
CS 4440 A

Emerging Database
Technologies

Lecture 13

03/24/25

Announcements

• Assignment 3 released
• Start early!
• Due Apr 9

• Exam 2
• Take home, open book and notes, no time limit
• Contents covered: up until lectures next Monday
• Released Apr 2, due Apr 4

• Upcoming guest lectures
• Apr 2, Apr 7
• Mandatory attendance

2

Desirable Properties of Transactions: ACID

• Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

• Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

• Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

• Durability: Once a transaction changes the database and the changes
are committed, these changes must never be lost because of
subsequent failure.

This class: ensuring consistency & isolation via concurrency control

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 18 – Concurrency Control

Supplementary materials

Fundamental of Database Systems (7th Edition)

• Chapter 21 - Concurrency Control Techniques

4

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang.

Agenda

1. Schedule

2. Lock-based Concurrency Control

3. Optimistic Concurrency Control

5

1. Schedule

6

Schedule

A transaction is seen by DBMS as a list of actions.
• READ, WRITE of database objects

• ABORT, COMMIT

Schedule is a list of actions from a set of transactions as seen by the
DBMS

• Two actions from the same transaction T MUST appear in the schedule in
the same order that they appear in T

• Intuitively, a schedule represents an actual or potential execution sequence

7

Assumption: Transactions

communicate only through

READ and WRITE

Transaction primitives

● INPUT(X): copy block X from disk to memory

● READ(X, t): copy X to transaction’s local variable t
 (run INPUT(X) if X is not in memory)

● WRITE(X, t): copy value of t to X (run INPUT(X) if X is not in memory)

● OUTPUT(X): copy X from memory to disk

8

Schedule

● Actions taken by one or more transactions

9

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

T1 T2

Characterizing Schedules based on Serializability
(1)

Serial schedule
• A schedule S is serial if, for every transaction T participating in the

schedule, all the operations of T are executed consecutively in the
schedule.
• Basically, actions from different transactions are NOT interleaved

• Otherwise, the schedule is called nonserial schedule.

Serializable schedule
• A schedule S is serializable if it is equivalent to some serial schedule of the

same n transactions.

Serial and serializable schedules are guaranteed to preserve
the consistency of database states

Serial schedule

● One transaction is executed at a time

11

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

Q: Do serial schedules

allow for high throughput?

Schedule: (T1, T2)

Serializable schedule

● There exists a serial schedule with the same effect

12

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)

Same effect as (T1, T2)

Serializable schedule

● This is not serializable

13

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

50

250

150

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)

Serializable schedule

● Serializable, but only due to the detailed transaction behavior

14

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s+200
WRITE(B, s)

T1 T2 BA

25 25

125

225

325

325

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s+200
WRITE(A, s)

Same effect as (T1, T2)

Serial vs Serializable Schedule

Being serializable is not the same as being serial

Being serializable implies that the schedule is a correct schedule.
• It will leave the database in a consistent state.

Interleaving improves efficiency due to concurrent execution, e.g.,

• While one transaction is blocked on I/O, the CPU can process another transaction

• Interleaving short and long transactions might allow the short transaction to finish
sooner (otherwise it need to wait until the long transaction is done)

Serial

Serializable

Interleaving & Isolation

The DBMS has freedom to interleave TXNs

However, it must pick an interleaving or schedule such
that isolation and consistency are maintained

• Must be as if the TXNs had executed serially!

16

DBMS must pick a schedule which maintains isolation
& consistency

ACID

Abstract view of TXNs: reads and writes

Serializability is hard to check - cannot always know detailed behaviors

DBMS’s abstract view of transactions:

17

T1: r1(A); w1(A); r1(B); w1(B)

T2: r2(A); w2(A); r2(B); w2(B)

Serializable schedule: r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

ri(X): Ti reads X
wi(X): Ti writes X

Conflicts: Anomalies with Interleaved Execution

Conditions for conflicts:
• The operations must belong to different transactions (no conflict within the

same transaction).

• The operations must access the same database object

• At least one of the operations must be a write operation.

