Emerging Database
lTechnologies

Lecture 1
01/06/25



Agenda

Course logistics and overview

A brief history of databases
* 1960s — 2020s



The essentials

Instructor: Kexin Rong
e Office: Klaus 3322

TAs:
o Jeff Xu
* Tianji Yang

How to reach us: cs4440-staff@groups.gatech.edu

* The above email reaches all of the course staff. You are strongly
encouraged to use this, instead of emailing individual course staff.



mailto:cs6400-staff@groups.gatech.edu

The essentials

Course website: hitps://kexinrong.github.io/sp25-cs4440/
schedule, assignments, and course material

Canvas/Gradescope : submitting assignments

Piazza: discussing course contents, finding teammates
 hitps://piazza.com/gatech/spring2025/cs4440a/home

Email: special requests

OH: Starting next week. Time will be announced.


https://kexinrong.github.io/sp25-cs4440/
https://piazza.com/gatech/spring2025/cs4440a/home

Course materials

o lextbooks:

- Database Systems: The Complete

Book (2nd edition)
05 & DATABASE
- Fundamentals of Database Systems === = IRSILE

o~ e L T
P e [HI

S COMPLETE

o Can use interchangeably

o Both books have international
versions and have PDFs
searchable online




Course Learning Objectives

Learn about advanced and emerging database technologies
beyond what is covered in CS4400 and get hands on experience
with building database applications.

4

Multiple ways to learn:

* Through lectures on database fundamentals Q

* Through surveying technologies in the wild

* Through an implementation-oriented course project




Grading

Assignments — 30%
« Combination of individual and group assignments

Course Project — 25%
* Team-based

Exams — 40%
* Exam 1 (in-class) — 20%
* Exam 2 (take-home) — 20%

Participation - 5%

https://kexinrong.github.io/sp25-cs4440/erading/



https://kexinrong.github.io/sp25-cs4440/grading/

Assignments Overview

Assignment 1: Technology Review (5%)
» Released by EOD today; due Jan 27

Assignment 2: Technology Review (10%)
« Group-based

Assignment 3: Query Optimization (5%)

Assignment 4: TBD (10%)



Course Project

Groups of 4, implementation-oriented
Need to use some database systems

Examples of past projects can be found on Canvas
* Files -> Sample Projects



-Xams

Written tests based on material covered in lectures
« Exam 1: in-class (Feb 10) — 20%

« Exam 2: take-home (Mar 26) — 20%

« focus on materials that are not covered by Exam 1



Attendance

| dislike mandatory attendance.

But in the past we noticed...
» People who did not attend did worse ®
» People who did not attend used more course resources ®
» People who did not attend were less happy with the course ®

This year's policy: voluntary attendance
« Except during guest lectures and student presentations



Course Policy - IMPORTANT

Follow the Georgia Tech Honor Code!

Late policy: One automatic late day without penalty (only applicable
to individual assignments). Otherwise 10% deduction per 24 hours.

Generative Al policy: Clearly attribute Al-generated contents (e.g.,
direct quotes, different color text). No more than 10% Al-generated
contents in submissions.

Details: https://kexinrong.github.io/sp25-cs4440/policy/

12


https://kexinrong.github.io/sp25-cs4440/policy/

Course Outline

1. How can one use a DBMS (programmer’s/designer’s perspective)

« We will NOT teach SQL
« Design a good database (design theory)

2. How does a DBMS work (system’s perspective, also for programmers

for writing better queries)
« Physical design: Storage and index

* Query processing and optimization
» Transactions: recovery and concurrency control

3. Beyond relational databases
* Map Reduce, Spark, NewSQL
« Selected research papers

13



A brief history of

databases
(1960s-2020s)

—1] What Goes Around Comes Around.

—] Readings in DB Systems. 2006.

Acknowledgement: The following slides were adapted from Prof. Andy Pavlo (CMU)


https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf

Main takeaway: history repeats itself

Old database issues are still relevant today.
* Many of the ideas in today’s database systems are not new.

Someone invents a "SQL replacement” every decade. It then fails
and/or SQL absorbs the key ideas into standards.

 The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.

» Spoiler: The relational model almost always wins.



1960s - IDS

* Integrated Data Store

* Developed internally at GE in the early
1960s.

» GE sold their computing division to
Honeywell in 19609.

 One of the first DBMSs:
* Network data model.

 Tuple-at-a-time queries. H 0 neywel I

16



1960s - CODASYL -

’ o Turing Award 1973

« COBOL people got together and proposed
a standard for how programs will access a
database. Lead by Charles Bachman.

* Network data model.
 Tuple-at-a-time queries.

« Bachman also worked at Culliane
Database Systems in the 1970s to help
build IDMS.

