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Announcements

Project presentation order:
• Apr 16

• 8

• Apr 21
• 2
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One query/update

One machine

Multiple query/updates

One machine

One query/update

Multiple machines

So far:

Transactions Distributed query processing

MapReduce, Spark
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Agenda 

1. Distributed File System 

2. Map Reduce 

3. Spark
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Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 20 – Parallel and Distributed Databases

Research Papers:

• The Google File System

• MapReduce 

• Spark
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https://static.googleusercontent.com/media/research.google.com/en/archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf


Historical Context

Early 2000s, people wants to scale up 
systems
o Non SQL or Non relational (nowadays, 

Not only SQL)

Triggered by needs of Web 2.0 
companies (e.g., Facebook, Amazon, 
Google)

Trades off consistency requirements 
of RDBMS for speed
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Image source: https://www.geeksforgeeks.org/what-is-internet-definition-uses-working-advantages-and-disadvantages/



Goal: managing large amounts of data quickly

Ranking Web pages by importance
○ Iterated matrix-vector multiplication where dimension is many billions

Search friends in social networks
○ Graphs with hundreds of millions of nodes and many billions of edges
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Image source: https://en.wikipedia.org/wiki/PageRank Image source: https://en.wikipedia.org/wiki/Social_graph



Horizontal vs Vertical Scaling
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Image source: https://www.geeksforgeeks.org/system-design-horizontal-and-vertical-scaling/



Horizontal scaling

● Instead of a supercomputer (aka vertical scaling), we have large 
collections of commodity hardware connected by Ethernet cables 
or inexpensive switches
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Physical organization of compute nodes

Parallel-computing architecture
○ Compute nodes are stored on racks (perhaps 8-64 on a rack)
○ The nodes on a single rack are connected by a network, typically 

gigabit Ethernet
○ There can be many racks of compute nodes connected by another 

level of network or a switch
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Switch

Racks of compute nodes



New Challenges

How do you distribute computation?

How can we make it easy to write distributed programs?

It is a fact of life that components fail:
○ One server may stay up 3 years (1,000 days)
○ If you have 1,000 servers, expect to lose 1/day
○ With 1M machines, 1,000 machines fail every day!
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Need solutions for recovering data and computation during failure!



A new software stack

Distributed file system
○ Example: Google File System
○ Large blocks and data replication to protect against media failures

Programming abstraction
○ Example: Map Reduce
○ Enables common calculations on large-scale data to be performed on 

computing clusters efficiently
○ Tolerant to hardware failures
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1. Distributed File System
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The Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

SOSP’03
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https://static.googleusercontent.com/media/research.google.com/en/archive/gfs-sosp2003.pdf


How to read a paper in depth

The "three-pass” approach [1]

 first pass: a quick scan 

 second pass: with greater care, but ignore the details 

 third pass: re-implementing the paper 

[1] S. Keshav. How to read a paper? http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf



The first pass: a quick scan

Goal: get bird’s-eye view of the paper (5~10 min)

What to read: 
- Title, abstract, introduction and conclusion 

- Section and sub-section headings 
- Main figures 

- Scan of bibliography 

You should be able to answer:
- What type of paper is this?

- What are the main contributions? 



The second pass: grasp the content 

Goal: get a good understanding of the ”meat” of the paper 

How to read: 
- Look carefully at figures, diagrams and examples 

- Take notes of questions, unread references etc. 
- Ignore proofs, appendix, extensions etc. 

You should be able to:
- Summarize main thrusts of the paper, with supporting 
   evidence, to someone else 



The third pass: all about the details 

Goal: think about what you would have done if you were to 
re-implement such an idea 

How to read: 
- Challenge every assumption 

- Compare your version with the actual paper
- Often leads to questions like: why not do it this way? 

You should be able to:
- Identify hidden assumptions/potential design flaws
- Get ideas for future work 



Let’s try the first pass!

1. Category: What type of paper is this? A measurement paper? An 
analysis of an existing system? A description of a research 
prototype? 

2. Context: Which other papers is it related to? 

3. Correctness: Do the assumptions appear to be valid? 

4. Contributions: What are the paper’s main contributions? 

5. Clarity: Is the paper well written?



Large-scale file system organization

To exploit cluster computing, files must look and behave 
differently from conventional file systems on single computers

A Distributed File System (DFS) can be used when:
○ For very large files: TBs, PBs
○ Files are rarely updated and usually read or appended with data
○ Mostly sequential reads
○ Not useful for OLTP
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Distributed File System implementations

The Google File System (GFS)
● Previously used in Google
● Proprietary

Hadoop Distributed File System (HDFS)
● Open-source DFS used with Hadoop

21
Image source: https://en.wikipedia.org/wiki/Google_File_System#/media/File:GoogleFileSystemGFS.svg



The Google File System (GFS)

