
CS 4440 A

Emerging Database

Technologies

Lecture 6

01/27/25

Announcements

Assignment 1 due tonight

Project proposal draft due next Monday (Feb 3)

○ Ungraded, used for feedback

○ Group size: 3~5

2

Agenda

1. Index Overview

2. Index structure basics

3

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.1: Index-Structure Basics

4

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.

1. Index Overview

5

Index Motivation

Suppose we want to search for people of a specific age

First idea: Sort the records by age… we know how to do this fast!

How many IO operations to search over N sorted records?

○ Simple scan: O(N)

○ Binary search: O(log𝟐 𝑵)

Person(name, age)

Could we get even cheaper search? E.g. go from

𝐥𝐨𝐠𝟐 𝐍→ 𝐥𝐨𝐠𝟐𝟎𝟎 𝐍?

Index Motivation

What about if we want to insert a new person, but keep the list sorted?

We would have to potentially shift N records, requiring up to ~ 2*N/P IO

operations (where P = # of records per page)!

○ We could leave some “slack” in the pages…

4,5 6,71,3 3,4 5,61,2

2

7,

Could we get faster insertions?

Index Motivation

What about if we want to be able to search quickly along multiple

attributes (e.g. not just age)?

○ We could keep multiple copies of the records, each sorted by one attribute set…

this would take a lot of space

Can we get fast search over multiple attribute (sets)

without taking too much space?

We’ll create separate data structures called indexes

to address all these points

Indexes: High-level

An index on a file speeds up selections on the search key fields for the index.

○ Search key properties

■ Any subset of fields

■ is not the same as key of a relation

Example:
On which attributes

would you build

indexes?
Product(name, maker, price)

More precisely

An index is a data structure mapping search keys to sets of rows in a
database table

○ Provides efficient lookup & retrieval by search key value- usually much faster than
searching through all the rows of the database table

An index can store the full rows it points to (primary index) or pointers to

those rows (secondary index)

○ We’ll cover both, but mainly consider secondary indexes

Operations on an Index

Search: Quickly find all records which meet some condition on the search

key attributes

○ Point queries, range queries, …

Insert / Remove entries

○ Bulk Load / Delete.

Indexing is one the most important features provided by

a database for performance

Using Indexes in SQL

● An index is used to efficiently find tuples with certain values of attributes

● An index may speed up lookups and joins

● However, every built index makes insertions, deletions, and updates to

relation more complex and time-consuming

12

CREATE INDEX KeyIndex ON Movies(title, year);

DROP INDEX KeyIndex;

Recall: Simple cost model

● Multiple tuples are stored in blocks on disk

● Every block needed is always retrieved from disk

● Disk I/Os are expensive

13

Memory

Disk ...

t1

t2

t3

t4

t5t1

t2

Index on a key

● An index on a key is often useful

● Retrieve at most one block to memory for tuple
○ Possibly other blocks for the index itself

14

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ AND year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Memory

Disk ...t3

t4

t5t1

t2

KeyIndex

(Ponyo, 2008)

Index on a key

● An index on a key is often useful

● Retrieve at most one block to memory for tuple
○ Possibly other blocks for the index itself

15

Memory

Disk ...t3

t4

t5t1

t2

KeyIndex

(Ponyo, 2008)

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ AND year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Index on a key

● An index on a key is often useful

● Retrieve at most one block to memory for tuple
○ Possibly other blocks for the index itself

16

Memory

Disk ...

t3

t4

t3

t4

t5t1

t2

KeyIndex

(Ponyo, 2008)

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ AND year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Indexes can be used in joins

17

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Memory

Disk ...m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

Indexes can be used in joins

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

18

Memory

Disk ...m2 m3m1

MIndex

...e2 e3e1

MEIndex
SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);
(Ponyo, 2008)

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

Indexes can be used in joins

19

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex
SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

Indexes can be used in joins

20

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

Cert # 101

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

Indexes can be used in joins

21

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

e3

Cert # 101

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

2. Index Structure Basics

22

Sequential file

● A file containing tuples of a relation sorted by their primary key

23

10

20

30

40

50

60

70

80

90

100

Sequential file

Dense index

● A sequence of blocks holding keys of records and pointers to the records

24

10

20

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

80

90

100

110

120

Index file Sequential file

Dense index

Given key K, search index blocks for K, then follow associated pointer

Why is this efficient?

