CS 4440 A Emerging Database Technologies

Lecture 3 01/13/25

Logistics

Office hour

- Instructor: Wed 11:30-12:30 (starting next week)
- Jeff: Thur 1:30-2:30
- Tianji: Fri 10-11

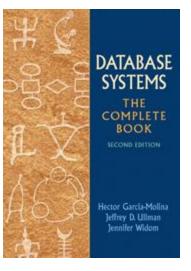
Project proposal draft released

- Groups of 3-5, total of 16 groups
- Sign up under People->Project Groups on canvas
- Use the "Find teammates" post on Piazza
- Due Feb 3 (not graded, intended for feedback)

Reading Materials

Database Systems: The Complete Book (2nd edition)

Chapter 3: Design Theory for Relational Databases
 (3.1 – 3.3)



Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis

Agenda

1. Normal forms & functional dependencies

2. Finding functional dependencies

3. Closures, superkeys & keys

1. Normal forms & functional dependencies

Normal Forms

- 1^{st} Normal Form (1NF) = All tables are flat
- <u>2nd Normal Form</u> = disused
- Boyce-Codd Normal Form (BCNF)
- <u>3rd Normal Form (3NF)</u>
- $4^{\text{th}} \text{ and } 5^{\text{th}} \text{ Normal Forms} = \text{see textbooks}$

1st Normal Form (1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}

Student	Courses	
Mary	CS145	
Mary	CS229	
Joe	CS145	
Joe	CS106	

Violates 1NF.

In 1st NF

1NF Constraint: Types must be atomic!

Normal Forms

- <u>1st Normal Form (1NF)</u> = All tables are flat
- <u>2nd Normal Form</u> = disused
- Boyce-Codd Normal Form (BCNF)
- <u>3rd Normal Form (3NF)</u>

DB designs based on functional dependencies, intended to prevent data anomalies

Our focus in this lecture + next one

• $4^{\text{th}} \text{ and } 5^{\text{th}} \text{ Normal Forms} = \text{see textbooks}$

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CS4440	B01
Joe	CS4440	B01
Sam	CS4440	B01

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CS4440	B01
Joe	CS4440	C12
Sam	CS4440	B01

If we update the room number for one tuple, we get inconsistent data = an <u>update</u> <u>anomaly</u>

A poorly designed database causes *anomalies*:

Student	Course	Room	

If everyone drops the class, we lose what room the class is in! = a <u>delete anomaly</u>

A poorly designed database causes *anomalies*:

			Student	Course	Room
			Mary	CS4440	B01
			Joe	CS4440	B01
 CS6422	C12	\square	Sam	CS4440	B01

Similarly, we can't reserve a room without students = an <u>insert anomaly</u>

Student	Course	
Mary	CS4440	
Joe	CS4440	
Sam	CS4440	

Course	Room
CS4440	B01
CS6422	C12

Eliminate anomalies by decomposing relations.

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

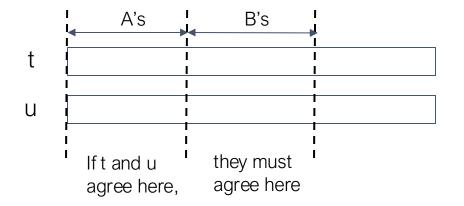
Goal: develop theory to understand why this design may be better and how to find this decomposition...

Functional Dependencies

Functional dependency (FD)

Definition: if two tuples of R agree on all the attributes $A_1, A_2, ..., A_n$, they must also agree on (or functionally determine) $B_1, B_2, ..., B_m$

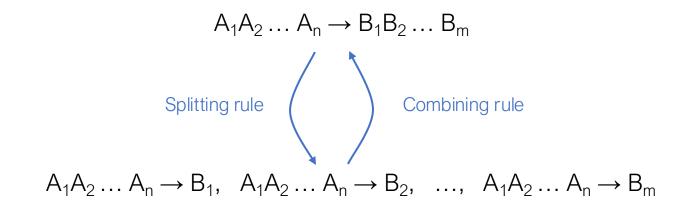
• Denoted as $A_1A_2 \dots A_n \rightarrow B_1B_2 \dots B_m$



A->B means that "whenever two tuples agree on A then they agree on B."

