
CS 4440 A
Emerging Database
Technologies

Lecture 2
01/08/25

Reading Materials

Database Systems: The Complete Book (2nd edition)
• Chapter 2.1: An Overview of Data Models
• Chapter 2.2: Basics of the Relation Model
• Chapter 2.4: An Algebraic Query Language

2

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big
Data Systems) taught by Peter Bailis.

Today’s Class

1. Data Model

2. Relational Algebra: Basic Operators

3. Relational Algebra Pt. II

3

1. Data Model

4

Data models
● Relational

● Key/Value
● Graph
● Document (Semi-structured)
● Column-family

● Array/Matrix

● Hierarchical
● Network

5

RDBMS

NoSQL

Machine Learning

Obsolete

Adapted from KAIST EE477 from Steven Whang

Data model
A notation for describing data or information.

The description generally consists of three parts:

● Structure of the data

● Operations on the data

● Constraints on the data

6
Adapted from KAIST EE477 from Steven Whang

1st Part of the Model: Structure of the data
● Referred to as a “conceptual model” of the data
● Higher level than “physical data models” or data structures like

arrays and lists

7

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Example: a relation
consists of a schema,
attributes, and tuples

The Relational Model: Schema
• Relational Schema:

Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc. are the
domains of the attributes

Relation name

9

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or
column) is a typed
data entry present
in each tuple in the
relation

The number of
attributes is the arity
of the relation

10

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a single
entry in the table having the attributes
specified by the schema

The number
of tuples is
the cardinality
of the relation

11

The Relational Model: Data
Student

A relational instance is a set of tuples all
conforming to the same schema

Note: In practice
DBMSs relax the
set requirement,
and use multisets.

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Equivalent representations of a relation
● A relation is a set of tuples (not a list)
● A schema is a set of attributes (not a list)
● Hence, the order of tuples or attributes of a relation is immaterial

12

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

name sid gpa

Joe 002 2.8

Mary 003 3.8

Alice 004 3.5

Bob 001 3.2

In-class exercise
How many ways are there to represent this relation?

13

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

• A relational schema describes the data that is contained in
a relational instance

To Reiterate

Let R(f1:Dom1,…,fm:Domm) be a relational schema then,
an instance of R is a subset of Dom1 x Dom2 x … x Domn

In this way, a relational schema R is a total function from
attribute names to types

A relational database
• A relational database schema is a set of relational schemata, one

for each relation

• A relational database instance is a set of relational instances, one
for each relation

Two conventions:
1. We call relational database instances as simply databases
2. We assume all instances are valid, i.e., satisfy the domain constraints

2nd Part of the Model: Operations on the data
Usually a limited set of operations that can be performed

○ Queries (operations that retrieve information)
○ Modifications (operations that change the database)

This is a strength, not a weakness
○ Programmers can describe operations at a very high level
○ The DBMS implements them efficiently
○ Not easy to do when coding in C

16
Adapted from KAIST EE477 from Steven Whang

The Relational Model: Operations
“Find names of all students
with GPA > 3.5”

We specify how or where to get
the data - just what we want,
i.e., Querying is declarative

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to
translate the declarative query
into a series of operators…

The operations normally
associated with the relational
model forms relational algebra

Comparison: the relational model
Structure

○ Based on tables (relations)

Operations
○ Relational Algebra

Constraints
○ Key constraints, referential

integrity constraints

18
Adapted from KAIST EE477 from Steven Whang

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Comparison: the key-value model
Structure

○ (key, value) pairs
○ Key is a string or integer
○ Value can be any blob of data

Operations
○ get (key), put(key, value)
○ Operations on values not supported

Constraints
○ e.g., key is unique, value is not NULL

19

key value

1000 (Bob, 3.2)

1001 (Joe, 2.8)

1002 (Mary, 3.8)

1003 (Alice, 3.5)

Adapted from KAIST EE477 from Steven Whang

Comparison of data models
Let’s compare the relational model and the key-value model in
the following aspects. Which one is better?

• Flexibility?

• Queryability?

• Performance?

Key-value

Relational

Relational

2. Relational Algebra

21

The big picture: RDBMS Architecture
How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan
Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient-
RA expression

Execute each
operator of the
optimized plan!

The big picture: RDBMS Architecture
How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan
Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative
(SQL) queries into precise and optimizable expressions!

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural,equi-join, theta join, semi-join)
• Renaming: r
• Grouping: 𝛾

Relational Algebra (RA)

We’ll look at these first!

And also at one example
of a derived operator
(natural join) and a special
operator (renaming)

Note: RA operates on sets!
• RDBMSs use multisets, however in relational algebra formalism

we will consider sets!

• Also: we will consider the named perspective, where every
attribute must have a unique name
• àattribute order does not matter…

Now on to the basic RA operators…

• Returns all tuples which satisfy a
condition
• Notation: sc(R)
• Examples
• sSalary > 40000 (Employee)
• sname = “Smith” (Employee)

• The condition c can be =, <, £,
>, ³, <>

1. Selection (𝜎)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎!"#	%&.((𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another example:

• Eliminates columns, then
removes duplicates
• Notation: P A1,…,An (R)
• Example: project social-security

number and names:
• P SSN, Name (Employee)
• Output schema: Answer(SSN,

Name)

2. Projection (Π)

SELECT DISTINCT
 sname,
 gpa
FROM Students;

SQL:

RA:
Π)*#+,,!"#(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another example:

Note that RA Operators are Compositional!

