
CS 4440 A

Emerging Database

Technologies

Lecture 7

01/29/25

Agenda

1. B+-Trees

2. B+-Trees Cost Model

3. Log-structured Merge Tree

2

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.2: B-Tree

● Chapter 14.4: Multidimensional Indexes

3

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang, CS145 (Intro to Big Data Systems) taught by Peter Bailis, and CS 6530 (Advanced
Database Systems) taught by Prashant Pandey.

1. B+-Tree

4

B+ Trees Overview

Search trees

○ B does not mean binary!

○ More general index structure that is commonly used in commercial DBMS’s

Idea in B Trees:

○ Balanced, height adjusted tree

○ Stores data (keys and values) in all nodes (both internal and leaf)

○ Leaf nodes are independent; no connections between them

Idea in B+ Trees:

○ Stores data only in leaf nodes; make leaves into a linked list (for range queries)

○ Most popular variant

B+ Tree Basics

10 20 30

Each non-leaf (“interior”) node has

between (around)
𝑛

2
and n keys*

*except for root node, which can

have between 1 and n keys

Parameter n = the degree

B+ Tree Basics

10 20 30

k < 10

10 ≤ 𝑘 < 20

20 ≤ 𝑘 < 30

30 ≤ 𝑘

The n keys in a node

define n+1 ranges

B+ Tree Basics

10 20 30

22 25 28

For each range, in a non-leaf

node, there is a pointer to

another node with keys in

that range

Non-leaf or internal node

B+ Tree Basics

10 20 30

Leaf nodes also have

between n/2 and n keys,

and are different in that:

22 25 28 29 32 34 37 3812 17

Leaf nodes

Non-leaf or internal node

B+ Tree Basics

10 20 30

22 25 28 29 32 34 37 3812 17

Their key slots

contain pointers to

data records

21 22 27 28 30 33 35 371511

Leaf nodes also have

between n/2 and n keys,

and are different in that:

Leaf nodes

Non-leaf or internal node

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

They contain a pointer

to the next leaf node

as well, for faster

sequential traversal

Their key slots

contain pointers to

data records

Leaf nodes also have

between n/2 and n keys,

and are different in that:

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note that the pointers at

the leaf level will be to the

actual data records

(rows).

We might truncate these

for simpler display…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

B+ Tree occupancy requirement: interior nodes

n = 3

13

23 31 43

To keys

K < 23

To keys

23 ≤ K < 31

To keys

31 ≤ K < 43

To keys

43 ≤ K

Full

Minimal

23

To keys

K < 23

To keys

23 ≤ K < ?

At least half of the

pointers much be used

B+ Tree occupancy requirement: leaf nodes

n = 3

14

13 17 19

To next leaf in sequence

To record

with key 13

To record

with key 17

To record

with key 19

Full

13 17

Counts even if null

To record

with key 13

To record

with key 17

Minimal

At least half of the keys

must be used

Nodes must be “full enough”

15

Node type Min. # pointers Max. # pointers Min. # keys Max. # keys

Interior ⌈(n + 1) / 2⌉ n + 1 ⌈(n + 1) / 2⌉ - 1 n

Leaf ⌊(n + 1) / 2⌋ ** n + 1 ⌊(n + 1) / 2⌋ n

Root 2 * n + 1 1 n

* Exception: If there is only one record in the B-tree, there is one pointer in the root

** Not including the next leaf pointer

B+ Tree: Lookup

● Search for key K recursively

16

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● Search for key K recursively

17

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● Search for key K recursively

18

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● Search for key K recursively

19

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● For range query [a, b], search for key a

● Then scan leaves to right until we pass b

20

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup 41 ≤ K ≤ 43

B+ Tree: Lookup

● For range query [a, b], search for key a

● Then scan leaves to right until we pass b

21

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup 41 ≤ K ≤ 43

B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

22

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17

B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

23

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17

B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

24

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 17

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

25

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

26

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

27

13

23 31 43

13 17 19 23 29 31 37 43 4740 41

Insert K = 40

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

28

13

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

29

13 40

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with adjacent

sibling

30

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with adjacent

sibling

31

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

32

13

7 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

33

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

34

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=11

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

35

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=11

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

36

13

5 23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

37

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

38

23

13 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

In practice, coalescing is sometimes not

implemented because 1) it is hard to implement

and 2) the tree will probably grow again

In-class Exercise

● Delete K = 31

39

23

13 31 43

2 3 13 17 23 29 31 37 43 47

2. B+-Tree cost model

40

B+ Tree: High Fanout = Smaller & Lower IO

So why does B+ tree work?

As compared to binary search trees, B+ Trees have

high fanout (between d+1 and 2d+1)

This means that the depth of the tree is small →

getting to any element requires very few IO operations!

○ Also can often store most or all of the B+ Tree in main

memory!

The fanout is defined as the

number of pointers to child

nodes coming out of a node

Note that fanout is dynamic
- we’ll often assume it’s

constant just to come up

with approximate eqns!

