
CS 4440 A

Emerging Database

Technologies

Lecture 8

02/03/25

Announcements

Project proposal due tonight

In-class exam next Monday (Feb 10)

○ Contents covered: Lec 2 (relational algebra) – Lec 7 (excluding LSM Tree)

○ Open book, open note, but no laptops

○ Review lecture on Wednesday

○ Last year’s exam and answer are on canvas

■ Note: Only the first two problems are relevant to this exam

2

Agenda

1. Static Hash Table

2. Dynamic Hash Table

3

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.3: Hash Tables

4

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.

Indexing vs hashing

● Indexing (including B+ trees) is good for range lookups

● Hashing is good for equality-based point lookups

5

SELECT *

FROM Movies

WHERE title = ‘Ponyo’;

SELECT *

FROM Movies

WHERE year >= 2000;

Hash table

● A hash function h takes a key and returns a block number from 0 to B - 1

● Blocks contain records and are stored in secondary storage

● Complexity:
● O(1) operation complexity

● O(n) storage complexity

6

key h(key)

...
...

Hash table: Design Decisions

Hash Function
● How to map a large key space into a smaller domain of array offsets

● Trade-off between fast execution vs. collision rate

Hashing Scheme
● How to handle key collisions after hashing

● Trade-off between allocating a large hash table vs. extra steps to location/insert keys

7
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash function

For any input key, return an integer representation of that key.
● Output is deterministic

Example:
● Given a key that is a string, return the sum of the characters xi modulo B (i.e., Σxi % B)

● This function is not idea since there might be many collisions

We do NOT want to use a cryptographic hash function (e.g., SHA-256) for DBMS

hash tables

In general, we only care about the hash function’s speed and collision rate.

8
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

1. Static Hash Table

9

Static hash table

● The number of buckets is fixed

● Often used during query execution because they are faster than dynamic

hashing schemes.

● If the DBMS runs out of storage space in the hash table, it has to rebuild

a larger hash table (usually 2x) from scratch, which is very expensive!

Examples
● Linear Probing Hashing

● Robinhood Hashing (not covered)

● Cuckoo Hashing

10
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

Single giant table of slots

Resolve collisions by linearly searching for the next free slot in the table.
● To determine whether an element is present, hash to a location in the index and scan for it.
● Has to store the key in the index to know when to stop scanning

● Insertions and deletions are generalizations of lookups

Example: Google's absl::flat_hash_map

11
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://abseil.io/tips/136

Linear Probing Hashing

12
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

13
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

14
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

15
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

16
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

17
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Q: What would happen in this case?

Linear Probing Hashing

18
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

19
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing - Delete

20
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

It is not sufficient to simply delete the key

This would affect searches for keys that have a hash value earlier than the

emptied cell, but are stored in a position later than the emptied cell.

Two solutions:

● Tombstone

● Movement (less common)

Linear Probing Hashing

21
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

22
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

23
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

Linear Probing Hashing

24
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

Linear Probing Hashing

25
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

• Reuse the slot for new

keys

Linear Probing Hashing

26
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

• Reuse the slot for new

keys

Cuckoo Hashing

Power of 2 choices: Use multiple hash tables with different seeds
● On insert, check every table and pick one with a free slot

● If no table has a free slot, evict the element from one of then and then re-hash it to

find a new location

● In rare cases, we may end up in a cycle. If this happens, we can rebuild using

larger hash tables

27

Image source: https://theconversation.com/egg-colours-make-cuckoos-masters-of-disguise-34217

Look-ups and deletions are ~O(1)

because only one location per hash

table is checked.

Cuckoo Hashing

28
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

29
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

30
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

31
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

32
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

33
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

2. Dynamic Hash Table

34

Dynamic hash table

The previous hash tables require the DBMS to know the number of

elements it wants to store.
● Otherwise it needs to rebuild the table to resize

Dynamic hash tables incrementally resize the hash table on demand

without needing to rebuild the entire table.

Examples
● Chained Hashing

● Extensible Hashing

● Linear Hashing

35
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Chained Hashing

● Maintain a linked list of buckets for each slot in the

hash table.

● Resolve collisions by placing all elements with the

same hash key into the same bucket.
● To determine whether an element is present, hash to its bucket

and scan for it.

● Insertions and deletions are generalizations of lookups.

36

0

1

2

3

d

e

c

a

Chained Hashing

● Add g where h(g) = 1

37

0

1

2

3

d

e

c

a

g

Chained Hashing

● Remove c where h(c) = 1

38

0

1

2

3

d

e

c

a

g

Chained Hashing

● Remove c where h(c) = 1

39

0

1

2

3

d

e

g

a

Q: What can go wrong with

chained hashing?

Extendible Hashing

Chained-hashing approach that splits buckets incrementally instead of letting

the linked list grow forever.
● Long chains of blocks -> many disk I/Os

Multiple slot locations can point to the same bucket chain.

Reshuffle bucket entries on split and increase the number of bits to examine.
● Data movement is localized to just the split chain.

40

Extensible hash table

Use first i bits of hash value to locate block

○ i grows over time

41

h(key): 00101100

i = 3

Extensible hash table

Use level of indirection where buckets are pointers to blocks

42

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1Global depth

Local depth

Extensible hash table

● Add 0010

43

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1

Extensible hash table

● Add 0010

44

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1 0010

Extensible hash table

● Add 1010

45

0001 1

0010

0

1

i = 1

Buckets Data blocks

1001

1100

1

Extensible hash table

● Add 1010

46

1001

0001 1

2

1100 2

0010

0

1

i = 1

Buckets Data blocks

May need to repeat splitting

until there is space

Extensible hash table

● Add 1010

47

1001

1010

0001 1

2

1100 2

0010

0

1

i = 1

Buckets Data blocks

Extensible hash table

● Add 1010

48

1001

1010

0001 1

2

1100 2

0010

Buckets Data blocks

00

01

i = 2

10

11

In-class Exercise

● Add 1000

● What happens in this case?

