
CS 4440 A

Emerging Database
Technologies

Lecture 11

02/17/25

Announcement

Proposal draft feedback will be released this week
• Revised proposal due Mar 5

• Revised proposal instructions will be released later today

Reading Materials

Query execution (Chapters 15.1 - 15.6)
○ Physical operators
○ Implementing operators and estimating costs

Query optimization (Chapters 16.1 - 16.5)
○ Parsing
○ Algebraic laws
○ Parse tree -> logical query plan
○ Estimating result sizes
○ Cost-based optimization

3

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang.

Agenda

1. Logical Optimization

2. Physical Optimization

3. Estimating cost of a physical plan

4. Cost-based Query Optimization

4

1. Logical Optimization

5

Recap: RDBMS Architecture

How does a SQL engine work ?

SQL

Query

Relational

Algebra

(RA) Plan

Optimized

RA Plan
Execution

We saw how we can transform declarative SQL queries

into precise, compositional RA plans

RDBMS Architecture

How is the RA “plan” executed?

SQL

Query

Relational

Algebra

(RA) Plan

Optimized

RA Plan
Execution

RA Plan Execution

Natural Join / Join:
• Last lecture: how to use memory & IO cost considerations to pick the

correct algorithm to execute a join with (BNLJ, SMJ, HJ…)!

Selection:
• We saw how to use indexes to aid selection
• Can always fall back on scan / binary search as well

Projection:
• The main operation here is finding distinct values of the project tuples; we

briefly discussed how to do this with e.g. hashing or sorting

We already know how to execute all the basic operators!

RDBMS Architecture

How does a SQL engine work ?

SQL

Query

Relational

Algebra

(RA) Plan

Optimized

RA Plan
Execution

We’ll look at how to then optimize these

plans now

Logical vs. Physical Optimization

Logical optimization:
• Find equivalent plans that are more efficient
• Intuition: Minimize # of tuples at each step by

changing the order of RA operators

Physical optimization:
• Find algorithm with lowest IO cost to

execute our plan
• Intuition: Calculate based on physical parameters

(buffer size, etc.) and estimates of data size
(histograms)

Execution

SQL Query

Relational

Algebra (RA)

Plan

Optimized

RA Plan

Note: We can visualize the plan as a tree

Π𝐵

R(A,B) S(B,C

)

Π𝐵(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶)

Bottom-up tree traversal = order of operation execution!

A simple plan

Π𝐵

R(A,B) S(B,C

)

What SQL query does this

correspond to?

Are there any logically

equivalent RA

expressions?

“Pushing down” projection

Π𝐵

R(A,B) S(B,C

)

Π𝐵

R(A,B) S(B,C

)

Π𝐵

Why might we prefer this plan?

Logical Optimization

This process is called logical optimization
• Relational algebra is an important abstraction.

Heuristically, we want selections and projections to occur as early
as possible in the plan

• Terminology: “push down selections” and “pushing down projections.”

Intuition: We will have fewer tuples in a plan.
• Could fail if the selection condition is very expensive (say runs some

image processing algorithm).

Commutative and associative laws

Example:

● Same holds for ⋈, ∪, ⋂
● Holds for both set and bag semantics

15

𝑅 × 𝑆 = 𝑆 × 𝑅
(𝑅 × 𝑆) × 𝑇 = 𝑅 × (𝑆 × 𝑇)

Laws involving selection

Example:

16

𝜎𝑐(𝑅 ⋈ 𝑆) = 𝜎𝑐(𝑅) ⋈ 𝑆

𝜎𝑐(𝑅 ⋈ 𝑆) = 𝜎𝑐(𝑅) ⋈ 𝜎𝑐(𝑆)

R has all attributes mentioned in C

R and S both have all attributes

mentioned in C

Rule of thumb:
• Since selections tend to reduce the size of relations significantly, it

usually helps to push the selections down the tree as far as they will

go without changing what the expression does

Algebraic Laws for Improving Query Plans

Additional reading: Chapter 16.2
• Laws involving projection

• Laws about joins and product

• Laws involving grouping and aggregations

Note that this is not an exhaustive set of operations
• This covers local re-writes; global re-writes possible but much harder

This simple set of tools allows us to greatly improve the

execution time of queries by optimizing RA plans!

Example: Optimizing the SFW RA Plan

Π𝐴,𝐷

R(A,B) S(B,C)

T(C,D

)

Π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Translating to RA

Π𝐴,𝐷

R(A,B) S(B,C)

T(C,D

)

Π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan Push down
selection on A so

it occurs earlier

Π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D

)

Π𝐴,𝐷 𝑇 ⋈ 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan Push down
selection on A so

it occurs earlier

Π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D

)

Π𝐴,𝐷 𝑇 ⋈ 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan Push down
projection so it

occurs earlier

Π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D

)

Π𝐴,𝐷 𝑇 ⋈ Π𝐴,𝑐 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan We eliminate B

earlier!

