
CS 4440 A

Emerging Database
Technologies

Lecture 12

02/24/25

Announcement

Exam 1 grades
• Max: 97.7, Mean: 82.4, Median: 83.9
• Regrade request open on Gradescope

(until March 5)

Tech Presentation starting this
Wednesday

• A1. Document Databases
• A2. Vector Databases

Revised Project Proposal due next
Wednesday

2

[65.2, 71.7] (71.7, 78.2] (78.2, 84.7] (84.7, 91.2] (91.2, 97.7]
0

2

4

6

8

10

12

14

16

18

20

Recap: RDBMS Architecture

3

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

How does a SQL engine work ?

Translate to RA expression and find

logically equivalent but more efficient

plans

Cost-based query optimization:

estimate cost and select physical plan

with the smallest cost

Query execution (e.g., run join

algorithms against tuples on disk)

Reading Materials

Fundamental of Database Systems (7th Edition)

• Chapter 20 - Introduction to Transaction
Processing Concepts and Theory

4

Acknowledgement:

The following slides have been created adapting the instructor material of the

[RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

Agenda

1. Transaction Basics

2. ACID properties

3. Using transactions in SQL

4. Schedule

5

1. Transaction Basics

6

Transactions: Basic Definition

A transaction (“TXN”) is a sequence of

one or more operations (reads or

writes) which reflects a single real-

world transition.

START TRANSACTION
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’
COMMIT

In the real world, a TXN

either happened

completely or not at all

Transactions: Basic Definition

A transaction (“TXN”) is a sequence of one

or more operations (reads or writes) which

reflects a single real-world transition.

In the real world, a TXN

either happened

completely or not at all

Examples:

• Transfer money between accounts

• Purchase a group of products

• Register for a class (either waitlist or allocated)

9

Transactions in SQL

In “ad-hoc” SQL:
• Default: each statement = one transaction

• No need to explicitly start or end a transaction.

In a program, multiple statements can be grouped together as a
transaction:

START TRANSACTION
 UPDATE Bank SET amount = amount – 100
 WHERE name = ‘Bob’
 UPDATE Bank SET amount = amount + 100
 WHERE name = ‘Joe’
COMMIT

Model of Transaction in this class

We assume that the DBMS is only concerned about reads and
writes to data

• It doesn’t care about what the user’s program does with the
data outside the database.

A transaction is the DBMS’s abstract view of a user program
• The same program executed multiple times would be considered as

different transactions

• The DBMS does not really understand the “semantics” of the data, it
only cares about read and write sequences

Motivation for Transactions

Grouping user actions (reads & writes) into transactions helps
with two goals:

1. Recovery & Durability: Keeping the DBMS data consistent
and durable in the face of crashes, aborts, system
shutdowns, etc.

2. Concurrency: Achieving better performance by parallelizing
TXNs without creating anomalies

Motivation

1. Recovery & Durability of user data is essential for
reliable DBMS usage

• The DBMS may experience crashes (e.g. power outages, etc.)

• Individual TXNs may be aborted (e.g. by the user)

Idea: Make sure that TXNs are either durably stored in full, or
not at all; keep log to be able to “roll-back” TXNs

13

Protection against crashes / aborts

Client 1:
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

What goes wrong?

Crash / abort!

14

Protection against crashes / aborts

Client 1:
 START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99
 COMMIT OR ROLLBACK

Now we’d be fine!

Motivation

2. Concurrent execution of user programs is
essential for good DBMS performance.

• Disk accesses may be frequent and slow- optimize for
throughput (# of TXNs), trade for latency (time for any one
TXN)

• Users should still be able to execute TXNs as if in isolation and
such that consistency is maintained

Idea: Have the DBMS handle running several user
TXNs concurrently, in order to keep CPUs buzy…

16

Multiple users: single statements

Client 1: UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2: UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Two managers attempt to discount products concurrently-
What could go wrong?