SELECT DISTINCT
 sname,
 gpa
FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

Π!"#$%,'(#(𝜎'(#)*.,(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎'(#)*.,(Π!"#$%,'(#(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

• Each tuple in R1 with each tuple
in R2
• Notation: R1 ´ R2
• Example:
• Employee ´ Dependents

• Rare in practice; mainly used to
express joins

3. Cross-Product (×)

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

• Changes the schema, not the
instance
• A ‘special’ operator- neither

basic nor derived
• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
• r A1àB1,…,AnàBn (R)

Renaming (𝜌)

SELECT
 sid AS studId,
 sname AS name,
 gpa AS gradePtAvg
FROM Students;

SQL:

RA:
𝜌!"#$%$,'()*,+,($*-"./+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

sid sname gpa
001 John 3.4

002 Bob 1.3

𝜌!"#$%$,'()*,+,($*-"./+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:

• R1 ⋈	R2: Joins R1 and R2 on equality of all
shared attributes
• If R1 has attribute set A, and R2 has attribute set

B, and they share attributes A ⋂ B = C, can also
be written: R1 ⋈ 𝐶	R2

• Our first example of a derived RA operator:
• R1 ⋈ R2 = PA U B(s C=D (𝜌!→#(R1) ´ R2))
• Where:

• The rename 𝜌!→# renames the shared attributes in
one of the relations

• The selection sC=D checks equality of the shared
attributes

• The projection PA U B eliminates the duplicate
common attributes

Natural Join (⋈)

SELECT DISTINCT
 ssid, S.name, gpa,
 ssn, address
FROM
 Students S,
 People P
WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:

In class exercise

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema
of R ⋈	S ?

• Given R(A, B), S(A, B), what is R ⋈	S ?

• Given R(A, B, C), S(D, E), what is R ⋈	S ?

Example: Converting SFW Query -> RA

SELECT DISTINCT
 gpa,
 address
FROM Students S,
 People P
WHERE gpa > 3.5 AND
 S.name = P.name;

How do we represent
this query in RA?

Π'(#,#--.%!!(𝜎'(#)*.,(𝑆 ⋈ 𝑃))

Students(sid,name,gpa)
People(ssn,name,address)

2. Relational Algebra Pt. II

39

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural, equi-join, theta join, semi-join)
• Renaming: r
• Grouping: 𝛾

Relational Algebra (RA)

We’ll look at these

And also at some
of these derived
operators

Union (È) and 2. Difference (–)
• R1 È R2
• Example:
• ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:
• AllEmployees -- RetiredEmployees

R1 R2

R1 R2

What about Intersection (Ç) ?
• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example

• UnionizedEmployees Ç RetiredEmployees

R1 R2

Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2 = s q (R1 ´ R2)
• Here q can be any condition

SELECT *
FROM
 Students,People
WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈/ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a
theta join + a projection.

Equi-join (⋈	A=B)
• A theta join where q is an equality
• R1 ⋈	A=B R2 = s A=B (R1 ´ R2)
• Example:
• Employee ⋈	SSN=SSN Dependents

SELECT *
FROM
 Students S,
 People P
WHERE sname = pname;

SQL:

RA:
𝑆	 ⋈)*#+,0"*#+, 	𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join
in practice!

Semijoin (⋉)
• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:
• Employee ⋉	Dependents

SELECT DISTINCT
 sid,sname,gpa
FROM
 Students,People
WHERE
 sname = pname;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Semijoins in Distributed Databases
• Semijoins are often used to compute natural joins in distributed

databases

SSN Name
.

SSN Dname Age
.

Employee

Dependents

network

Employee ⋈	ssn=ssn (s age>71 (Dependents))

T = P SSN (s age>71 (Dependents))
R = Employee ⋉	T

Answer = R ⋈	Dependents

Send less data
to reduce
network
bandwidth!

Grouping (𝛾)
● The grouping operator 𝛾 consists of

○ Grouping attributes: attributes to group by
○ Aggregation attributes: attributes to which aggregation

operations are applied
■ SUM, AVG, MIN, MAX, COUNT

47

𝛾A, MIN(B)->minB, AVG(C)->avgC (R)

Grouping
attribute

Aggregation
attributes

A B C
1 1 1
1 2 3
2 3 5

R

A minB avgC

1 1 2
2 3 5

Combining operations to form queries
● RA expressions can be arbitrarily complicated by applying

operations to other results
● Multiple RA expressions may be equivalent

48

Π/,0(𝜎/123 𝑇 ⋈ 𝑅 ⋈ 𝑆)

Π/,0 𝑇 ⋈ Π/,4 𝜎/123(𝑅) ⋈ 𝑆

R(A,B) S(B,C) T(C,D)

Logical optimization (will cover later): Find equivalent RA
expressions that are more efficient

Which version is
more efficient?

Expression tree
RA expressions can be represented as expression trees

49

Π.,0

R(A,B) S(B,C)

T(C,D)

sA<10

Π1,2(𝜎1345 𝑇 ⋈ 𝑅 ⋈ 𝑆)

Bottom-up tree traversal = order of operation execution!

RA Expressions Can Get Complex!

 Person Purchase Person Product

sname=fred sname=gizmo

P pidP ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

P name

In class exercise
Suppose relations R and S have n and m tuples, respectively

What are the minimum / maximum number of tuples of the
following expressions?

1. R ∪ S

2. R ⋈ S

3. πL(R) – S, for some list of attributes L