Splitting/combining rule

• Splitting/combining can be applied to the right sides of FD's



Splitting/combining rule

• For example,

title year \rightarrow length genre studioName

title year \rightarrow length title year \rightarrow genre title year \rightarrow studioName

Splitting rule

• Splitting rule does not apply to the left sides of FD's

title year \rightarrow length

title \rightarrow length year \rightarrow length

Functional Dependencies as Constraints

A functional dependency is a form of <u>constraint</u>

- Holds on some instances (but not others) – can check whether there are violations
- Part of the schema, helps define a valid instance

Recall: an <u>instance</u> of a schema is a multiset of tuples conforming to that schema, i.e. a table

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01

Note: The FD {Course} -> {Room} holds on this instance

Functional Dependencies as Constraints

Note that:

 You can check if an FD is violated by examining a single instance;

- However, you **cannot prove** that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01

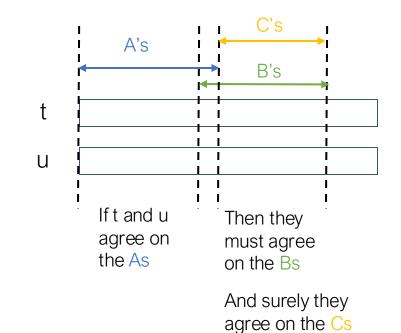
However, cannot prove that the FD {Course} -> {Room} is part of the schema

Trivial functional dependencies

A constraint is *trivial* if it holds for every possible instance of the relation.

Trivial FDs: $A_1A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$ such that $\{B_1, B_2, \dots B_m\} \subseteq \{A_1, A_2, \dots, A_n\}$

Trivial dependency rule: $A_1A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$ is equivalent to $A_1A_2 \dots A_n \rightarrow C_1 C_2 \dots C_k$, where the C's are the B's that are not also A's



21

In-class Exercise

Q1: Find an FD that holds on this instance Q2: Find an FD that is violated on this instance

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

2. Finding functional dependencies

FDs for Relational Schema Design

High-level idea: why do we care about FDs?

- 1. Start with some relational schema
- 2. Find out its functional dependencies (FDs)

This part can be tricky!

- 3. Use these to design a better schema
 - 1. One which minimizes possibility of anomalies

Finding Functional Dependencies

There can be a large number of FDs...

Let's start with this problem:

Given a set of FDs, $F = \{f_1, \dots, f_n\}$, does an FD g hold?

Three simple rules called Armstrong's Rules.

- 1. Reflexivity,
- 2. Augmentation,
- 3. Transitivity

You can derive any FDs that follows from a given set using these axioms:

1. Reflexivity: If Y is a subset of X, then $X \rightarrow Y$

This means that a set of attributes always determines a subset of itself

2. Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z This means we can add the same attributes to both sides of a functional dependency.

3. Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

This allows us to chain functional dependencies.

• Does $AB \rightarrow D$ follow from the FDs below?

$AB \rightarrow C$
$BC \rightarrow AD$
$D \rightarrow E$
$CF \rightarrow B$

1. $AB \rightarrow C$ (given) 2. $BC \rightarrow AD$ (given)

• Does $AB \rightarrow D$ follow from the FDs below?

$AB \rightarrow C$
$BC \rightarrow AD$
$D \rightarrow E$
$CF \rightarrow B$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)

• Does $AB \rightarrow D$ follow from the FDs below?

$AB \rightarrow C$
$BC \rightarrow AD$
$D \rightarrow E$
$CF \rightarrow B$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)
- 4. $AB \rightarrow AD$ (Transitivity on 2,3)

• Does $AB \rightarrow D$ follow from the FDs below?

$AB \rightarrow C$
$BC \rightarrow AD$
$D \rightarrow E$
$CF \rightarrow B$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)
- 4. $AB \rightarrow AD$ (Transitivity on 2,3)
- 5. $AD \rightarrow D$ (Reflexivity)

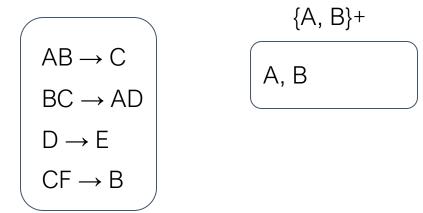
• Does $AB \rightarrow D$ follow from the FDs below?

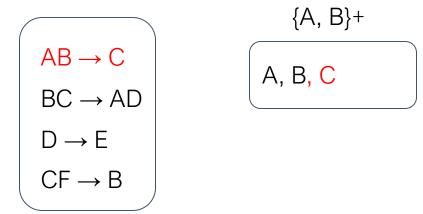
$AB \rightarrow C$
$BC \rightarrow AD$
$D \rightarrow E$
$CF \rightarrow B$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)
- 4. $AB \rightarrow AD$ (Transitivity on 2,3)
- 5. $AD \rightarrow D$ (Reflexivity)
- 6. $AB \rightarrow D$ (Transitivity on 4,5)

Can we find an algorithmic way to do this?