17

Multiple users: single statements

Client 1: START TRANSACTION
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’
 COMMIT

Client 2: START TRANSACTION
 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’
 COMMIT

Now works like a charm - we’ll see how / why in the following lectures…

2. ACID Properties

18

Desirable Properties of Transactions: ACID

Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

Durability: Once a transaction changes the database and the changes are
committed, these changes must never be lost because of subsequent
failure.

20

ACID: Atomicity

TXN’s activities are atomic: all or nothing

• Intuitively: in the real world, a transaction is something that
would either occur completely or not at all

Two possible outcomes for a TXN

• It commits: all the changes are made

• It aborts: no changes are made

21

ACID: Consistency
The tables must always satisfy user-specified integrity constraints

• Examples:
• Account number is unique

• Stock amount can’t be negative

• Sum of debits and of credits is 0

Consistency is one of the ACID properties of transactions. It ensures that
a transaction brings the database from one valid state (satisfying all
integrity constraints) to another valid state.

How consistency is achieved:
• Programmer makes sure a txn takes a consistent state to a consistent state

• System makes sure that the txn is atomic

22

ACID: Isolation

A transaction executes concurrently with other transactions

Isolation: the effect is as if each transaction executes in
isolation of the others.

• A user should be able to understand a transaction without considering the
effect of any other concurrently running transaction, even if the DBMS
interleaves their actions

23

ACID: Durability

The effect of a TXN must continue to exist (“persist”) after
the TXN

• And after the whole program has terminated

• And even if there are power failures, crashes, etc.

• And etc…

• Means: Write data to disk
Change on the horizon?
Non-Volatile Ram (NVRam).
Byte addressable.

Ensuring Consistency

User’s responsibility to maintain the integrity constraints, as the
DBMS may not be able to catch such errors in user program’s logic

• e.g., if you transfer money from the savings account to the checking
account, the total amount still remains the same

However, the DBMS may be in inconsistent state “during a
transaction” between actions

• which is ok, but it should leave the database at a consistent state when it
commits or aborts

24

Ensuring Atomicity

Transactions can be incomplete due to several reasons
• Aborted (terminated) by the DBMS because of some anomalies

during execution
• in that case automatically restarted and executed anew

• The system may crash (e.g., no power supply)

• A transaction may decide to abort itself encountering an
unexpected situation
• e.g., read an unexpected data value or unable to access disks

25

Ensuring Atomicity

A transaction interrupted in the middle can leave the database in an
inconsistent state

• DBMS has to remove the effects of partial transactions from the database

DBMS ensures atomicity by “undoing” the actions of incomplete
transactions

DBMS maintains a “log” of all changes to do so

26

Ensuring Durability

The log also ensures durability

If the system crashes before the changes made by a completed
transactions are written to the disk, the log is used to remember
and restore these changes when the system restarts

“recovery manager”
• takes care of atomicity and durability

27

Ensuring Isolation

DBMS guarantees isolation
• If T1 and T2 are executed concurrently, either the effect would be T1-

>T2 or T2->T1 (and from a consistent state to a consistent state)

But DBMS provides no guarantee on which of these order is
chosen

Often ensured by “locks” but there are other methods too

28

The Correctness Principle
A fundamental assumption about transaction is:

29

DB in consistent state

Txn

DB in consistent stateRun in isolation

If a transaction executes in the absence of any other
transactions or system errors, and it starts with the database in

a consistent state, then the database is also in a consistent

state when the transactions ends.

A Note: ACID is contentious!

Many debates over ACID, both historically
and currently

Many “NoSQL” DBMSs relax ACID

In turn, now “NewSQL” reintroduces ACID
compliance to NoSQL-style DBMSs…

ACID is an extremely important & successful

paradigm, but still debated!

3. Using Transactions in SQL

31

Using Transactions in SQL

● SQL allows the programmer to
group several statements in a
single transaction

● Either all operations are performed
or none are

● A single SQL statement is always
considered to be atomic.

