
CS 4440 A

Emerging Database
Technologies

Lecture 16

04/09/25

Announcements

Project presentation order:
• Apr 16

• 8

• Apr 21
• 2

2

3

One query/update

One machine

Multiple query/updates

One machine

One query/update

Multiple machines

So far:

Transactions Distributed query processing

MapReduce, Spark

Slides adapted from Duke CompSci 316

Agenda

1. Distributed File System

2. Map Reduce

3. Spark

4

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 20 – Parallel and Distributed Databases

Research Papers:

• The Google File System

• MapReduce

• Spark

5

https://static.googleusercontent.com/media/research.google.com/en/archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

Historical Context

Early 2000s, people wants to scale up
systems
o Non SQL or Non relational (nowadays,

Not only SQL)

Triggered by needs of Web 2.0
companies (e.g., Facebook, Amazon,
Google)

Trades off consistency requirements
of RDBMS for speed

6
Image source: https://www.geeksforgeeks.org/what-is-internet-definition-uses-working-advantages-and-disadvantages/

Goal: managing large amounts of data quickly

Ranking Web pages by importance
○ Iterated matrix-vector multiplication where dimension is many billions

Search friends in social networks
○ Graphs with hundreds of millions of nodes and many billions of edges

7

Image source: https://en.wikipedia.org/wiki/PageRank Image source: https://en.wikipedia.org/wiki/Social_graph

Horizontal vs Vertical Scaling

8
Image source: https://www.geeksforgeeks.org/system-design-horizontal-and-vertical-scaling/

Horizontal scaling

● Instead of a supercomputer (aka vertical scaling), we have large
collections of commodity hardware connected by Ethernet cables
or inexpensive switches

9

Physical organization of compute nodes

Parallel-computing architecture
○ Compute nodes are stored on racks (perhaps 8-64 on a rack)
○ The nodes on a single rack are connected by a network, typically

gigabit Ethernet
○ There can be many racks of compute nodes connected by another

level of network or a switch

10

Switch

Racks of compute nodes

New Challenges

How do you distribute computation?

How can we make it easy to write distributed programs?

It is a fact of life that components fail:
○ One server may stay up 3 years (1,000 days)
○ If you have 1,000 servers, expect to lose 1/day
○ With 1M machines, 1,000 machines fail every day!

11

Need solutions for recovering data and computation during failure!

A new software stack

Distributed file system
○ Example: Google File System
○ Large blocks and data replication to protect against media failures

Programming abstraction
○ Example: Map Reduce
○ Enables common calculations on large-scale data to be performed on

computing clusters efficiently
○ Tolerant to hardware failures

12

1. Distributed File System

13

The Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

SOSP’03

14

https://static.googleusercontent.com/media/research.google.com/en/archive/gfs-sosp2003.pdf

How to read a paper in depth

The "three-pass” approach [1]

 first pass: a quick scan

 second pass: with greater care, but ignore the details

 third pass: re-implementing the paper

[1] S. Keshav. How to read a paper? http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf

The first pass: a quick scan

Goal: get bird’s-eye view of the paper (5~10 min)

What to read:
- Title, abstract, introduction and conclusion

- Section and sub-section headings
- Main figures

- Scan of bibliography

You should be able to answer:
- What type of paper is this?

- What are the main contributions?

The second pass: grasp the content

Goal: get a good understanding of the ”meat” of the paper

How to read:
- Look carefully at figures, diagrams and examples

- Take notes of questions, unread references etc.
- Ignore proofs, appendix, extensions etc.

You should be able to:
- Summarize main thrusts of the paper, with supporting
 evidence, to someone else

The third pass: all about the details

Goal: think about what you would have done if you were to
re-implement such an idea

How to read:
- Challenge every assumption

- Compare your version with the actual paper
- Often leads to questions like: why not do it this way?

You should be able to:
- Identify hidden assumptions/potential design flaws
- Get ideas for future work

Let’s try the first pass!

1. Category: What type of paper is this? A measurement paper? An
analysis of an existing system? A description of a research
prototype?

