
CS 4440 A

Midterm Review

Lecture 9

02/05/25



Midterm Logistics

• Midterm will be held Monday Feb 10th from 3:30pm - 4:45pm 
(during class time).

• Please arrive early - the exam is going to start at 3:30pm.

• Open notes, no electronic devices. Can bring calculator. 

• Contents covered: Lec 2 (Relational Algebra) – Lec 7 (B+ Tree)



Relational Algebra
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The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or 
column) is a typed 
data entry present 
in each tuple in 
the relation

The number of 
attributes is the 
arity of the 
relation

A tuple or row (or 
record) is a single entry 
in the table having the 
attributes specified by 
the schema

The number of 
tuples is the 
cardinality of 
the relation

A relational instance is a set of tuples all 
conforming to the same schema



• Five basic operators:

1. Selection: 

2. Projection:  

3. Cartesian Product: 

4. Union: 

5. Difference: -

• Derived or auxiliary operators:

• Intersection, complement

• Joins (natural,equi-join, theta join, semi-join)

• Renaming:  

• Grouping: 𝛾

Relational Algebra (RA)

RDBMSs use multisets, however 
in relational algebra formalism 
we will consider sets!



• Returns all tuples which satisfy a 
condition

• Notation: c(R)

• The condition c can be =, <, >, <>

1. Selection (𝜎)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:

𝜎𝑔𝑝𝑎 >3.5(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)



• Eliminates columns, then 
removes duplicates

• Notation:    A1,…,An (R)

2. Projection (Π)

SELECT DISTINCT
  sname,
  gpa
FROM Students;

SQL:

RA:

Π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)



• Each tuple in R1 with each tuple 
in R2

• Notation: R1  R2

• Rare in practice; mainly used to 
express joins

3. Cross-Product (×)

SELECT *
FROM Students, People;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ×  𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)



• Changes the schema, not the 
instance

• A ‘special’ operator- neither basic 
nor derived

• Notation:  B1,…,Bn (R)

• Note: this is shorthand for the 
proper form (since names, not order 
matters!):
•  A1→B1,…,An→Bn (R)

Renaming (𝜌)

SELECT
  sid AS studId,
  sname AS name,
  gpa AS gradePtAvg
FROM Students;

SQL:

RA:
𝜌𝑠𝑡𝑢𝑑𝐼𝑑,𝑛𝑎𝑚𝑒,𝑔𝑟𝑎𝑑𝑒𝑃𝑡𝐴𝑣𝑔(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)



• Notation: R1 ⋈ R2

• Joins R1 and R2 on equality of all shared 
attributes
• If R1 has attribute set A, and R2 has attribute set 

B, and they share attributes A⋂B = C, can also 
be written: R1 ⋈ 𝐶 R2

• Our first example of a derived RA operator:
• Meaning:  R1 ⋈ R2 = A U B(C=D(𝜌𝐶→𝐷(R1)  R2))
• Where:

• The rename 𝜌𝐶→𝐷  renames the shared attributes in 
one of the relations

• The selection C=D checks equality of the shared 
attributes

• The projection A U B eliminates the duplicate 
common attributes

Natural Join (⋈)

SELECT DISTINCT
  ssid, S.name, gpa,
  ssn, address
FROM 
  Students S,
  People P
WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈  𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)



Converting SFW Query -> RA

SELECT DISTINCT A1,…,An

FROM            R1,…,Rm

WHERE           c1 AND … AND ck;

Π𝐴1,…,𝐴𝑛(𝜎𝑐1
… 𝜎𝑐𝑘

(𝑅1 ⋈ ⋯ ⋈ 𝑅𝑚))

Why must the selections “happen 
before” the projections?

You should also be able to 
convert RA -> SQL query



Design Theory



Student Course

Mary CS145

Joe CS145

Sam CS145

.. ..

Course Room

CS145 B01

CS229 C12

Eliminate anomalies by 

decomposing relations.

• Redundancy

• Update anomaly

• Delete anomaly

• Insert anomaly

Data Anomalies

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

.. .. ..



FDs for Relational Schema Design

High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes possibility of anomalies



Equivalent to asking: Given a set of FDs, F = {f1,…fn}, 
does an FD g hold?

Inference problem: How do we decide?

Three simple rules called Armstrong’s Rules.

1. Reflexivity,

2. Augmentation, and
3. Transitivity…

Finding Functional Dependencies



● Does AB → D follow from the FDs below?

Armstrong’s axioms
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AB → C

BC → AD

D → E

CF → B

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

5. AD → D (Reflexivity)

6. AB → D (Transitivity on 4,5)



17

Closure of a set of Attributes

Given a set of attributes  A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} → B

{name} → {color}
{category} → {department}
{color, category} → {price}

Example:      F =

Example 
Closures:

{name}+ = {name, color}
{name, category}+ = 
{name, category, color, dept, price}
{color}+ = {color}
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Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

 if  {B1, …, Bn} → C is entailed by F 

           and {B1, …, Bn} ⊆ X

     then  add C to X.

