cache-aware strategies to reduce

CPU cache misses.

o Future Direction: Adaptive hybrid indexes that adjust to real-time

workloads.

[2] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The Case for Learned Index Structures. Proceedings of the

2018 ACM SIGMOD International Conference on Management of Data. https://doi.org/10.1145/3183713.3196909

Multi-Dimensional and Self-Optimizing Indexes

1. Advancements in Multi-Dimensional and Spatial Learned

Indexes

o Trend: Expansion into GIS, IoT, and spatial databases.

o Key Innovation: FLOOD and Tsunami for adaptive grid-based indexing.

o Future Direction: Correlation-aware and space-filling curve-based

indexes.

2. Self-Optimizing Learned Indexes with AI and

Reinforcement Learning

o Trend: Development of self-tuning indexes using reinforcement learning

(RL).

o Key Innovation: UpLIF and LITune for autonomous index optimization.

o Future Direction: Continuous online learning for real-time adaptability.

[5] Heidari, A., Lissandrini, M., & Aref, W. G. (2024). UpLIF: An Updatable Self-Tuning Learned Index Framework. arXiv preprint
arXiv:2408.04113. https://arxiv.org/abs/2408.04113

Cloud-Native Adoption and Scalability Challenges
1. Learned Indexes in Cloud-Native and Distributed

Databases

▪ Trend: Increasing adoption in cloud-native databases for

efficiency.

▪ Key Innovation: Learned indexing layers in Google Bigtable for

lower latency.

▪ Future Direction: Self-driving indexing services for cloud

environments.

2. Reducing Retraining Costs and Enhancing Scalability

▪ Trend: Minimizing retraining overhead and memory use in

mutable indexes.

▪ Key Innovation: Amortized retraining and partial updates.

▪ Future Direction: Distributed learned indexes for scalable cloud

deployments.

[6] Wang, W., Zhang, Y., Chen, S., & Li, C. (2022). Are Updatable Learned Indexes Ready?. Proceedings of the VLDB Endowment,

15(11), 3004-3016. https://doi.org/10.14778/3551793.3551811

[1] Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y., Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D., Lomet, D., &
Kraska, T. (2020). ALEX: An Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY,
USA. https://doi.org/10.1145/3318464.3389711

[2] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The Case for Learned Index Structures. arXiv:1712.01208
[cs.DB].

[3] Mamun, A. A., Wu, H., & Aref, W. G. (n.d.). A tutorial on learned multi-dimensional indexes.
https://www.cs.purdue.edu/homes/aref/LMDI2020/LMDI_Tutorial_SIGSpatial2020.pdf

[4] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, X. (S.) Li, A. Ly, and C. Olston, “Learned Indexes for a
Google-scale Disk-based Database,” Workshop on ML for Systems, Vancouver, Canada, December 2020.

[5] Heidari, A., Lissandrini, M., & Aref, W. G. (2024). UpLIF: An Updatable Self-Tuning Learned Index Framework. arXiv preprint
arXiv:2408.04113. https://arxiv.org/abs/2408.04113

[6] Wang, W., Zhang, Y., Chen, S., & Li, C. (2022). Are Updatable Learned Indexes Ready?. Proceedings of the VLDB
Endowment, 15(11), 3004-3016. https://doi.org/10.14778/3551793.3551811

[7] Nathan, V., Ding, J., Alizadeh, M., & Kraska, T. (2020). Learning multi-dimensional indexes. Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 985–1000. https://doi.org/10.1145/3318464.3380579

References

	Slide 1: Machine Learning For Databases: Learned Indexes
	Slide 2: Introduction
	Slide 3: Traditional Indexes
	Slide 4: Why Learned Indexes?
	Slide 5: Learned Index Basics
	Slide 6: This Presentation
	Slide 7: Products Overview
	Slide 8
	Slide 9: Types of "Products"
	Slide 10: 1D, Space-efficient Indices
	Slide 11: Dynamic Learned Index
	Slide 12: Google Bigtable
	Slide 13: Specialized, Multi-Dimensional, etc.
	Slide 14: Comparison
	Slide 15
	Slide 16: Technical Details
	Slide 17: Taxonomy of Learned Indexes
	Slide 18: The Case of Learned Index Structure [SIGMOID’18]
	Slide 19: The Case of Learned Index Structure [SIGMOID’18]
	Slide 20: Immutable vs. Mutable Learned Indexes
	Slide 21: ALEX: An Updatable Adaptive Learned Index [SIGMOID’20]
	Slide 22: ALEX: An Updatable Adaptive Learned Index [SIGMOID’20]
	Slide 23: Sample Applications
	Slide 24: Learned Indexes for a Google-scale Disk-based Database
	Slide 25: Learned Indexes for a Google-scale Disk-based Database
	Slide 26: Learned Indexes for a Google-scale Disk-based Database
	Slide 27: Learned Indexes for a Google-scale Disk-based Database
	Slide 28: Market Analysis
	Slide 29: Current Market Positioning
	Slide 30: Performance & Revenue Impact
	Slide 31: Future Trends
	Slide 32: Advancements in Mutable and Hybrid Learned Indexes
	Slide 33: Multi-Dimensional and Self-Optimizing Indexes
	Slide 34: Cloud-Native Adoption and Scalability Challenges
	Slide 35: References