Closures





$$\{A, B\}^+$$

$$AB \rightarrow C$$

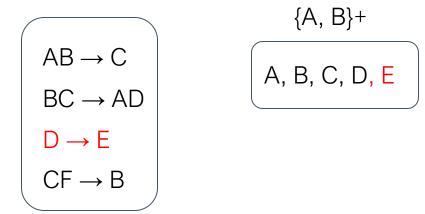
$$BC \rightarrow AD$$

$$D \rightarrow E$$

$$CF \rightarrow B$$

$$\{A, B\}^+$$

$$A, B, C, D$$



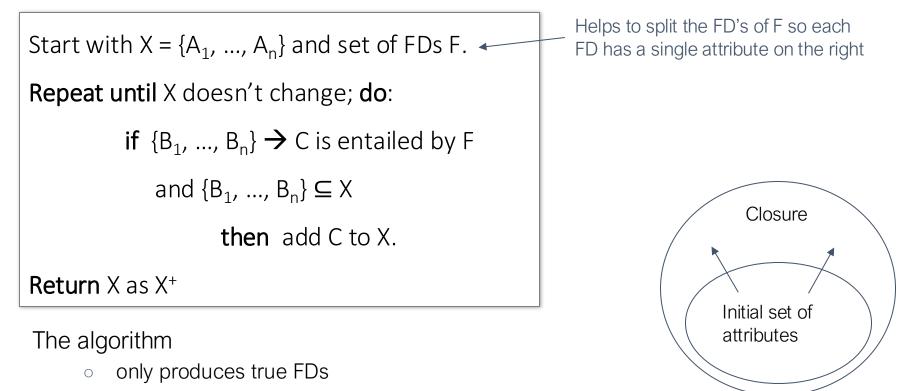
Closure of attributes

Given a set of attributes $A_1, ..., A_n$ and a set of FDs F, the <u>closure</u>, $\{A_1, ..., A_n\}^+$ is the set of attributes B where $\{A_1, ..., A_n\} \rightarrow B$ follows from the FDs in F

$$\begin{array}{c} \{A, B\}^+ \\ \\ AB \rightarrow C \\ BC \rightarrow AD \\ D \rightarrow E \\ CF \rightarrow B \end{array}$$

Cannot be expanded further, so this is a closure

Closure algorithm



discovers all true FDs

3. Closures, Superkeys & Keys

Why Do We Need the Closure?

With closure we can find all FD's easily

To check if $X \rightarrow A$

- 1. Compute X⁺
- 2. Check if $A \in X^+$

Note here that X is a set of attributes, but A is a single attribute. Why does considering FDs of this form suffice?

Recall the <u>split/combine</u> rule: $X \rightarrow A_1, ..., X \rightarrow A_n$ implies $X \rightarrow \{A_1, ..., A_n\}$

Using Closure to Infer ALL FDs

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^+ = {A}$ $\{B\}^+ = \{B, D\}$ $\{C\}^+ = \{C\}$ $\{D\}^+ = \{D\}$ ${A,B}^+ = {A,B,C,D}$ ${A,C}^+ = {A,C}$ ${A,D}^+ = {A,B,C,D}$ ${A,B,C}^+ = {A,B,D}^+ = {A,C,D}^+ = {A,B,C,D} {B,C,D}^+ = {B,C,D}$ ${A,B,C,D}^+ = {A,B,C,D}$

Example: $\{A,B\} \rightarrow C$ Given F = $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

Using Closure to Infer ALL FDs

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \\ \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,D\}^{+} = \{A,C,D\}^{+} = \\ \{A,B,C,D\}, \{B,C,D\}^{+} = \{B,C,D\}, \quad \{A,B,C,D\}^{+} = \{A,B,C,D\}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = Ø:

 $\{A,B\} \rightarrow C$ $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

Example:

Given F =

Using Closure to Infer ALL FDs

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \\ \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,D\}^{+} = \{A,C,D\}^{+} = \\ \{A,B,C,D\}, \{B,C,D\}^{+} = \{B,C,D\}, \quad \{A,B,C,D\}^{+} = \{A,B,C,D\}$

 $\{A,B\} \rightarrow C$ $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

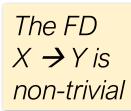
Example:

Given F =

Y is in the closure of X

Step 2: Enumerate all FDs X \rightarrow Y, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

 $\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$



Why Do We Need the Closure?

With closure we can find keys and superkeys of a relation

For each set of attributes X

- 1. Compute X^+
- 2. If X^+ = set of all attributes then X is a **superkey**
- 3. If X is minimal, then it is a **key**

Keys and Superkeys

```
A <u>superkey</u> is a set of attributes A_1, ..., A_n
s.t.
for any other attribute B in R,
we have \{A_1, ..., A_n\} \rightarrow B
```

i.e. all attributes are functionally determined by a superkey

A <u>key</u> is a minimal superkey

This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey) Finding Keys and Superkeys

For each set of attributes X

- 1. Compute X⁺
- 2. If X^+ = set of all attributes then X is a **superkey**
- 3. If X is minimal, then it is a key

Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price {category} \rightarrow color

What is a key?

Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price {category} \rightarrow color

{name, category}⁺ = {name, price, category, color}

- = the set of all attributes
- \Rightarrow this is a **superkey**

 \Rightarrow this is a **key**, since neither name nor category alone is a superkey

In-class Exercise

Given R(A, B, C, D) and FD's AB \rightarrow C, C \rightarrow D, D \rightarrow A

• What are all keys of R?