32

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

COMMIT;

Causes transaction to

end successfully

Marks beginning

of transaction

Using Transactions in SQL

● ROLLBACK causes the transaction
to abort and undo any changes

33

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

ROLLBACK;

We find that there are

insufficient funds to make

transfer

Using Transactions in SQL

34

SET TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

• ISOLATION LEVEL {
 SERIALIZABLE
 | REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED }

• READ WRITE | READ ONLY

Source: https://www.postgresql.org/docs/current/sql-set-transaction.html

Isolation Levels

• With SERIALIZABLE: the interleaved
execution of transactions will adhere
to our notion of serializability.

• However, if any transaction executes
at a lower level, then serializability
may be violated.

Access Mode
• The default is READ WRITE

unless the isolation level of READ
UNCOMITTED is specified, in
which case READ ONLY is
assumed.

https://www.postgresql.org/docs/current/sql-set-transaction.html

Read-only transactions

Transactions that only read data and do not write can be executed in parallel

Tell DBMS before running transaction:

35

SET TRANSACTION READ ONLY;

Dirty reads

Reading data written by a transaction that has not yet committed

Consider this seat selection example:

1. Find available seat and reserve by setting seatStatus to ‘occupied’

2. Ask customer for approval of seat
a. If so, commit
b. If not, release seat by setting seatStatus to ‘available’ and repeat Step (1)

36

Dirty read

If we allow dirty reads, this can happen

37

User 1 finds seat 22A empty and

reserves it (22A is occupied)

User 1 disapproves the 22A

reservation

time User 2 is told that seat 22A is

already occupied (dirty read)

Dirty reads

If this result is acceptable, the transaction processing can be done faster
○ DBMS does not have to prevent dirty reads
○ Allows more parallelism

Tell DBMS before running transaction:

38

SET TRANSACTION READ WRITE
 ISOLATION LEVEL READ UNCOMMITTED;

Read committed

Only allow reads from committed data, but same query may get different answers

39

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

read x

result = 10

update x = 20

commit

read x

result = 20

time

Transaction 1 Transaction 2

Repeatable read
Any tuple that was retrieved will be retrieved again if the same query is repeated,
even though other transactions may modify the individual rows that were read.

40

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

read x

result = 10

update x = 20

commit

read x

result = 10

time

Transaction 1 Transaction 2

Repeatable read

May allow “phantom” tuples, which are new tuples inserted between queries

41

size =

COUNT(Flights)

time

Transaction 1 Transaction 2

size =

COUNT(Flights)

size = N

size = N + 1

Insert new flights

Repeatable Read

Guarantee: rows read by a transaction will not change if read again
in that transaction.

• Doesn’t guarantee anything about rows that weren't originally read.

Why Phantom Reads Can Occur
• Locking: Repeatable read typically locks the rows it reads, but not the

gaps between rows.

• New Inserts: Without gap locking, new rows could be inserted that match
your WHERE clause.

42

Comparison of SQL isolation levels

43

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

Comparison of SQL isolation levels

44

• Rarely used in practice,

as the performance is

not much better than

other levels

• In fact, PostgreSQL

doesn’t support this

isolation level

• No lock on data

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

Comparison of SQL isolation levels

45

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

• Fast and simple to use;

adequate for many

applications

• Shared lock (read lock) on

rows when they are read,

exclusive lock (write lock)

on rows when they are

being modified

Comparison of SQL isolation levels

46

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

• Good for reporting,

data warehousing

types of workload

• Shared locks on all

rows read by a

transaction

Comparison of SQL isolation levels

47

Isolation Level Dirty Reads Nonrepeatable

Reads

Phantoms

READ
UNCOMMITTED

READ
COMMITTED

REPEATABLE READ

SERIALIZABLE

• Recommended only when

updating transactions

contain logic sufficiently

complex that they might

give wrong answers in

READ COMMITED mode

• Locking the entire range of

rows that could potentially

be accessed by a

transaction's queries

4. Schedule

48

Schedule

A transaction is seen by DBMS as a list of actions.
• READ, WRITE of database objects

• ABORT, COMMIT

Schedule is a list of actions from a set of transactions as seen by the
DBMS

• Two actions from the same transaction T MUST appear in the schedule in
the same order that they appear in T