Types of conflicts:
• Write-Read (WR)

• Read-Write (RW)

• Write-Write (WW)

18

Implication for schedules:
A pair of consecutive actions
that cannot be interchanged
without changing behavior

WR Conflict

Reading Uncommitted Data (WR Conflicts, “dirty reads”):
• transaction T2 reads an object that has been modified by T1 but

not yet committed

19

RW Conflict

Unrepeatable Reads (RW Conflicts):
• T2 changes the value of an object A that has been read by transaction T1,

which is still in progress

• If T1 tries to read A again, it will get a different result

20

WW Conflict

Overwriting Uncommitted Data (WW Conflicts, “lost update”):
• T2 overwrites the value of A, which has been modified by T1, still in

progress

• Suppose we need the salaries of two employees (A and B) to be the same
• T1 sets them to $1000

• T2 sets them to $2000

21

Characterizing Schedules based on Serializability (2)

Conflict equivalent
• Two conflict equivalent schedules have the same effect on a database

• All pairs of conflicting actions are in same order

• one schedule can be obtained from the other by swapping “non-
conflicting” actions
• either on two different objects

• or both are read on the same object

Conflict serializable
• A schedule S is said to be conflict serializable if it is conflict equivalent to

some serial schedule S’.

Conflict-serializable schedule

● Conflict-equivalent to serial schedule

23

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B);

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B);Serial

Conflict-serializable schedule

● A conflict-serializable schedule is always serializable
● But not vice versa (e.g., serializable schedule due to detailed

transaction behavior)

24

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X);

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X);

Serial

Serializable, but

not conflict

serializable

Serial

Conflict Serializable

Serializable

In-class Exercise

● What are schedules that are conflict-equivalent to (T1, T2)?

25

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

Testing for conflict serializability

Through a precedence graph:
• Looks at only read_Item (X) and write_Item (X) operations

• Constructs a precedence graph (serialization graph) - a graph
with directed edges

• An edge is created from Ti to Tj if one of the operations in Ti
appears before a conflicting operation in Tj

• The schedule is serializable if and only if the precedence graph
has no cycles.

Precedence graph

Can use to decide conflict serializability

27

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

* Also called dependency graph, conflict graph, or serializability graph

Precedence graph

Can use to decide conflict serializability

28

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

29

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

30

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

This is conflict serializable

This is not because of cycle

In-class Exercise

● What is the precedence graph for the schedule:

31

r1(A); r2(A); r1(B); r2(B); r3(A); r4(B); w1(A); w2(B);

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

2. Lock-based Concurrency
Control

32

Enforce serializability with locks

Consistency of transactions
○ Can only read/write element if

granted a lock
○ A locked element must later be

unlocked

Legality of schedules
○ No two transactions may lock

element at the same time

33

Requests from transactions

SchedulerLock table

Serializable

schedule of

actions

li(X): Ti requests lock on X
ui(X): Ti releases lock on X

Enforce serializability with locks

● Legal, but not serializable schedule

34

l1(A); r1(A);
A := A+100
w1(A); u1(A);

l2(B); r2(B)
B := B*2
w2(B); u2(B)

T1 T2 BA

25 25

125

50

250

150

l1(B); r1(B)
B := B+100
w1(B); u1(B);

l2(A); r2(A)
A := A*2
w2(A); u2(A) Locking itself is not

sufficient for enforcing
serializability

Two-phase locking (2PL)

● In every transaction, all lock actions precede all unlock actions
● Guarantees a legal schedule of consistent transactions is

conflict serializable

35

time
locks

acquired

First unlock

Two-phase locking (2PL)

● This is now conflict serializable

36

l1(A); r1(A);
A := A+100
w1(A); l1(B); u1(A);

l2(B); u2(A); r2(B)
B := B*2
w2(B); u2(B)

T1 T2 BA

25 25

125

125

250

250

r1(B); B := B+100
w1(B); u1(B);

l2(A); r2(A)
A := A*2
w2(A);
l2(B) Denied

One problem with 2PL: deadlocks

● Several transactions wait for lock by another transaction forever
● We will address this problem later

37

l1(A); r1(A);

A := A+100

w1(A);

l2(A); Denied

T1 T2 BA

25 25

125

50

l1(B) Denied

l2(B); r2(B);

B := B*2

w2(B);

Locking with several modes

Using one type of lock is not efficient when reading and writing

Instead, use shared locks for reading and exclusive locks for writing

Requirements: analogous notions of consistent transactions, legal
schedules, and 2PL

38

sli(X): Ti requests shared lock on X
xli(X): Ti requests exclusive lock on X

Locking with several modes

● Compatibility matrix

39

Lock held

in mode

S

X

Lock requested

S X

Yes No

No No

Locking with several modes

● More efficient than previous schedule

40

sl1(A); r1(A);

T1 T2

sl2(A); r2(A);
sl2(B); r2(B);

xl1(B) Denied

u2(A); u2(B);

xl1(B); r1(B); w1(B);
u1(A); u1(B);

● T1 and T2 can read A

at the same time

● T1 and T2 use 2PL, so

the schedule is conflict

serializable

Locks With Multiple Granularity

So far, we haven’t explicitly defined which ”database elements” the
transaction should acquire locks on.