49

1001

1010

0001 1

2

1100 2

0010

Buckets Data blocks

00

01

i = 2

10

11

In-class Exercise

● Add 1000

50

0001 1

1000

1001

3

0010

1010 3

1100 2

Buckets Data blocks

00

01

i = 2

10

11

In-class Exercise

● Add 1000

51

0001 1

1000

1001

3

0010

000

i = 3

001

010

011

100

101

110

111

1010 3

1100 2

Buckets Data blocks

Extensible hashing summary

If bucket array fits in memory, lookup is always 1 disk I/O

Can grow table with little wasted space and avoiding full reorganizations

However, doubling the bucket array is expensive
○ Splitting can occur frequently if the number of records per block is small

○ At some point, the bucket array may not fit in memory

Linear hashing (covered next) grows the number of buckets more slowly

52

Linear hashing

The hash table maintains a pointer that tracks the next bucket to split.
● When any bucket overflows, split the bucket at the pointer location.

Use multiple hashes to find the right bucket for a given key.

Can use different overflow criterion:
○ Space Utilization

○ Average Length of Overflow Chains

53

Linear hash tables

● Use last i bits of hash value to locate block

● Hash table grows linearly

54

1111

0000i = 1

n = 2

r = 3
1010

0

1

Policy: limit r ≤ 1.7n

buckets

bits used

records

Linear hash tables

● Add 0101

55

1111

0000

1010
0

1

i = 1

n = 2

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

Violation

Linear hash tables

● Add 0101

56

1111

0000

1010
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

10

Linear hash tables

● Add 0101

57

1111

0000
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

Linear hash tables

● Add 0101

58

1111

0000
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

1111 stays here because

there is no 11 bucket yet

Linear hash tables

● Add 0001

59

1111

0000
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

101010

Linear hash tables

● Add 0001

60

1111

0000
00

01

i = 2

n = 3

r = 5

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

0001

Use overflow block

Linear hash tables

● Add 0001

61

1111

0000
00

01

i = 2

n = 3

r = 5

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10No violation

0001

Use overflow block

In-class Exercise

● Continuing with example, add 0111.

What happens here?

62

1111

0000
00

01

i = 2

n = 3

r = 5

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

0001

Linear hashing summary

● Can grow table with little wasted space and avoiding full reorganizations

● Compared to extensible hashing, there is no array of buckets

● However, there can be a long chain of overflow blocks

63

Mostly

empty

...Mostly

full

Multidimensional Indexes (14.4)

All the index structures discussed so far are one

dimensional
○ Assume a single search key, and they retrieve

records that match a given search key value.

○ The key can contain multiple attributes

Examples:
○ KD-tree, R-tree

64

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Reading Materials

	Hash Tables
	Slide 5: Indexing vs hashing
	Slide 6: Hash table
	Slide 7: Hash table: Design Decisions
	Slide 8: Hash function
	Slide 9: 1. Static Hash Table
	Slide 10: Static hash table
	Slide 11: Linear Probing Hashing
	Slide 12: Linear Probing Hashing
	Slide 13: Linear Probing Hashing
	Slide 14: Linear Probing Hashing
	Slide 15: Linear Probing Hashing
	Slide 16: Linear Probing Hashing
	Slide 17: Linear Probing Hashing
	Slide 18: Linear Probing Hashing
	Slide 19: Linear Probing Hashing
	Slide 20: Linear Probing Hashing - Delete
	Slide 21: Linear Probing Hashing
	Slide 22: Linear Probing Hashing
	Slide 23: Linear Probing Hashing
	Slide 24: Linear Probing Hashing
	Slide 25: Linear Probing Hashing
	Slide 26: Linear Probing Hashing
	Slide 27: Cuckoo Hashing
	Slide 28: Cuckoo Hashing
	Slide 29: Cuckoo Hashing
	Slide 30: Cuckoo Hashing
	Slide 31: Cuckoo Hashing
	Slide 32: Cuckoo Hashing
	Slide 33: Cuckoo Hashing
	Slide 34: 2. Dynamic Hash Table
	Slide 35: Dynamic hash table
	Slide 36: Chained Hashing
	Slide 37: Chained Hashing
	Slide 38: Chained Hashing
	Slide 39: Chained Hashing
	Slide 40: Extendible Hashing
	Slide 41: Extensible hash table
	Slide 42: Extensible hash table
	Slide 43: Extensible hash table
	Slide 44: Extensible hash table
	Slide 45: Extensible hash table
	Slide 46: Extensible hash table
	Slide 47: Extensible hash table
	Slide 48: Extensible hash table
	Slide 49: In-class Exercise
	Slide 50: In-class Exercise
	Slide 51: In-class Exercise
	Slide 52: Extensible hashing summary
	Slide 53: Linear hashing
	Slide 54: Linear hash tables
	Slide 55: Linear hash tables
	Slide 56: Linear hash tables
	Slide 57: Linear hash tables
	Slide 58: Linear hash tables
	Slide 59: Linear hash tables
	Slide 60: Linear hash tables
	Slide 61: Linear hash tables
	Slide 62: In-class Exercise
	Slide 63: Linear hashing summary
	Slide 64: Multidimensional Indexes (14.4)