2. Context: Which other papers is it related to?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contributions?

5. Clarity: Is the paper well written?

Large-scale file system organization

To exploit cluster computing, files must look and behave
differently from conventional file systems on single computers

A Distributed File System (DFS) can be used when:
○ For very large files: TBs, PBs
○ Files are rarely updated and usually read or appended with data
○ Mostly sequential reads
○ Not useful for OLTP

20

Distributed File System implementations

The Google File System (GFS)
● Previously used in Google
● Proprietary

Hadoop Distributed File System (HDFS)
● Open-source DFS used with Hadoop

21
Image source: https://en.wikipedia.org/wiki/Google_File_System#/media/File:GoogleFileSystemGFS.svg

The Google File System (GFS)

Files are divided into chunks, which
are typically 64 MBs

● Chunks are replicated (say 3 times) at
different compute nodes (called chunks
servers)

● The compute nodes should be located on
different racks

● Chunk size and degree of replication
decided by the user

22

The Google File System (GFS)

Master node
● A single master node for the

cluster; master node itself is
replicated

● Stores metadata (in memory): file
names + chunk ids + chunk
locations, access control

● Master keeps an operations log
with checkpointing, similar to the
recovery log

● Master keeps in sync with chunk
servers using regular heartbeat
messages

23

Shadow

Master

Master assigns an

immutable and globally

unique 64 bit chunk handle

The Google File System (GFS)

Client library for file access
● Talks to master to find chunk

servers
● Connects directly to chunk

servers to access data

24

The Google File System (GFS)

Q: What’s the benefit of having
large chunk sizes (64MB vs file
block sizes)
● Master node could become a

bottleneck with large number of
small files

● Target workload has many
sequential reads

● Reduce network overhead

25

Shadow

Master

2. MapReduce

26

A brief history of MapReduce and Hadoop

27Image source: https://dzone.com/articles/lambda-architecture-with-apache-spark

MapReduce Overview

Read a lot of data

Map: extract something you care about from each record

Shuffle and Sort

Reduce: aggregate, summarize, filter, transform

Write the results

28

Paradigm stays the same,

Change map and reduce

functions for different problems

Slide source: Jeff Dean

Data Model

Data is stored as flat files, not relations!

A file = a bag of (key, value) pairs

A MapReduce program

• Input: a bag of (inputkey, value) pairs

• Output: a bag of (outputkey, value) pairs
• outputkey is optional

29Slide adapted from Berkeley CS 186

MapReduce Overview

30
Image source: https://developerzen.com/introduction-to-mapreduce-for-.net-developers/

Intermediate data is
written to local disk

Map() Shuffle & Sort Reduce()

Input
chunks

Input
chunks

Input
chunks

Example: Word counting

● Count the number of times each distinct word appears in large
collection of documents

● Many applications:
○ Analyze web server logs to find popular URLs
○ Statistical machine translation (e.g., count frequency of all 5-word

sequences in documents)

31

Map and Reduce functions for word counting

map(key, value):
// key: document name; value: text of the document
 for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; values: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(key, result)

32

Coding is simple. Do not need to worry about scaling and failure.

MapReduce: word counting

To be, or not to be, that is
the question:
Whether 'tis nobler in the
mind to suffer
The slings and arrows of
outrageous fortune,
Or to take Arms against a
Sea of troubles,
And by opposing end
them: to die, to sleep
No more; and by a sleep,
to say we end
The heart-ache, …….

Big document

(to, 1),
(be, 1), ...

(mind, 1),
(to, 1), ...

(or, 1),
(to, 1), ...

(them, 1),
(to, 1), ...

Map: Read input and
produce a set of key-

value pairs

(key, value)

Provided by programmer

(to, 1),
(to, 1),

(to, 1), ...
(be, 1),

(mind, 1),
(or, 1), ...
(them, 1),

(sleep, 1), ...

Group by key: Collect
all pairs with same

key

(key, value)

(to, 7)
(be, 2)

(mind, 1)
(or, 2)

(them, 1)
...