A few options:

● Relations → Least concurrency
● Pages or data blocks
● Tuples → Most concurrency, but also expensive

41

Having locks with multiple granularity could lead to unserializable behavior
● e.g., a shared lock on the relation + an exclusive lock on tuples

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

42

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

43

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

44

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

45

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

46

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

47

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

48

T1-IS
R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

T2-IX

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

49

T1-IS
R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

T2-IX

T2-X

Compatibility matrix

● For shared, exclusive, and intention locks

50

IS

IX

S

X

IS IX S X

Yes Yes

Yes Yes

Yes

No

Yes No Yes

No

No

No
No No No No

Holder

Requestor

In-class Exercise

● Given the hierarchy of objects, what is the sequence of lock requests by
T1 and T2 for the sequence of requests: r1(t5); w2(t5); w1(t4);

51

R1

B1 B2

t1 t2 t3 t4 t5

Deadlocks

Deadlock: Cycle of transactions waiting for locks to be released by
each other.

Two ways of dealing with deadlocks:

1. Deadlock detection

2. Deadlock prevention (see Database Systems Book Ch19.2)

Deadlock Detection: Example

First, T1 requests a shared lock
on A to read from it

T1

T2

S(A) R(A)

Waits-for graph:

T1 T2

Deadlock Detection: Example

Next, T2 requests a shared lock
on B to read from it

T1

T2 S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

Deadlock Detection: Example

T2 then requests an exclusive
lock on A to write to it- now T2
is waiting on T1…

T1

T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)Waiting…

Deadlock Detection: Example

Finally, T1 requests an exclusive
lock on B to write to it- now T1 is
waiting on T2… DEADLOCK!

T1

T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)

W(B)

Cycle =
DEADLOCK

Waiting…

Waiting…

Deadlock Detection

Create the waits-for graph:

• Nodes are transactions

• There is an edge from Ti → Tj if Ti is waiting for Tj to release a lock

Periodically check for (and break) cycles in the waits-for graph
• E.g., roll back transaction that introduces a cycle

3. Optimistic Concurrency
Control

58

Optimistic Concurrency Control

Optimistic methods
○ Two methods: validation (covered next), and timestamping
○ Assume no unserializable behavior
○ Abort transactions when violation is apparent
○ may cause transactions to rollback

In comparison, locking methods are pessimistic
○ Assume things will go wrong
○ Prevent nonserializable behavior
○ Delays transactions but avoids rollbacks

59

Optimistic approaches are often better than lock when
transactions have low interference (e.g., read-only)

Concurrency Control by Validation

Each transaction T has a read set RS(T) and write set WS(T)

Three phases of a transaction
○ Read from DB all elements in RS(T) and store their writes in a private

workspace
○ Validate T by comparing RS(T) and WS(T) with other transactions
○ Write elements in WS(T) to disk, if validation is OK (make private

changes public)

Validation needs to be done atomically
○ Validation order = hypothetical serial order

60

To validate, scheduler maintains three sets

START: set of transactions that started, but have not validated

○ START(T), the time at which T started

VAL: set of transactions that validated, but not yet finished write phase

○ VAL(T), time at which T is imagined to execute in the hypothetical serial
order of execution

FIN: set of transactions that have completed write phase

○ FIN(T), the time at which T finished.

61

Validation rules (assume U validated)

62

U start T start U validate T validate

WS(U) = {A, B} RS(T) = {B, C}

Rule 1: if FIN(U) > START(T), RS(T) ∩ WS(U) = ∅

This violates rule 1 because T may be reading B before U writes B

Validation rules (assume U validated)

63

WS(U) = {A, B} RS(T) = {B, C}

Rule 1: if FIN(U) > START(T), RS(T) ∩ WS(U) = ∅

This satisfies rule 1

U start T startU validate T validateU finish

Validation rules (assume U validated)

64

Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

U validate T validate U finish

Validation rules (assume U validated)

65

Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

U validate T validate U finish

This violates rule 2 because T may write B before U writes B

Validation rules (assume U validated)

66

Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

This satisfies rule 2

U validate T validateU finish

Example: CC by Validation

67

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

START(U) VAL(U) FIN(U)

Example: CC by Validation

68

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

WSuccess

Example: CC by Validation

69

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Example: CC by Validation

70

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success Rule 1: if FIN(U) > START(T),

 RS(T) ∩ WS(U) = ∅

Example: CC by Validation

71

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Example: CC by Validation

72

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success

Rule 1: if FIN(U) > START(V),

 RS(V) ∩ WS(U) = ∅

Rule 2: if FIN(T) > VAL(V),

 WS(V) ∩ WS(T) = ∅

Rule 1: if FIN(T) > START(V),

 RS(V) ∩ WS(T) = ∅

Example: CC by Validation

73

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W Rollback

Rule 1: if FIN(T) > START(W),

 RS(W) ∩ WS(T) ≠ ∅

Rule 2: if FIN(V) > VAL(W),

 WS(V) ∩ WS(W) = ∅

Rule 1: if FIN(V) > START(W),

 RS(W) ∩ WS(V) = ∅

One more non-locking CC Techniques

Multi-version Concurrency Control (MVCC)

The DBMS maintains multiple physical versions of a single logical
object in the database:

• When a TXN writes to an object, the DBMS creates a new version of
that object.

