
CS 4440 A

Emerging Database 

Technologies

Lecture 8

02/03/25



Announcements

Project proposal due tonight 

In-class exam next Monday (Feb 10) 

○ Contents covered: Lec 2 (relational algebra) – Lec 7 (excluding LSM Tree)

○ Open book, open note, but no laptops

○ Review lecture on Wednesday

○ Last year’s exam and answer are on canvas

■ Note: Only the first two problems are relevant to this exam  
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Agenda

1. Static Hash Table 

2. Dynamic Hash Table
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Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.3: Hash Tables
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.



Indexing vs hashing

● Indexing (including B+ trees) is good for range lookups

● Hashing is good for equality-based point lookups
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SELECT *

FROM Movies

WHERE title = ‘Ponyo’;

SELECT *

FROM Movies

WHERE year >= 2000;



Hash table

● A hash function h takes a key and returns a block number from 0 to B - 1

● Blocks contain records and are stored in secondary storage

● Complexity:
● O(1) operation complexity 

● O(n) storage complexity 
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key h(key)

...
...



Hash table: Design Decisions

Hash Function 
● How to map a large key space into a smaller domain of array offsets

● Trade-off between fast execution vs. collision rate 

Hashing Scheme 
● How to handle key collisions after hashing 

● Trade-off between allocating a large hash table vs. extra steps to location/insert keys
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Hash function

For any input key, return an integer representation of that key.
● Output is deterministic

Example: 
● Given a key that is a string, return the sum of the characters xi modulo B (i.e., Σxi % B)

● This function is not idea since there might be many collisions

We do NOT want to use a cryptographic hash function (e.g., SHA-256) for DBMS 

hash tables

In general, we only care about the hash function’s speed and collision rate.
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1. Static Hash Table
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Static hash table

● The number of buckets is fixed

● Often used during query execution because they are faster than dynamic 

hashing schemes.

● If the DBMS runs out of storage space in the hash table, it has to rebuild 

a larger hash table (usually 2x) from scratch, which is very expensive!

Examples
● Linear Probing Hashing

● Robinhood Hashing (not covered)

● Cuckoo Hashing 
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Linear Probing Hashing

Single giant table of slots 

Resolve collisions by linearly searching for the next free slot in the table.
● To determine whether an element is present, hash to a location in the index and scan for it.
● Has to store the key in the index to know when to stop scanning

● Insertions and deletions are generalizations of lookups 

Example: Google's absl::flat_hash_map
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https://abseil.io/tips/136


Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing

17
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Q: What would happen in this case?



Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing - Delete
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It is not sufficient to simply delete the key

This would affect searches for keys that have a hash value earlier than the 

emptied cell, but are stored in a position later than the emptied cell.

Two solutions:

● Tombstone

● Movement (less common)



Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.



Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.



Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.

• Reuse the slot for new 

keys



Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.

• Reuse the slot for new 

keys



Cuckoo Hashing

Power of 2 choices: Use multiple hash tables with different seeds 
● On insert, check every table and pick one with a free slot 

● If no table has a free slot, evict the element from one of then and then re-hash it to 

find a new location

● In rare cases, we may end up in a cycle. If this happens, we can rebuild using 

larger hash tables
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Image source: https://theconversation.com/egg-colours-make-cuckoos-masters-of-disguise-34217

Look-ups and deletions are ~O(1) 

because only one location per hash 

table is checked.



Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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2. Dynamic Hash Table
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Dynamic hash table

The previous hash tables require the DBMS to know the number of 

elements it wants to store.
● Otherwise it needs to rebuild the table to resize 

Dynamic hash tables incrementally resize the hash table on demand 

without needing to rebuild the entire table. 

Examples
● Chained Hashing

● Extensible Hashing

● Linear Hashing
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Chained Hashing

● Maintain a linked list of buckets for each slot in the 

hash table.

● Resolve collisions by placing all elements with the 

same hash key into the same bucket.
● To determine whether an element is present, hash to its bucket 

and scan for it.

● Insertions and deletions are generalizations of lookups.
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Chained Hashing

● Add g where h(g) = 1
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Chained Hashing

● Remove c where h(c) = 1
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Chained Hashing

● Remove c where h(c) = 1
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Q: What can go wrong with 

chained hashing? 



Extendible Hashing

Chained-hashing approach that splits buckets incrementally instead of letting 

the linked list grow forever. 
● Long chains of blocks -> many disk I/Os

Multiple slot locations can point to the same bucket chain. 

Reshuffle bucket entries on split and increase the number of bits to examine. 
● Data movement is localized to just the split chain.
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Extensible hash table

Use first i bits of hash value to locate block

○ i grows over time
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h(key):    00101100

i = 3



Extensible hash table

Use level of indirection where buckets are pointers to blocks
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Extensible hash table

● Add 0010
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Extensible hash table

● Add 0010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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In-class Exercise

● Add 1000

● What happens in this case?
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In-class Exercise

● Add 1000
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In-class Exercise

● Add 1000
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Extensible hashing summary

If bucket array fits in memory, lookup is always 1 disk I/O

Can grow table with little wasted space and avoiding full reorganizations

However, doubling the bucket array is expensive
○ Splitting can occur frequently if the number of records per block is small

○ At some point, the bucket array may not fit in memory

Linear hashing (covered next) grows the number of buckets more slowly
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Linear hashing

The hash table maintains a pointer that tracks the next bucket to split. 
● When any bucket overflows, split the bucket at the pointer location.

Use multiple hashes to find the right bucket for a given key.

Can use different overflow criterion:
○ Space Utilization 

○ Average Length of Overflow Chains
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Linear hash tables

● Use last i bits of hash value to locate block

● Hash table grows linearly
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0001
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Linear hash tables

● Add 0001
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Linear hash tables

● Add 0001
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In-class Exercise

● Continuing with example, add 0111. 

What happens here?
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Linear hashing summary

● Can grow table with little wasted space and avoiding full reorganizations

● Compared to extensible hashing, there is no array of buckets

● However, there can be a long chain of overflow blocks
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Mostly 

empty

...Mostly 

full



Multidimensional Indexes (14.4)

All the index structures discussed so far are one 

dimensional
○ Assume a single search key, and they retrieve 

records that match a given search key value.

○ The key can contain multiple attributes 

Examples:
○ KD-tree, R-tree
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