B+ Trees in Practice

Typical order: d=100. Typical fill-factor: 67%.

○ average fanout = 133

Top levels of tree sit in the buffer pool:

○ Level 1 = 1 page = 8 KB

○ Level 2 = 133 pages = 1 MB

○ Level 3 = 17,689 pages = 133 MB

Typically, only

pay for one IO!

Fill-factor is the percent of

available slots in the B+

Tree that are filled; is

usually < 1 to leave slack

for (quicker) insertions

Simple Cost Model for Search

Suppose:

○ f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)

○ N = the total number of pages we need to index

○ F = fill-factor (usually ~= 2/3)

Our B+ Tree needs to have room to index N / F pages!

○ We have the fill factor in order to leave some open slots for faster insertions

What height (h) does our B+ Tree need to be?

○ h=1 → Just the root node- room to index f pages

○ h=2 → f leaf nodes- room to index f2 pages

○ h=3 → f2 leaf nodes- room to index f3 pages

○ …

○ h → fh-1 leaf nodes- room to index fh pages!

→ We need a B+ Tree of

height h = logf
N

F
!

Simple Cost Model for Search

Note that if we have B available buffer pages, by the same logic:

○ We can store 𝑳𝑩 levels of the B+ Tree in memory

○ where 𝑳𝑩 is the number of levels such that the sum of all the levels’ nodes fit in the buffer:

■ 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓𝐿𝐵−1 = σ𝑙=0
𝐿𝐵−1𝑓𝑙

In summary: to do exact search:

○ We read in one page per level of the tree

○ However, levels that we can fit in buffer are free!

○ Finally we read in the actual record

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 1

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

Simple Cost Model for Search

To do range search, we just follow the horizontal pointers

The IO cost is that of loading additional leaf nodes we need to access + the IO

cost of loading each page of the results- we phrase this as “Cost(OUT)”

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

3. Log-Structured Merge Tree

46

Problem with B+-Trees

47

Optimized for reads, not for writes (insert, update, delete)

Write amplification:

○ ratio of the amount of data written to the storage device versus the

amount of data written to the database

○ Inserting and deleting a record could require updating multiple pages on

disk (many random disk I/Os)

Log-structured Merge Tree (LSM Tree)

Proposed by O’Neil,Cheng, and

Gawlick in 1996

Uses write-optimized techniques

to significantly speed up inserts

Used by many NoSQL systems:

○ e.g., Bigtable, Cassandra,

Dynamo, HBase, RocksDB,

InfluxDB

48

Image source: https://en.wikipedia.org/wiki/Log-structured_merge-tree

LSM Tree: Overview

Log-structured

All data is written sequentially, regardless of logical ordering

Merge

As data evolves, sequentially written runs of key-value pairs are merged

● Runs of data are indexed for efficient lookup

● Merges happen only after much new data is accumulated

Tree

The hierarchy of key-value pair runs form a tree

● Searches start at the root, progress downwards

49

Log-structured ∙ Merge ∙ Tree

LSM Tree: Overview [O’Neil, Cheng, Gawlick ’96]

An LSM-tree comprises a hierarchy of levels of increasing size

● All data inserted into in-memory tree (C0); no I/O cost at this step

● Larger on disk levels (Ci>0) hold data that does not fit into memory

50

LSM Tree: Overview [O’Neil, Cheng, Gawlick ’96]

When a level exceeds its size limit, its data is merged and rewritten

● Also called “compaction”

● Higher level is always merged into next lower level (Ci merged with Ci+1)

● Merging always proceeds top down

51

LSM Tree: Inserts

New data is written to an in-

memory buffer (MemTable)

● typically organized as a balanced

tree (like a Red-Black tree) to

maintain sorted order

● Append-only log

52
Image source: https://vivekbansal.substack.com/p/what-is-lsm-tree

LSM Tree: Inserts

New data is written to an in-

memory buffer (MemTable)

● typically organized as a balanced

tree (like a Red-Black tree) to

maintain sorted order

When the MemTable fills up, it's

flushed to disk as a new SSTable

file (the “run”) in Level 0

53
Image source: https://vivekbansal.substack.com/p/what-is-lsm-tree

LSM Tree: Inserts

Once too many L0 files exist,

compaction merges them into L1

● k-way merge sort

● Input: L0 files + L1 files with

overlapping key ranges

● Output: new L1 files with non-

overlapping ranges

54
Image source: https://vivekbansal.substack.com/p/what-is-lsm-tree

LSM Tree: Inserts

Once too many L0 files exist,

compaction merges them into L1

Similarly, when there are too

many L1 files, compaction merges

them into L2

55
Image source: https://vivekbansal.substack.com/p/what-is-lsm-tree

LSM Tree: Inserts

Once too many L0 files exist,

compaction merges them into L1

Similarly, when there are too

many L1 files, compaction merges

them into L2

Different compaction strategies:

● Size tiered compaction strategy

(bigger files in deeper levels)

● Leveled compaction strategy

(more files per level)
56

Image source: https://vivekbansal.substack.com/p/what-is-lsm-tree

LSM Tree: Lookups

Check Memtables

Check SSTables:

● Bloom Filter:

○ check existence of key

● Summary Tables:

○ e.g., store the range of keys

in each SSTable

○ Skip irrelevant files

57
Image source: https://vivekbansal.substack.com/p/what-is-lsm-tree

Summary: B+ Tree vs LSM Tree

58

B+ Tree LSM Tree

Structure Balanced tree with internal

nodes and leaves

Multiple levels, memtable, and

SSTables

Summary: B+ Tree vs LSM Tree

59

B+ Tree LSM Tree

Structure Balanced tree with internal

nodes and leaves

Multiple levels, memtable, and

SSTables

Reads Fast lookups and range

queries

Potential for slower reads (multiple

SSTables may need to be checked)

Summary: B+ Tree vs LSM Tree

60

B+ Tree LSM Tree

Structure Balanced tree with internal

nodes and leaves

Multiple levels, memtable, and

SSTables

Reads Fast lookups and range

queries

Potential for slower reads (multiple

SSTables may need to be checked)

Writes Slower, as it can involve

rebalancing, splitting and

merging nodes

Faster, append-only for the initial

writes

Summary: B+ Tree vs LSM Tree

61

B+ Tree LSM Tree

Structure Balanced tree with internal

nodes and leaves

Multiple levels, memtable, and

SSTables

Reads Fast lookups and range

queries

Potential for slower reads (multiple

SSTables may need to be checked)

Writes Slower, as it can involve

rebalancing, splitting and

merging nodes

Faster, append-only for the initial

writes

Typical

Use Cases

Relational databases, read-

heavy workloads

NoSQL databases, log-structured

systems, write-heavy workloads

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Agenda
	Slide 3: Reading Materials

	B-tree
	Slide 4: 1. B+-Tree
	Slide 5: B+ Trees Overview
	Slide 6: B+ Tree Basics
	Slide 7: B+ Tree Basics
	Slide 8: B+ Tree Basics
	Slide 9: B+ Tree Basics
	Slide 10: B+ Tree Basics
	Slide 11: B+ Tree Basics
	Slide 12: B+ Tree Basics
	Slide 13: B+ Tree occupancy requirement: interior nodes
	Slide 14: B+ Tree occupancy requirement: leaf nodes
	Slide 15: Nodes must be “full enough”
	Slide 16: B+ Tree: Lookup
	Slide 17: B+ Tree: Lookup
	Slide 18: B+ Tree: Lookup
	Slide 19: B+ Tree: Lookup
	Slide 20: B+ Tree: Lookup
	Slide 21: B+ Tree: Lookup
	Slide 22: B+ Tree: Insertion
	Slide 23: B+ Tree: Insertion
	Slide 24: B+ Tree: Insertion
	Slide 25: B+ Tree: Insertion
	Slide 26: B+ Tree: Insertion
	Slide 27: B+ Tree: Insertion
	Slide 28: B+ Tree: Insertion
	Slide 29: B+ Tree: Insertion
	Slide 30: B+ Tree: Deletion
	Slide 31: B+ Tree: Deletion
	Slide 32: B+ Tree: Deletion
	Slide 33: B+ Tree: Deletion
	Slide 34: B+ Tree: Deletion
	Slide 35: B+ Tree: Deletion
	Slide 36: B+ Tree: Deletion
	Slide 37: B+ Tree: Deletion
	Slide 38: B+ Tree: Deletion
	Slide 39: In-class Exercise
	Slide 40: 2. B+-Tree cost model
	Slide 41: B+ Tree: High Fanout = Smaller & Lower IO
	Slide 42: B+ Trees in Practice
	Slide 43: Simple Cost Model for Search
	Slide 44: Simple Cost Model for Search
	Slide 45: Simple Cost Model for Search
	Slide 46: 3. Log-Structured Merge Tree
	Slide 47: Problem with B+-Trees
	Slide 48: Log-structured Merge Tree (LSM Tree)
	Slide 49: LSM Tree: Overview
	Slide 50: LSM Tree: Overview [O’Neil, Cheng, Gawlick ’96]
	Slide 51: LSM Tree: Overview [O’Neil, Cheng, Gawlick ’96]
	Slide 52: LSM Tree: Inserts
	Slide 53: LSM Tree: Inserts
	Slide 54: LSM Tree: Inserts
	Slide 55: LSM Tree: Inserts
	Slide 56: LSM Tree: Inserts
	Slide 57: LSM Tree: Lookups
	Slide 58: Summary: B+ Tree vs LSM Tree
	Slide 59: Summary: B+ Tree vs LSM Tree
	Slide 60: Summary: B+ Tree vs LSM Tree
	Slide 61: Summary: B+ Tree vs LSM Tree