Reduce: Collect all
values belonging to
the key and output

(key, value)

Provided by programmer

33

MapReduce execution timeline

• When there are more tasks than workers, tasks execute in “waves”
• Boundaries between waves are usually blurred

• Reduce tasks can’t start until all map tasks are done

34Slides adapted from Duke CompSci 316

Fault Tolerance

MapReduce handles fault tolerance by writing intermediate
files to disk:

• Mappers write file to local disk

• Reducers read the files as input; if the server fails, the reduce
task is restarted on another server

35

MapReduce vs SQL

MapReduce Parallel DBMS

Programming Imperative Declarative

Indexing No native support B+ tree, hashing

Schema Not required Required

Flexibility Highly flexible Some flexibility via user defined

functions

Fault Tolerance Save intermediate results

to disk – can restart fine-

grained tasks during

failure

Avoid saving intermediate results to

disk – might need to restart a

larger chunk of work (transaction)

during failure

36Reading: A Comparison of Approaches to Large-Scale Data Analysis

https://www.cs.princeton.edu/courses/archive/fall09/cos518/papers/mapreduce-vs-sql.pdf

MapReduce Summary

● A style of programming for managing many large-scale computations
in a way that is tolerant of hardware faults
○ Just need to write two functions called Map and Reduce
○ The system manages parallel execution, coordination of tasks that execute

Map or reduce, and dealing with failures

● It has several implementations, including Hadoop, Spark, Flink, and
the original Google implementation just called “MapReduce”

37

3. Spark

38

Workflow systems

● Extends MapReduce by supporting acyclic networks of functions
○ Simple two-step workflow → any acyclic (DAG) workflow of functions
○ Each function implemented by a collection of tasks
○ A master controller is responsible for dividing work among tasks

● Examples: Apache Spark and Google TensorFlow

f g

h i

j

39

Blocking property

● Like MapReduce, workflow functions only deliver output after
completion

● If task fails, no output is delivered to any successors in flow graph
● A master controller can therefore restart failed task at another

compute node

40

f g

Spark: most popular workflow system

● Developed by UC Berkeley and
Databricks, now maintained by
Apache

● Advantages over early workflow
systems
○ More efficient failure handling
○ More efficient grouping of tasks among

compute nodes and scheduling
function execution

○ Integration of programing language
features such as looping and function
libraries

41

Data Model: Resilient distributed dataset (RDD)

Central data abstraction of Spark

A file of objects of one type
○ Statically typed: RDD[T] has objects of type T

Immutable collections of objects, together with its lineage
○ Lineage = how a dataset is computed

Spark is resilient against loss of any or all chunks of RDD
○ If RDD in main memory is lost, can recompute lost partitions of

RDD using lineage

42

RDD

Spark program

Sequence of steps of
○ Transformations: apply some function to an RDD to produce another RDD
○ Actions: Turn RDD into data in surrounding file system and vice versa

43

DFS:
mydata

R0 R1 R2

DFS:
output

transformation transformationaction action

Example: average word length by letter
> avglens = sc.textFile(file)

44

DFS:
mydata

RDD

Example: average word length by letter
> avglens = sc.textFile(file) \
 .flatMap(lambda line: line.split())

45

DFS:
mydata

RDD RDD

Example: average word length by letter
> avglens = sc.textFile(file) \
 .flatMap(lambda line: line.split()) \
 .map(lambda word: (word[0], len(word)))

46

DFS:
mydata

RDD RDD RDD

Example: average word length by letter
> avglens = sc.textFile(file) \
 .flatMap(lambda line: line.split()) \
 .map(lambda word: (word[0], len(word))) \
 .groupByKey()

47

DFS:
mydata

RDD RDD RDD

RDD

Example: average word length by letter
> avglens = sc.textFile(file) \
 .flatMap(lambda line: line.split()) \
 .map(lambda word: (word[0], len(word))) \
 .groupByKey() \
 .map(lambda (k, values): \
 (k, sum(values)/len(values)))

48

DFS:
mydata

RDD RDD RDD

RDD RDD

Example: average word length by letter
> avglens = sc.textFile(file) \
 .flatMap(lambda line: line.split()) \
 .map(lambda word: (word[0], len(word))) \
 .groupByKey() \
 .map(lambda (k, values): \
 (k, sum(values)/len(values)))