Return X as X+

Closure algorithm

Initial set of 

attributes

Closure

Helps to split the FD’s of F so 

each FD has a single 

attribute on the right



Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t. 
for any other attribute B in R,
we have  {A1, …, An} → B

A key is a minimal superkey

I.e. all attributes are 
functionally determined 
by a superkey

Meaning that no subset of 
a key is also a superkey



Computing Keys and Superkeys

• Superkey?
• Compute the closure of A

• See if it = the full set of 
attributes

• Key?
• Confirm that A is superkey

• Make sure that no subset of 
A is a superkey
• Only need to check one 

‘level’ down!

IsSuperkey(A, R, F):
A+ = ComputeClosure(A, F)
Return (A+==R)?

IsKey(A, R, F):
If not IsSuperkey(A, R, F):
 return False
For B in SubsetsOf(A, size=len(A)-1):
 if IsSuperkey(B, R, F):
  return False
return True

Let A be a set of attributes, R set 
of all attributes, F set of FDs:
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Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:

if {A1, ..., An} → B is a non-trivial FD in R

then {A1, ..., An}  is a superkey for R

Equivalently:  ∀ sets of attributes X, either (X+ = X) or (X+ = all attributes)



R(A,B,C,D,E)

Example

{A} → {B,C}
{C} → {D}

BCNFDecomp(R):

• Find an FD X → Y that violates BCNF 

 (X and Y are sets of attributes)

• Compute the closure X+

• let Y = X+ - X,  Z = (X+)C 

decompose R into R1(X  Y) and R2(X  Z)

• Recursively decompose R1 and R2



Lossy vs. Lossless
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Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

Name Price Category

Gizmo 19.99 Gadget

OneClick 19.99 Camera

OneClick 24.99 Camera

Gizmo 19.99 Camera

Gizmo 24.99 Camera



Lossy vs. Lossless
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Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Recorder

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Recorder

Price Category

19.99 Gadget

24.99 Camera

19.99 Recorder

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Recorder

{Category} → {Name}
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A Problem with BCNF

{Unit} → {Company}
{Company,Product} → {Unit}

We do a BCNF decomposition 
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} → {Unit}!!

Unit Company Product

… … …

Unit Company

… …

Unit Product

… …

{Unit} → {Company}
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The problem with BCNF

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy their 
local FDs but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct 
R—on each insert!



Third normal form (3NF)

Example:
○ The keys are AB and AC
○ B → C is a BCNF violation, but not 

a 3NF violation because C is prime 
(part of the key AC)
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A relation R is in 3NF if:

For every non-trivial FD A1, ..., An → B, either

• {A1, ..., An}  is a superkey for R

• B is a prime attribute (i.e., B is part of some candidate key of R)

R(A,B,C)

AC → B
B → C



Minimal basis generation

Input: F = {A → AB, AB → C}

1. Split FD’s so that they have singleton right sides
G = {A → B, A → A, AB → C}

2. Remove trivial FDs
G = {A → B, AB → C}

3. Minimize the left sides of each FD
G = {A → B, A → C}

4. Remove redundant FDs
G = {A → B, A → C}
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Given a set of FD’s F, any set of FD’s 

equivalent to F is a basis for F

For each FD X → A in F: 

    For each attribute B in X: 

If (X - {B})+ contains A, 

remove B from X.

Step 3: 



BCNF vs 3NF

● Given a non-trivial FD X → B (X is a set of attributes)
○ BCNF: X  must be a superkey
○ 3NF: X must be a superkey or B is prime

● Both BCNF and 3NF give lossless joins
● 'Use 3NF over BCNF if you need dependency preservation
● However, 3NF may not remove all redundancies and anomalies

29

3NF

BCNF



MVD Example

Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Scarlett Johansson Los Angeles Black Widow

Scarlett Johansson Los Angeles Her

Scarlett Johansson Paris Black Widow

Scarlett Johansson Paris Her

• Independence: The set of 
addresses is independent of 
the set of movies for a given 
movie star.

• Redundancy: Notice how each 
movie is repeated for every 
address that the star lives in, 
and vice versa.



MVD Example

Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Scarlett Johansson Los Angeles Black Widow

Scarlett Johansson Los Angeles Her

Scarlett Johansson Paris Black Widow

Scarlett Johansson Paris Her

We write A ↠ B if for any 
tuples t1,t2 s.t. t1[A] = t2[A] 
there is a tuple t3 s.t.
• t3[A] = t1[A]
• t3[B] = t1[B] 

• and t3[R\B] = t2[R\B]

Where R\B is “R minus B” i.e. 
the attributes of R not in B.

t1

t2

t3



Multi-Value Dependencies (MVDs)

One less formal, literal way to phrase the definition of an MVD:

The MVD 𝐗 ↠ 𝒀 holds on R if for any pair of tuples with the same X 
values, the tuples with the same X values, but the other 
permutations of Y and A\Y values, is also in R

x y z

1 0 1

1 1 0

1 0 0

1 1 1

x y z

1 0 1

1 1 0 For 𝑿 ↠ 𝒀 to hold 
must have…

Ex: X = {x}, Y = {y}:



Practice Question

• Data Model and Design Theory (15 points)



Storage



High-level: Disk vs. Main Memory
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Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random Access Memory (RAM) or Main Memory:

• Fast: Random access, byte addressable
• ~10x faster for sequential access

• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs, 
power goes out, etc!