• Intuitively, a schedule represents an actual or potential execution sequence

49

Assumption: Transactions

communicate only through

READ and WRITE

Transaction primitives

● INPUT(X): copy block X from disk to memory

● READ(X, t): copy X to transaction’s local variable t
 (run INPUT(X) if X is not in memory)

● WRITE(X, t): copy value of t to X (run INPUT(X) if X is not in memory)

● OUTPUT(X): copy X from memory to disk

50

Schedule

● Actions taken by one or more transactions

51

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

T1 T2

Characterizing Schedules based on Serializability
(1)

Serial schedule
• A schedule S is serial if, for every transaction T participating in the

schedule, all the operations of T are executed consecutively in the
schedule.
• Otherwise, the schedule is called nonserial schedule.

Serializable schedule
• A schedule S is serializable if it is equivalent to some serial schedule of the

same n transactions.

Serial and serializable schedules are guaranteed to preserve

the consistency of database states

Serial schedule

● One transaction is executed at a time

53

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

Q: Do serial schedules

allow for high throughput?

Schedule: (T1, T2)

Serializable schedule

● There exists a serial schedule with the same effect

54

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)

Same effect as (T1, T2)

Serializable schedule

● This is not serializable

55

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s*2
WRITE(B, s)

T1 T2 BA

25 25

125

50

250

150

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)

Serializable schedule

● Serializable, but only due to the detailed transaction behavior

56

READ(A, t)
t := t+100
WRITE(A, t)

READ(B, s)
s := s+200
WRITE(B, s)

T1 T2 BA

25 25

125

225

325

325

READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s+200
WRITE(A, s)

Same effect as (T1, T2)

Serial vs Serializable Schedule

Being serializable is not the same as being serial

Being serializable implies that the schedule is a correct schedule.
• It will leave the database in a consistent state.

Interleaving improves efficiency due to concurrent execution, e.g.,

• While one transaction is blocked on I/O, the CPU can process another transaction

• Interleaving short and long transactions might allow the short transaction to finish
sooner (otherwise it need to wait until the long transaction is done)

Serial

Serializable

Abstract view of TXNs: reads and writes

Serializability is hard to check - cannot always know detailed behaviors

DBMS’s abstract view of transactions:

58

T1: r1(A); w1(A); r1(B); w1(B)

T2: r2(A); w2(A); r2(B); w2(B)

Serializable schedule: r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

ri(X): Ti reads X
wi(X): Ti writes X

Conflicts: Anomalies with Interleaved Execution

A pair of consecutive actions that cannot be interchanged without
changing behavior

• Write-Read (WR)

• Read-Write (RW)

• Write-Write (WW)

* No conflict with “RR” if no write is involved

59

WR Conflict

Reading Uncommitted Data (WR Conflicts, “dirty reads”):
• transaction T2 reads an object that has been modified by T1 but

not yet committed

60

RW Conflict

Unrepeatable Reads (RW Conflicts):
• T2 changes the value of an object A that has been read by transaction T1,

which is still in progress

• If T1 tries to read A again, it will get a different result

61

WW Conflict

Overwriting Uncommitted Data (WW Conflicts, “lost update”):
• T2 overwrites the value of A, which has been modified by T1, still in

progress

• Suppose we need the salaries of two employees (A and B) to be the same
• T1 sets them to $1000

• T2 sets them to $2000

62

Characterizing Schedules based on Serializability (2)

Conflict equivalent
• Two conflict equivalent schedules have the same effect on a database

• All pairs of conflicting actions are in same order

• one schedule can be obtained from the other by swapping “non-
conflicting” actions
• either on two different objects

• or both are read on the same object

Conflict serializable
• A schedule S is said to be conflict serializable if it is conflict equivalent to

some serial schedule S’.

Conflict-serializable schedule

● Conflict-equivalent to serial schedule

64

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B);

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B);Serial

Conflict-serializable schedule
● A conflict-serializable schedule is always serializable
● But not vice versa (e.g., serializable schedule due to detailed

transaction behavior)

65

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X);

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X);

Serial

Serializable, but

not conflict

serializable

Serial

Conflict Serializable

Serializable

In-class Exercise

● What are schedules that are conflict-equivalent to (T1, T2)?