Π𝐴,𝐶

2. Physical Optimization

24

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

25

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

26

πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

Physical

query plan 1

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

27

πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

Physical

query plan 2

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

28

πstarName

⋈

StarsIn Movies

(File scan)

(Nested loop join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

(Index scan)

Physical

query plan 3

Select physical query plan

29

Logical Query Plan

P1 P2 Pn...

C1 C2 Cn...

Pick best!

In general, there can be many possible physical plans

Physical Plans

Estimated Cost

Query execution

30

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

The best physical plan is translated to actual machine code

Machine Code

(e.g., C)

3. Estimating cost of a physical plan

Estimating the cost of a physical query plan

Step 1: Estimate the size of results
● Projection
● Selection
● Joins

Step 2: Estimate the # of disk I/O’s

32

We already know how to do step 2 for joins!

Notation: Size parameters

B(R): # blocks to hold tuples in R

T(R): # tuples in R

V(R, a): # distinct values of attribute a in R

33

Notation: Size parameters

34

A B C

cat 1 2000

cat 1 2001

dog 1 2002

A: 10 byte string

B: 4 byte integer

C: 8 byte date

R

Suppose each block is 100 bytes

Then a block fits 4 tuples

If T(R) = 1000

Then B(R) = 1000 / 4 = 250

For πA(R), each block fits 10 tuples, so

B(R) = 1000 / 10 = 100

Example: T(R) = 3

V(R, A) = 2

V(R, B) = 1

V(R, C) = 3

Estimating size of selection

A selection generally reduces the number of tuples

35

Estimated result size

(without any additional information)

*Assumption: values in A = c are uniformly distributed over possible V(R, A) values

𝑆 = 𝜎𝐴=𝑐(𝑅) 𝑇 𝑆 =
𝑇 𝑅

𝑉(𝑅, 𝐴)

Estimating size of selection

A selection generally reduces the number of tuples

36

Estimated result size

(without any additional information)

*Assumption: queries involving inequalities tend to retrieve a small fraction

of possible tuples

𝑆 = 𝜎𝐴<𝑐(𝑅) 𝑇 𝑆 =
𝑇 𝑅

3

Example: postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres/blob/REL_14_STABLE/src/include/utils/selfuncs.h

Estimating size of selection

37

𝑆 = 𝜎𝐴=10 ∧ 𝐵<20 𝑅

If selection condition is AND of conditions, multiply all selectivity factors

𝑇 𝑅 = 10,000
𝑉 𝑅, 𝐴 = 50

𝑇 𝑆 =
𝑇 𝑅

50 × 3
= 67

Q: What is T(S)?

Estimating size of selection

38

𝑆 = 𝜎𝐴=10 ∨ 𝐵<20 𝑅

If selection condition is an OR of conditions, can assume independence
of conditions

𝑇 𝑅 = 10,000
𝑉 𝑅, 𝐴 = 50

𝑇 𝑆 =
𝑇 𝑅

1 − (1 − 1/50)(1 − 1/3)
= 3466

Q: What is T(S)?

Estimating size of join

We study

Two simplifying assumptions
○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is

a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

39

𝑅 𝑋, 𝑌 ⋈ 𝑆(𝑌, 𝑍)

Example when these assumptions are true:
Y is a key in S and the corresponding foreign key in R

Estimating size of join

Two simplifying assumptions
○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-

value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

40

For each pair (r, s), we know that the Y-value of S

is one of the Y-values of R by containment of

value sets, so the probability of r having the

same Y-value is 1/V(R,Y)

𝑅 𝑋, 𝑌 ⋈ 𝑆(𝑌, 𝑍)

𝑪𝒂𝒔𝒆 𝟏: 𝑉 𝑅, 𝑌 ≥ 𝑉 𝑆, 𝑌
⇒ 𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/𝑉(𝑅, 𝑌)

𝑪𝒂𝒔𝒆 𝟐: 𝑉 𝑅, 𝑌 < 𝑉 𝑆, 𝑌
⇒ 𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/𝑉(𝑆, 𝑌)

𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/max(𝑉 𝑅, 𝑌 , 𝑉(𝑆, 𝑌))

Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T

41

R (A, B) S (B, C)

T (R) = 1000
V (R, B) = 20

T (S) = 2000
V (S, B) = 50
V (S, C) = 100

T (C, D)

T (T) = 5000
V (T, C) = 500
V (T, D) = 200

Q: What is T(R ⋈ S) and V(R ⋈ S, C)?

Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T

42

R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100

R (A, B) S (B, C)

T (R) = 1000
V (R, B) = 20

T (S) = 2000
V (S, B) = 50
V (S, C) = 100

Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T

43

(R ⋈ S) ⋈ T

T ((R ⋈ S) ⋈ T)
= 40000 x 5000 / max{100, 500}
= 400000

R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100

T (C, D)

T (T) = 5000
V (T, C) = 500
V (T, D) = 200

Joins of many relations

Compute intermediate T, V results
Example: consider R ⋈ S ⋈ T

44

R ⋈ (S ⋈ T)

T(R ⋈ (S ⋈ T)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
 = 400000

Assuming containment and preservation of value sets, the
estimated result size is the same regardless of how we

group and order the terms in a natural join of relations.

Natural joins with multiple join attributes

Same as R ⋈ S with single join attribute, but divide by max{V(R, A), V(S,
A)} for each joining attribute A

45

R(A, B, C) S(B, C, D)

T(R) = 1000
V(R, B) = 20
V(R, C) = 100

T(S) = 2000
V(S, B) = 50
V(S, C) = 50

R ⋈ S

T(R ⋈ S) = 1000 x 2000
 / max{20, 50}
 / max {100, 50}
 = 400

Further reading

• Using similar ideas, can estimate sizes of other operations like
union, intersect, difference, duplicate elimination, grouping

• Chapter 16.4.7

Obtaining estimates for size parameters

Scan entire relation R to obtain T(R), V(R, A), and B(R)

A DBMS may also compute histograms per attribute for more
accurate estimations

○ Equal-width and equal-depth histograms

47

10 20 30 40 50 12 18 25 33 50

Computation of statistics

Computed periodically or by request

Sampling used to compute approximate statistics quickly

Example:

○ ANALYZE command in Postgres

○ See also: https://www.postgresql.org/docs/current/planner-stats.html

48

https://www.postgresql.org/docs/current/planner-stats.html

Estimating the cost of a physical query plan

Step 1: Estimate the size of results
● Projection
● Selection
● Joins

Step 2: Estimate the # of disk I/O’s

49

Ex: Clustered vs. Unclustered Index

Cost to do a range query for M entries over N-page file
(P per page):

Clustered:

• To traverse: Logf(1.5N)

• To scan: 1 random IO +
𝑀−1

𝑃
 sequential IO

Unclustered:

• To traverse: Logf(1.5N)

• To scan: ~ M random IO

Suppose we are using a
B+ Tree index with:
• Fanout f
• Fill factor 2/3

Ex: Nested-loop Join

Suppose (from estimates):
• T(R) = 10,000, T(S) = 5,000

Suppose 10 records fit in one block:
• B(R)=1000, B(S)=500

For each tuple in R, read all S blocks and join:

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
 for r in R:
 for s in S:
 if r[A] == s[A]:
 yield (r,s)

B(R) + T(R)*B(S) + OUT

Cost(R ⋈ S): 1000 + 10000 x 500 = 5,001,000 I/O’s

Memory usage: 2 blocks

Ex: Block Nested-loop Join

Suppose (from estimates):
• T(R) = 10,000, T(S) = 5,000

Suppose 10 records fit in one block:
• B(R)=1000, B(S)=500

Extra memory M=101:
• read 100 blocks of S at a time

B 𝑅 +
𝐵 𝑅

𝑀−1
𝐵(𝑆) + OUT

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for each M-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if r[A] == s[A]:

 yield (r,s)

Total cost of S ⋈ R: 500 + 500/100 x 1000) = 5500 I/O’s

Memory Usage: M blocks

4. Cost-based Query Optimization

Query Optimization Overview

Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)

o Without executing the plan!
o Choose plan with lowest cost

54

The Three Parts of an Optimizer

Cost estimation
○ Estimate size of results
○ Also consider whether output is sorted/intermediate results written to

disk etc.