Files are divided into chunks, which 
are typically 64 MBs

● Chunks are replicated (say 3 times) at 
different compute nodes (called chunks 
servers)

● The compute nodes should be located on 
different racks

● Chunk size and degree of replication 
decided by the user
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The Google File System (GFS)

Master node
● A single master node for the 

cluster; master node itself is 
replicated

● Stores metadata (in memory): file 
names + chunk ids + chunk 
locations, access control

● Master keeps an operations log 
with checkpointing, similar to the 
recovery log

● Master keeps in sync with chunk 
servers using regular heartbeat 
messages
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Shadow 

Master

Master assigns an 

immutable and globally 

unique 64 bit chunk handle



The Google File System (GFS)

Client library for file access
● Talks to master to find chunk 

servers
● Connects directly to chunk 

servers to access data
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The Google File System (GFS)

Q: What’s the benefit of having 
large chunk sizes (64MB vs file 
block sizes)
● Master node could become a 

bottleneck with large number of 
small files 

● Target workload has many 
sequential reads 

● Reduce network overhead 
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2. MapReduce
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A brief history of MapReduce and Hadoop

27Image source: https://dzone.com/articles/lambda-architecture-with-apache-spark



MapReduce Overview

Read a lot of data

Map: extract something you care about from each record

Shuffle and Sort

Reduce: aggregate, summarize, filter, transform

Write the results 
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Paradigm stays the same, 

Change map and reduce 

functions for different problems

Slide source: Jeff Dean



Data Model 

Data is stored as flat files, not relations!

A file = a bag of (key, value) pairs

A MapReduce program

• Input: a bag of (inputkey, value) pairs

• Output: a bag of (outputkey, value) pairs
• outputkey is optional

29Slide adapted from Berkeley CS 186



MapReduce Overview
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Image source: https://developerzen.com/introduction-to-mapreduce-for-.net-developers/

Intermediate data is 
written to local disk

Map() Shuffle & Sort Reduce()

Input 
chunks

Input 
chunks

Input 
chunks



Example: Word counting

● Count the number of times each distinct word appears in large 
collection of documents

● Many applications:
○ Analyze web server logs to find popular URLs
○ Statistical machine translation (e.g., count frequency of all 5-word 

sequences in documents)
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Map and Reduce functions for word counting

map(key, value):
// key: document name; value: text of the document
   for each word w in value:
     emit(w, 1)

reduce(key, values):
// key: a word; values: an iterator over counts
   result = 0
   for each count v in values:
     result += v
   emit(key, result)

32

Coding is simple. Do not need to worry about scaling and failure. 



MapReduce: word counting

To be, or not to be, that is 
the question:
Whether 'tis nobler in the 
mind to suffer
The slings and arrows of 
outrageous fortune,
Or to take Arms against a 
Sea of troubles,
And by opposing end 
them: to die, to sleep
No more; and by a sleep, 
to say we end
The heart-ache, …….

Big document

(to, 1),
(be, 1), ...

(mind, 1),
(to, 1), ...

(or, 1),
(to, 1), ...

(them, 1),
(to, 1), ...

Map: Read input and 
produce a set of key-

value pairs

(key, value)

Provided by programmer

(to, 1),
(to, 1),

(to, 1), ...
(be, 1),

(mind, 1),
(or, 1), ...
(them, 1),

(sleep, 1), ...

Group by key: Collect 
all pairs with same 

key

(key, value)

(to, 7)
(be, 2)

(mind, 1)
(or, 2)

(them, 1)
...

Reduce: Collect all 
values belonging to 
the key and output

(key, value)

Provided by programmer
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MapReduce execution timeline

• When there are more tasks than workers, tasks execute in “waves” 
• Boundaries between waves are usually blurred 

• Reduce tasks can’t start until all map tasks are done

34Slides adapted from Duke CompSci 316



Fault Tolerance

MapReduce handles fault tolerance by writing intermediate 
files to disk:

• Mappers write file to local disk

• Reducers read the files as input; if the server fails, the reduce 
task is restarted on another server

35



MapReduce vs SQL 

MapReduce Parallel DBMS

Programming Imperative Declarative

Indexing No native support B+ tree, hashing

Schema Not required Required

Flexibility Highly flexible Some flexibility via user defined 

functions

Fault Tolerance Save intermediate results 

to disk – can restart fine-

grained tasks during 

failure

Avoid saving intermediate results to 

disk – might need to restart a 

larger chunk of work (transaction) 

during failure

36Reading: A Comparison of Approaches to Large-Scale Data Analysis

https://www.cs.princeton.edu/courses/archive/fall09/cos518/papers/mapreduce-vs-sql.pdf


MapReduce Summary

● A style of programming for managing many large-scale computations 
in a way that is tolerant of hardware faults
○ Just need to write two functions called Map and Reduce
○ The system manages parallel execution, coordination of tasks that execute 