Bachman

17


https://en.wikipedia.org/wiki/Charles_Bachman

Network data model - schema

SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
[ SUPPLIES } [ SUPPLIED BY }

SUPPLY
(qty, price)

18



Network data model - instance

SUPPLIER

sno sname scity sstate
1001 |Dirty Rick New York |NY
1002 |Squirrels Boston MA
SUPPLIES

parent

child

| qty
10

SUPPLY

PART

pno

pname

psize

999

Batteries

Large

SURPLIED_BY

pargnt

child

price

$100

I

14

$99

19




1960s — IBM IMS

* Information Management System

 Early database system developed to keep track of purchase
orders for Apollo moon mission.

 Hierarchical data model.
* Programmer-defined physical storage format.
 Tuple-at-a-time queries.




Hierarchical Data Model

Schema nstance
4 ) sho shame scity sstate [parts
SUPPLIER 1001 |Dirty Rick New York |NY
(sno, sname, scity, sstate) Squirrels Boston MA
- J
pname
e ™ Batteries
PART

(pno, pname, psize, qty, price) pname

999 Batteries |Large 14 $99

21



1970s - Relational data model

 Ted Codd was a mathematician working at IBM
Research. He saw developers spending their 1
time rewriting IMS and CODASYL programs |
every time the database's schema or layout

changed.

QP
“@%  Turing Award 1981

» Database abstraction to avoid this maintenance:
« Store database in simple data structures.

» Access data through set-at-a-time high-level
language.
« Physical storage left up to implementation.

From Jim Gray 5


https://www.youtube.com/watch?v=y9aPyk0ORXM&ab_channel=TuringAwardeeClips

DERIVABILITY,

ABSTRACT:
contain many Iefor
not be unusual

Two types of T
enplayed 50 T8 e
which happen esp
exists, those I

2 have sO
about 1t andies in th ;
ht be helpful in t
dulent) changes 1

inconsistenc
checking mig
possibly frau

19,
RJ 599(# 12343) August 19

10T
LIMITED DISTRIBUTION NO

publication €ls
dissemination

should not be wl

publication‘

Copies may be I
Yo‘:‘ktown Heights,

ST

ND C
EDUNDANCY Al
: ORED IN LARGE D

The large, integr
lations of va
this set o

in

onsible for
me means O

New

d€1y distrl

£. F. Codd

Research DiV}51onia
San Jose, Californ

define

ndancy are det
eizve accessibility of

great demand.

e total set of

1969

d from IBM Thomas J.

be quues’ce\{ork 10598

control o
£ detecting

tracking
& n the data

sted data panks of T

rious degreei

f stored rela i
discusse

i in kinds of 0

ither type

f tiztgata bank should know

any "Jogical
tions.

L orized (and

certa
When

store

Watson R

in sto

ions to be
ation Ohe

unauth
dowgank contents.

rt has bee

is repo
1CE - This x A
here and has been 1sigig a
3 ontents. As @ e e
A iputed until a

esearch Center,

he future will
red form.

i for
submitted .
nearch Report {gaiiher,
to the intended pu
e date of outside

!
ONSISTENCY OF RELATIONS
ATA BANKS

Tt will

edundant.

e type may be

information
redundancy

Consistency

arly

post Office Box 218,

Jate

d

N W(

bper

it

ODA
0dSE

this

rucC
siale
e

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San J ose, California

unaffected when the intermncl rept tation
ond even when some cts of the external ¢ P

are changed, Changes in data representation will often be
needed os a resylt of changes in query, update, and report

models of the data, In Section 1, inad quaci
are discussed. A model based on n-ary relations, @ normal
form for data bose relations, and the concept of a universal
data sublanguage are introduced. in Section 2, certain opera-
fions on relations (other than logical inference) are discussed
and applied to the probl of redund cy and i y
in the user's model,

KEY WORDS AND PHRASES: data bank,
ergonization, hierarchies of doto, netwarks
dunds :

doto base, dote structure, dotg
of dato, relations, darivability,
s fein,  retri language, predi

Te i L '
caleuls, security, date integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4,29

L. Relational Model and Normal Form

LL  INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data, Except for a paper
by Childs [1], the principal application of relations to data
Systems has been to deduetive question—a.nawering systems,
Levein and Maron [2) provide numerons references to work
in this area,

In contrast, the problems treated here are those of datq
i —the independence of application programs
and terminal activities from growth in datg types and
changes in data Tepresentation—and certain kinds of datq
inconsistency which are expected to become troublesome
even in nondeduetive systems.

Volume 13 / Number § / June, 1970

inferential systems. It provides a means of describing data,
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on i

tion and organization of data on the other,

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
7 of relations—these are discussed in Section
model, on the other hand, has spawned o
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”),

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of competing representations of data within g
single system, Examples of this clearer perspective are
cited in various parts of this paper, Implementations of
systems to support the relational model are not diseussed.