Search space
○ Algebraic laws, restricted types of join trees

Search algorithm
○ Example: Selinger algorithm

55

Search Space

56

Query: 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3 ⋈ 𝑅4

Logical plan space:
○ Several possible structures of the trees

○ Each tree can have n! permutations of relations on leaves

Physical plan space:
○ Different implementation (e.g., join algorithm) and scanning of

intermediate operators for each logical plan

Heuristic for pruning plan space

Apply predicates as early as possible

Avoid plans with cartesian products
● (𝑅 𝐴, 𝐵 ⋈ 𝑇(𝐶, 𝐷)) ⋈ S(𝐵, 𝐶)

Consider only left-deep join trees
● Studied extensively in traditional query optimization literature
● Works well with existing join algorithms such as nested-loop and hash join

● e.g., might not need to write tuples to disk if enough memory

57

Search Algorithm

Selinger Algorithm: dynamic programming based
o Based on System R (aka Selinger) style optimizer [1979]
o Consider different logical and physical plans at the same time
o Limited to joins: join reordering algorithm
o Cost of a plan is I/O + CPU

Exploits ”principle of optimality”
○ Optimal for “whole” made up from optimal for ”parts”

Consider the search space of left-deep join trees
o Reduces search space but still n! permutations

58

59

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

60

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

61

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

62

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Notation and Setup

OPT({R1, R2, R3}):
 Cost of optimal plan to join R1, R2, R3

T({R1, R2, R3}):
 Number of tuples in 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3

Simple Cost Model: Cost(𝑅 ⋈ 𝑆) = 𝑇(𝑅) + 𝑇(𝑆)
 All other operations have 0 cost

63

* The simple cost model used for illustration only, it is not used in practice

Slides adapted from Duke CompSci 516 by Sudeepa Roy

64

Cost Model Example

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

OPT({R1, R2, R3})=

65

OPT({R1, R2}) + T({R1, R2}) + T(R3)

OPT({R2, R3}) + T({R2, R3}) + T(R1)

OPT({R1, R3}) + T({R1, R3}) + T(R2)

* Valid only for the simple cost model

min

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

66

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

67

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

68

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

69

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

70

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

71

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Putting it all together: RDBMS Architecture

72

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

How does a SQL engine work ?

Translate to RA expression and find

logically equivalent but more efficient

plans

Cost-based query optimization:

estimate cost and select physical

plan with the smallest cost

Query execution (e.g., run join

algorithms against tuples on disk)

	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Announcement
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: 1. Logical Optimization
	Slide 6: Recap: RDBMS Architecture
	Slide 7: RDBMS Architecture
	Slide 8: RA Plan Execution
	Slide 9: RDBMS Architecture
	Slide 10: Logical vs. Physical Optimization
	Slide 11: Note: We can visualize the plan as a tree
	Slide 12: A simple plan
	Slide 13: “Pushing down” projection
	Slide 14: Logical Optimization
	Slide 15: Commutative and associative laws
	Slide 16: Laws involving selection
	Slide 17: Algebraic Laws for Improving Query Plans
	Slide 18: Example: Optimizing the SFW RA Plan
	Slide 19: Translating to RA
	Slide 20: Optimizing RA Plan
	Slide 21: Optimizing RA Plan
	Slide 22: Optimizing RA Plan
	Slide 23: Optimizing RA Plan
	Slide 24: 2. Physical Optimization
	Slide 25: Select physical query plan
	Slide 26: Select physical query plan
	Slide 27: Select physical query plan
	Slide 28: Select physical query plan
	Slide 29: Select physical query plan
	Slide 30: Query execution
	Slide 31: 3. Estimating cost of a physical plan
	Slide 32: Estimating the cost of a physical query plan
	Slide 33: Notation: Size parameters
	Slide 34: Notation: Size parameters
	Slide 35: Estimating size of selection
	Slide 36: Estimating size of selection
	Slide 37: Estimating size of selection
	Slide 38: Estimating size of selection
	Slide 39: Estimating size of join
	Slide 40: Estimating size of join
	Slide 41: Joins of many relations
	Slide 42: Joins of many relations
	Slide 43: Joins of many relations
	Slide 44: Joins of many relations
	Slide 45: Natural joins with multiple join attributes
	Slide 46: Further reading
	Slide 47: Obtaining estimates for size parameters
	Slide 48: Computation of statistics
	Slide 49: Estimating the cost of a physical query plan
	Slide 50: Ex: Clustered vs. Unclustered Index
	Slide 51: Ex: Nested-loop Join
	Slide 52: Ex: Block Nested-loop Join
	Slide 53: 4. Cost-based Query Optimization
	Slide 54: Query Optimization Overview
	Slide 55: The Three Parts of an Optimizer
	Slide 56: Search Space
	Slide 57: Heuristic for pruning plan space
	Slide 58: Search Algorithm
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Notation and Setup
	Slide 64
	Slide 65: Selinger Algorithm
	Slide 66: Selinger Algorithm
	Slide 67: Selinger Algorithm
	Slide 68: Selinger Algorithm
	Slide 69: Selinger Algorithm
	Slide 70: Selinger Algorithm
	Slide 71: Selinger Algorithm
	Slide 72: Putting it all together: RDBMS Architecture