○ Number of index blocks usually smaller than number of data blocks

○ Keys are sorted, so we can use binary search

○ The index may be small enough to fit in memory

25

Sparse index

● Has one key-pointer pair per block of the data file

● Uses less space than dense index, but needs more time to find a record

26

10

20

30

40

50

60

70

80

90

100

10

30

50

70

90

110

130

150

170

190

210

230

Index file Sequential file

In-class Exercise

Suppose a block holds 3 records or 10 key-pointer pairs

If there are n records in a data file, how many blocks are needed to hold

○ The data file and a dense index

○ The data file and a sparse index

27

Multiple levels of index

If the index file is still large, add another level of indexing

● Basic idea of the B+-tree index (next lecture)

28

10

20

30

40

50

60

70

80

90

100

10

30

50

70

90

110
130

150

170

190

210

230

10

90

170

250

330

410

490

570

Q: Should the blocks of additional levels be dense or sparse?

Clustered Indexes

An index is clustered if the underlying

data is ordered in the same way as the

index’s data entries.

Clustered vs. Unclustered Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered: often on

primary key
Unclustered

Index Entries

Data Records

Q: How many clustered/unclustered indexes can a table have?

Sometimes also referred to as

primary vs secondary index

Clustered vs. Unclustered Index

Recall that for a disk with block access, sequential IO is much faster than
random IO

For point lookup, no difference between clustered / unclustered

For range search over R values: difference between 1 random IO + R
sequential IO, and R random IO:

○ A random IO costs ~ 10ms (sequential much much faster)

○ For R = 100,000 records- difference between ~10ms and ~17min!

Non-clustered/Secondary index

Unlike a clustered index, does not determine the placement of records

32

20

40

10

20

50

30

10

50

60

20

Non-clustered/Secondary index

Using a sparse index doesn’t make sense

33

20

40

10

20

50

30

10

50

60

20

20

10

50

10

60

...

Non-clustered/Secondary index

As a result, secondary indexes are always dense

34

20

40

10

20

50

30

10

50

60

20

10

10

20

20

20

30

40

50

50

60

Non-clustered/Secondary index

To remove redundant keys in index file, use level of indirection

35

20

40

10

20

50

30

10

50

60

20

10

20

30

40

50

60

Buckets

When is indirection and secondary index useful?

● When a key is larger than a pointer and each key appears twice on average

● Another advantage: use bucket pointers without looking at most of the records

36

Studio

index file

Year

index file

Ghibli 2008

Studio

buckets

Year

buckets

Movie

tuples

SELECT title
FROM Movies
WHERE studioName = ‘Ghibli’

AND year = 2008;

Inverted Index: where the name came from

37Image source: https://spotintelligence.com/2023/10/30/inverted-indexing/

Inverted index

Essentially a secondary index, used in text information retrieval

● e.g., Search for documents containing “cat” or “dog” (or both)

38

Inverted

index

cat

dog

Buckets

Documents

… raining

cats and

dogs ...

...the cat is

fat...

…the dog

is eating ...

Store more information in inverted index

Can answer more complex queries like:
○ Find documents where “dog” and “cat” are within 10 words

○ Find documents about dogs that refer to other documents about cats

39

cat

dog

title 5

anchor 3

doc 1

Type Position

title 11

text 20

doc 2

doc 3
text 50

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Reading Materials
	Slide 5: 1. Index Overview
	Slide 6: Index Motivation
	Slide 7: Index Motivation
	Slide 8: Index Motivation
	Slide 9: Indexes: High-level
	Slide 10: More precisely
	Slide 11: Operations on an Index
	Slide 12: Using Indexes in SQL
	Slide 13: Recall: Simple cost model
	Slide 14: Index on a key
	Slide 15: Index on a key
	Slide 16: Index on a key
	Slide 17: Indexes can be used in joins
	Slide 18: Indexes can be used in joins
	Slide 19: Indexes can be used in joins
	Slide 20: Indexes can be used in joins
	Slide 21: Indexes can be used in joins

	14.1 index structure basics
	Slide 22: 2. Index Structure Basics
	Slide 23: Sequential file
	Slide 24: Dense index
	Slide 25: Dense index
	Slide 26: Sparse index
	Slide 27: In-class Exercise
	Slide 28: Multiple levels of index
	Slide 29: Clustered Indexes
	Slide 30: Clustered vs. Unclustered Index
	Slide 31: Clustered vs. Unclustered Index
	Slide 32: Non-clustered/Secondary index
	Slide 33: Non-clustered/Secondary index
	Slide 34: Non-clustered/Secondary index
	Slide 35: Non-clustered/Secondary index
	Slide 36: When is indirection and secondary index useful?
	Slide 37: Inverted Index: where the name came from
	Slide 38: Inverted index
	Slide 39: Store more information in inverted index