• When a TXN reads an object, it reads the newest version that existed
when the TXN started.

74

More on MVCC

Each transaction is classified as reader or writer.
• Readers don’t block writers. Writers don’t block readers.

Read-only txns can read a consistent snapshot without
acquiring locks.

• Use timestamps to determine visibility.

Easily support time-travel queries.

75

Comparison of CC Techniques

Techniques Conflict Resolution Behavior Concurrency

Locking Prevents conflicts

upfront

TXNs may block waiting

for locks

Lower

Validation Detect conflicts at

commit

No blocking during

execution, but may abort

at validation time

Higher

MVCC Avoid conflicts via

versioning

Generally non-blocking for

reads, may have conflicts

for writes

Higher

76

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcements
	Slide 3: Desirable Properties of Transactions: ACID
	Slide 4: Reading Materials
	Slide 5: Agenda

	schedule
	Slide 6: 1. Schedule
	Slide 7: Schedule
	Slide 8: Transaction primitives
	Slide 9: Schedule
	Slide 10: Characterizing Schedules based on Serializability (1)
	Slide 11: Serial schedule
	Slide 12: Serializable schedule
	Slide 13: Serializable schedule
	Slide 14: Serializable schedule
	Slide 15: Serial vs Serializable Schedule
	Slide 16: Interleaving & Isolation
	Slide 17: Abstract view of TXNs: reads and writes
	Slide 18: Conflicts: Anomalies with Interleaved Execution
	Slide 19: WR Conflict
	Slide 20: RW Conflict
	Slide 21: WW Conflict
	Slide 22: Characterizing Schedules based on Serializability (2)
	Slide 23: Conflict-serializable schedule
	Slide 24: Conflict-serializable schedule
	Slide 25: In-class Exercise
	Slide 26: Testing for conflict serializability
	Slide 27: Precedence graph
	Slide 28: Precedence graph
	Slide 29: Precedence graph
	Slide 30: Precedence graph
	Slide 31: In-class Exercise

	lock
	Slide 32: 2. Lock-based Concurrency Control
	Slide 33: Enforce serializability with locks
	Slide 34: Enforce serializability with locks
	Slide 35: Two-phase locking (2PL)
	Slide 36: Two-phase locking (2PL)
	Slide 37: One problem with 2PL: deadlocks
	Slide 38: Locking with several modes
	Slide 39: Locking with several modes
	Slide 40: Locking with several modes
	Slide 41: Locks With Multiple Granularity
	Slide 42: Warning locks
	Slide 43: Warning locks
	Slide 44: Warning locks
	Slide 45: Warning locks
	Slide 46: Warning locks
	Slide 47: Warning locks
	Slide 48: Warning locks
	Slide 49: Warning locks
	Slide 50: Compatibility matrix
	Slide 51: In-class Exercise
	Slide 52: Deadlocks
	Slide 53: Deadlock Detection: Example
	Slide 54: Deadlock Detection: Example
	Slide 55: Deadlock Detection: Example
	Slide 56: Deadlock Detection: Example
	Slide 57: Deadlock Detection
	Slide 58: 3. Optimistic Concurrency Control
	Slide 59: Optimistic Concurrency Control
	Slide 60: Concurrency Control by Validation
	Slide 61: To validate, scheduler maintains three sets
	Slide 62: Validation rules (assume U validated)
	Slide 63: Validation rules (assume U validated)
	Slide 64: Validation rules (assume U validated)
	Slide 65: Validation rules (assume U validated)
	Slide 66: Validation rules (assume U validated)
	Slide 67: Example: CC by Validation
	Slide 68: Example: CC by Validation
	Slide 69: Example: CC by Validation
	Slide 70: Example: CC by Validation
	Slide 71: Example: CC by Validation
	Slide 72: Example: CC by Validation
	Slide 73: Example: CC by Validation
	Slide 74: One more non-locking CC Techniques
	Slide 75: More on MVCC
	Slide 76: Comparison of CC Techniques