• Expensive: For $100, get 16GB of RAM vs. 
                                           2TB of disk!

Disk:

• Fast: sequential block access
• Read a blocks (not byte) at a time, so sequential 

access is cheaper than random 

• Disk read / writes are expensive

• Durable: We will assume that once on 
disk, data is safe!

• Cheap



Disk access time

Latency = seek time + rotational 
delay + transfer time + other

○ Transfer time: time to read/write data in 
sectors

36
Image source: https://theithollow.com/2013/11/18/disk-latency-concepts/



I/O model of computation

● Time to read a block from disk >> time to search a record 
within that block

● Algorithm time ≈ Number of disk I/Os

37

Memory

Disk ...

t1
t2

t3
t4

t5t1
t2



Storing Records 

Record (tuple): consecutive bytes in disk blocks 

○ e.g. employee record: 

■ name field

■ salary field

■ date-of-hire field 

Design choices:

○ Fixed vs variable length

○ Fixed vs variable format 

38

Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia



Place Data for Efficient Access

Locality: which items are accessed together 
● When you read one field of a record, you’re likely to read other fields of the 

same record 
● When you read one field of record 1, you’re likely to read the same field of 

record 2 

Searchability: quickly find relevant records
● E.g. sorting the file lets you do binary search 

39
Adapted from Stanford CS245 from Matei Zaharia



Locality Example: Row Stores vs Column Stores

40
Adapted from Stanford CS245 from Matei Zaharia



Index Basics



Dense index

● A sequence of blocks holding keys of records and pointers to the 

records
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Index file Sequential file



Sparse index

● Has one key-pointer pair per block of the data file

● Uses less space than dense index, but needs more time to find a 

record
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Index file Sequential file



Multiple levels of index

If the index file is still large, add another level of indexing
● Basic idea of the B+-tree index (next lecture)
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Clustered vs. Unclustered Index
30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index Entries

Data Records

1 Random Access IO + Sequential IO 
(# of pages of answers)

Random Access IO for each value 
(i.e. # of tuples in answer)

Clustered can make a huge difference for range queries!



Non-clustered/Secondary index

Unlike a clustered index, does not determine the placement of records

As a result, secondary indexes are always dense

46
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Practice Question

• Storage and Indexing (10 points)



B+ Tree



B+ Tree Basics

10 20 30 Each non-leaf (“interior”) 

node has ≥
𝑛

2
 and ≤ n keys*

*except for root node, which can 
have between 1 and n keys

Parameter n = the degree

k < 10

10 ≤ 𝑘 < 20
20 ≤ 𝑘 < 30

30 ≤ 𝑘
The k keys in a node 
define k+1 ranges 

Non-leaf or internal node

22 25 28

For each range, in a non-leaf node, there is a 
pointer to another node with keys in that range



B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

Leaf nodes also have between 
𝑛

2
 and n 

keys, and are different in that:

Their key slots contain 
pointers to data records

They contain a pointer to 
the next leaf node as well, 
for faster sequential 
traversal



Searching a B+ Tree

10 20 30

22 25 28 29 32 34 37 3812 17

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

SELECT name
FROM   people
WHERE  age = 27

SELECT name
FROM   people
WHERE  27 <= age
  AND  age <= 35



B+ Tree Cost Model

Goal: Get the results set of a range (or exact) 
query with minimal IO

Key idea:
• A B+ Tree has high fanout (d ~= 102-103), which 

means it is very shallow → we can get to the right root 
node within a few steps!

• Then just traverse the leaf nodes using the horizontal 
pointers

Details:
• One node per page (thus page size determines d)
• Fill only some of each node’s slots (the fill-factor) to 

leave room for insertions
• We can keep some levels of the B+ Tree in memory!

Note that exact search is just  a 
special case of range search (R = 1)

The fanout f is the number of 
pointers coming out of a node.  Thus: 

𝑑 + 1 ≤ 𝑓 ≤ 2𝑑 + 1

Note that we will often approximate f 
as constant across nodes!

We define the height of the 
tree as counting the root node.  
Thus, given constant fanout f, a 
tree of height h can index fh 
pages and has fh-1 leaf nodes



B+ Tree Cost Model
Given: • Fill-factor F

• B available pages in buffer
• A B+ Tree over N pages
• f is the average fanout

Input: A a range query.

Output: The R values that match

IO COST:

log𝑓

𝑁

𝐹
− 𝐿𝐵 + 𝐂𝐨𝐬𝐭(𝑂𝑢𝑡)

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

Depth of the B+ Tree: For each level of the 
B+ Tree we read in one node = one page

# of levels we can fit in memory: These 
don’t cost any IO!

This equation is just saying that the sum of 
all the nodes for LB levels must fit in buffer
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