66

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

Testing for conflict serializability

Through a precedence graph:
• Looks at only read_Item (X) and write_Item (X) operations

• Constructs a precedence graph (serialization graph) - a graph
with directed edges

• An edge is created from Ti to Tj if one of the operations in Ti
appears before a conflicting operation in Tj

• The schedule is serializable if and only if the precedence graph
has no cycles.

Precedence graph

Can use to decide conflict serializability

68

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

* Also called dependency graph, conflict graph, or serializability graph

Precedence graph

Can use to decide conflict serializability

69

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

70

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

71

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

This is conflict serializable

This is not because of cycle

In-class Exercise

● What is the precedence graph for the schedule:

72

r1(A); r2(A); r1(B); r2(B); r3(A); r4(B); w1(A); w2(B);

• One node per committed transaction

• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions

 – Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcement
	Slide 3: Recap: RDBMS Architecture
	Slide 4: Reading Materials
	Slide 5: Agenda
	Slide 6: 1. Transaction Basics
	Slide 7: Transactions: Basic Definition
	Slide 8: Transactions: Basic Definition
	Slide 9: Transactions in SQL
	Slide 10: Model of Transaction in this class
	Slide 11: Motivation for Transactions
	Slide 12: Motivation
	Slide 13: Protection against crashes / aborts
	Slide 14: Protection against crashes / aborts
	Slide 15: Motivation
	Slide 16: Multiple users: single statements
	Slide 17: Multiple users: single statements

	ACID
	Slide 18: 2. ACID Properties
	Slide 19: Desirable Properties of Transactions: ACID
	Slide 20: ACID: Atomicity
	Slide 21: ACID: Consistency
	Slide 22: ACID: Isolation
	Slide 23: ACID: Durability
	Slide 24: Ensuring Consistency
	Slide 25: Ensuring Atomicity
	Slide 26: Ensuring Atomicity
	Slide 27: Ensuring Durability
	Slide 28: Ensuring Isolation
	Slide 29: The Correctness Principle
	Slide 30: A Note: ACID is contentious!

	Transaction in SQL
	Slide 31: 3. Using Transactions in SQL
	Slide 32: Using Transactions in SQL
	Slide 33: Using Transactions in SQL
	Slide 34: Using Transactions in SQL
	Slide 35: Read-only transactions
	Slide 36: Dirty reads
	Slide 37: Dirty read
	Slide 38: Dirty reads
	Slide 39: Read committed
	Slide 40: Repeatable read
	Slide 41: Repeatable read
	Slide 42: Repeatable Read
	Slide 43: Comparison of SQL isolation levels
	Slide 44: Comparison of SQL isolation levels
	Slide 45: Comparison of SQL isolation levels
	Slide 46: Comparison of SQL isolation levels
	Slide 47: Comparison of SQL isolation levels

	Schedule
	Slide 48: 4. Schedule
	Slide 49: Schedule
	Slide 50: Transaction primitives
	Slide 51: Schedule
	Slide 52: Characterizing Schedules based on Serializability (1)
	Slide 53: Serial schedule
	Slide 54: Serializable schedule
	Slide 55: Serializable schedule
	Slide 56: Serializable schedule
	Slide 57: Serial vs Serializable Schedule
	Slide 58: Abstract view of TXNs: reads and writes
	Slide 59: Conflicts: Anomalies with Interleaved Execution
	Slide 60: WR Conflict
	Slide 61: RW Conflict
	Slide 62: WW Conflict
	Slide 63: Characterizing Schedules based on Serializability (2)
	Slide 64: Conflict-serializable schedule
	Slide 65: Conflict-serializable schedule
	Slide 66: In-class Exercise
	Slide 67: Testing for conflict serializability
	Slide 68: Precedence graph
	Slide 69: Precedence graph
	Slide 70: Precedence graph
	Slide 71: Precedence graph
	Slide 72: In-class Exercise