49

DFS:
mydata

RDD RDD RDD

RDD RDD

Wide
dependencies

Narrow
dependencies

Spark implementation

Similar to MapReduce,
○ RDD is divided into chunks, which are given to different compute nodes
○ Transformation on RDD can be performed in parallel on each of the chunks

Two key improvements
○ Lazy evaluation of RDD’s
○ Lineage for RDD’s

50

Lazy evaluation

Spark does not actually apply transformations to RDD’s until it is
required to do so (e.g., storing RDD to file system or returning a
result to application)

51

val data = sc.textFile("input.txt") // No execution yet
 .map(line => line.split(" ")) // Not executed
 .filter(words => words.length > 2) // Still not executed
 .count() // Now it executes everything

Lazy evaluation

Spark does not actually apply transformations to RDD’s until it is
required to do so (e.g., storing RDD to file system or returning a
result to application)

Potential Benefits:
• Spark can analyze entire chain of operations and combining multiple

operations to reduce unnecessary compiuations

• No immediate computation/memory usage; resources allocated only when
needed

• Optimizes data shuffling and stages

52

Resilience of RDD’s

● Spark records the lineage of every RDD, which can be used to re-
create any RDD
○ If R2 is lost, reconstruct from R1
○ If R1 is lost, reconstruct from R0

○ If R0 is lost, reconstruct from file system

53

DFS:
mydata

R0 R1 R2

DFS:
output

Data Sharing in MapReduce vs Spark

54

This is why Spark is significantly faster for iterative algorithms

MapReduce: disk

Spark: memory

Spark programming guide and paper

● To learn more about writing Spark applications, please
read the Spark programming guide:
https://spark.apache.org/docs/latest/rdd-programming-
guide.html

● Recommend reading: the Spark paper

55

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements
	Slide 3
	Slide 4: Agenda
	Slide 5: Reading Materials
	Slide 6: Historical Context
	Slide 7: Goal: managing large amounts of data quickly
	Slide 8: Horizontal vs Vertical Scaling
	Slide 9: Horizontal scaling
	Slide 10: Physical organization of compute nodes
	Slide 11: New Challenges
	Slide 12: A new software stack
	Slide 13: 1. Distributed File System
	Slide 14: The Google File System
	Slide 15: How to read a paper in depth
	Slide 16: The first pass: a quick scan
	Slide 17: The second pass: grasp the content
	Slide 18: The third pass: all about the details
	Slide 19: Let’s try the first pass!
	Slide 20: Large-scale file system organization
	Slide 21: Distributed File System implementations
	Slide 22: The Google File System (GFS)
	Slide 23: The Google File System (GFS)
	Slide 24: The Google File System (GFS)
	Slide 25: The Google File System (GFS)
	Slide 26: 2. MapReduce
	Slide 27: A brief history of MapReduce and Hadoop
	Slide 28: MapReduce Overview
	Slide 29: Data Model
	Slide 30: MapReduce Overview
	Slide 31: Example: Word counting
	Slide 32: Map and Reduce functions for word counting
	Slide 33: MapReduce: word counting
	Slide 34: MapReduce execution timeline
	Slide 35: Fault Tolerance
	Slide 36: MapReduce vs SQL
	Slide 37: MapReduce Summary
	Slide 38: 3. Spark
	Slide 39: Workflow systems
	Slide 40: Blocking property
	Slide 41: Spark: most popular workflow system
	Slide 42: Data Model: Resilient distributed dataset (RDD)
	Slide 43: Spark program
	Slide 44: Example: average word length by letter
	Slide 45: Example: average word length by letter
	Slide 46: Example: average word length by letter
	Slide 47: Example: average word length by letter
	Slide 48: Example: average word length by letter
	Slide 49: Example: average word length by letter
	Slide 50: Spark implementation
	Slide 51: Lazy evaluation
	Slide 52: Lazy evaluation
	Slide 53: Resilience of RDD’s
	Slide 54: Data Sharing in MapReduce vs Spark
	Slide 55: Spark programming guide and paper