Map or reduce, and dealing with failures

● It has several implementations, including Hadoop, Spark, Flink, and 
the original Google implementation just called “MapReduce”
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3. Spark
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Workflow systems

● Extends MapReduce by supporting acyclic networks of functions
○ Simple two-step workflow → any acyclic (DAG) workflow of functions
○ Each function implemented by a collection of tasks
○ A master controller is responsible for dividing work among tasks 

● Examples: Apache Spark and Google TensorFlow

f g

h i

j
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Blocking property

● Like MapReduce, workflow functions only deliver output after 
completion

● If task fails, no output is delivered to any successors in flow graph
● A master controller can therefore restart failed task at another 

compute node

40
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Spark: most popular workflow system

● Developed by UC Berkeley and 
Databricks, now maintained by 
Apache

● Advantages over early workflow 
systems
○ More efficient failure handling
○ More efficient grouping of tasks among 

compute nodes and scheduling 
function execution

○ Integration of programing language 
features such as looping and function 
libraries

41



Data Model: Resilient distributed dataset (RDD)

Central data abstraction of Spark

A file of objects of one type
○ Statically typed: RDD[T] has objects of type T

Immutable collections of objects, together with its lineage
○ Lineage = how a dataset is computed 

Spark is resilient against loss of any or all chunks of RDD
○ If RDD in main memory is lost, can recompute lost partitions of 

RDD using lineage

42

RDD



Spark program

Sequence of steps of
○ Transformations: apply some function to an RDD to produce another RDD
○ Actions: Turn RDD into data in surrounding file system and vice versa
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DFS:
mydata

R0 R1 R2

DFS:
output

transformation transformationaction action



Example: average word length by letter
> avglens = sc.textFile(file)
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DFS:
mydata

RDD



Example: average word length by letter
> avglens = sc.textFile(file) \
   .flatMap(lambda line: line.split()) 

45

DFS:
mydata

RDD RDD



Example: average word length by letter
> avglens = sc.textFile(file) \
   .flatMap(lambda line: line.split()) \
   .map(lambda word: (word[0], len(word)))
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DFS:
mydata

RDD RDD RDD



Example: average word length by letter
> avglens = sc.textFile(file) \
   .flatMap(lambda line: line.split()) \
   .map(lambda word: (word[0], len(word))) \
   .groupByKey()
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DFS:
mydata

RDD RDD RDD

RDD



Example: average word length by letter
> avglens = sc.textFile(file) \
   .flatMap(lambda line: line.split()) \
   .map(lambda word: (word[0], len(word))) \
   .groupByKey() \
   .map(lambda (k, values): \
     (k, sum(values)/len(values)))

48

DFS:
mydata

RDD RDD RDD

RDD RDD



Example: average word length by letter
> avglens = sc.textFile(file) \
   .flatMap(lambda line: line.split()) \
   .map(lambda word: (word[0], len(word))) \
   .groupByKey() \
   .map(lambda (k, values): \
     (k, sum(values)/len(values)))
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DFS:
mydata

RDD RDD RDD

RDD RDD

Wide 
dependencies

Narrow 
dependencies



Spark implementation

Similar to MapReduce,
○ RDD is divided into chunks, which are given to different compute nodes
○ Transformation on RDD can be performed in parallel on each of the chunks

Two key improvements
○ Lazy evaluation of RDD’s
○ Lineage for RDD’s

50



Lazy evaluation

Spark does not actually apply transformations to RDD’s until it is 
required to do so (e.g., storing RDD to file system or returning a 
result to application)
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val data = sc.textFile("input.txt")      // No execution yet
    .map(line => line.split(" "))        // Not executed
    .filter(words => words.length > 2)   // Still not executed
    .count()                             // Now it executes everything



Lazy evaluation

Spark does not actually apply transformations to RDD’s until it is 
required to do so (e.g., storing RDD to file system or returning a 
result to application)

Potential Benefits:
• Spark can analyze entire chain of operations and combining multiple 

operations to reduce unnecessary compiuations

• No immediate computation/memory usage; resources allocated only when 
needed

• Optimizes data shuffling and stages

52



Resilience of RDD’s

● Spark records the lineage of every RDD, which can be used to re-
create any RDD
○ If R2 is lost, reconstruct from R1 
○ If R1 is lost, reconstruct from R0

○ If R0 is lost, reconstruct from file system

53

DFS:
mydata

R0 R1 R2

DFS:
output



Data Sharing in MapReduce vs Spark

54

This is why Spark is significantly faster for iterative algorithms

MapReduce: disk

Spark: memory



Spark programming guide and paper

● To  learn more about  writing  Spark  applications,  please  
read  the Spark programming guide:
https://spark.apache.org/docs/latest/rdd-programming-
guide.html

● Recommend reading: the Spark paper

55

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
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