1.2, Dama DepeNpENCIES 1N PreSENT SvsTeus

The provision of data description tables in recently de-
veloped information systems represents g major advance
toward the goal of datg independence (5, 6, 7]. Such tables

data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited, Further, the model of data
users interact is still cluttered with representational prop-
erties, particularly in regard i

the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depengd-
ence, and access path dependence. Tn some systems these
dependencies are not clearly separable from one another,

121 ing Dependence, Elements of datg in a
data bank may be stored in & variety of WAaYS, some involy-

of addresses. For example, the records of a file concerning
parts might be stored in aseending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (oris a subordering of ) the

Communications of the ACM 377

81

23



Relational Data Model - schema

N

SUPPLIER

(sno, sname, scity, sstate)

J N

PART

(pno, pname, psize)

N\

SUPPLY

(sno, pno, qty, price)

24




Relational Data Model - instance

SUPPLIER PART
sno Sname scity sstate pno pname psize
1001 |Dirty Rick New York [NY 999 Batteries |Large
1002 |[Squirrels Boston MA

SUPPLY

sno pno qty price

1001 |999 10 $100

1002 |999 $99

25



1970s — Relational Model

* Early implementations of relational DBMS:

* Peterlee Relational Test Vehicle — IBM Research (UK)
« System R—IBM Research

* INGRES-U.C. Berkeley
 Oracle—Larry Ellison

Turing Award 1998

Gray

i |

'u;' ! /-,;

y

Vi

,“ r
‘ |~

b

Stonebraker

Ellison

26



1980s - Relational model

e The relational model wins.
e |IBM first releases SQL/DS in 1981.
* |BM then turns out DB2 in 1983.
s . S
* “SEQUEL” becomes the standard (SQL). Informzx |’TANDEM

ORACLE

» Many new “enterprise” DBMSs but N SYBASE  |[ERADATA
Oracle wins marketplace.

INGRR=S InterBase

« Stonebraker creates Postgres as an
“object-relational” DBMS

27



1980s - Object-oriented databases

« Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

* Few of these original DBMSs from the 1980s still exist today but
many of the technologies exist in other forms (JSON, XML)

VERSAN T 0 b] e CtStO [e. '.MarkLogiC‘“

28



Object-oriented Model

Application Code

Relational Schema

class Student {
int id;
String name;
String email;
String phonel[];

STUDENT

(id, name, email)

|

id name email
1001 M.O.P. anteCup.com

sid phone

STUDENT_PHONE
(sid, phone)

1001 444-444-4444

1001 555-555-5555

29



Object-oriented Model

Application Code
class Student { Student
int id; {

»

"id": 1001,
"name": "M.O.P.",

String name;
String email;
String phone[]; "phone": [

} “444-444-4444”

“555-555-5555"
]

}

"email": "ante@up.com",

30



1990s - Boring days

* No major advancements in database systems or application
workloads.
« Microsoft forks Sybase and creates SQL Server.
« MySQL is written as a replacement for mSQL.
» Postgres gets SQL support.
« SQLite started in early 2000.

« Some DBMSs introduced pre-computed data cubes for faster
analytics.

PostgreSQlL

Mg&%ewer My m

SQLite

31


https://en.wikipedia.org/wiki/Data_cube

2000s - Internet boom

* All the big players were heavyweight and expensive. Open-
source databases were missing important features.

* Many companies wrote their own custom middleware to
scale out database across single-node DBMS instances.



2000s - Data warehouses

* Rise of the special purpose OLAP DBMSs.
* Distributed / Shared-Nothing
« Relational / SQL
 Usually closed-source.

* Significant performance benefits from using columnar data

storage model.

N)NETEZZA PARACCEI. monetdb

Greenplum DATAllegro V"l: RTICA

33



2000s — MapReduce Systems

* Distributed programming and execution model for analyzing large
data sets.
* First proposed by Google (MapReduce).
* Yahoo! created an open-source version (Hadoop).
« Data model decided by user-written functions.

* People (eventually) realized this was a bad idea and added SQL
on top of MR. That was a bad idea too.




2000s - NoSQL Systems

* Focus on high-availability & high-scalability:
« Schemaless (i.e., “Schema Last”)

« Non-relational data models (document, key/value, etc)
« No ACID transactions

« Custom APls instead of SQL
» Usually open-source

AN
HBASE amazon .mongoDB O r@

DynamoDB - NOSQL '

&P redis ¥ RethinkoB A o
Couchbase § &) i CouchDB

Q@ @ neoyj

A CHE
"”VW R
cassandra v rl q k RA%NDB

35



2010s - NewSQL

* Provide same performance for OLTP workloads as NoSQL
DBMSs without giving up ACID:

e Relational / SQL
e Distributed

« Almost all the first group of systems failed

» Second wave of “distributed SQL" systems are (potentially)
doing better

5 GenieDB 0(65/) aro/s m_Store C]ust]‘ix mTiDB
@ QSCaleArc J = = FOUNDATIONDB § CockroachDB
Transjatice YOUTDB - —
oogle Eo efFutures wySw om
Spanner AAMEMSQL N _— B

NUO ScaleBase

36



2010s - Cloud systems

* First database-as-a-service (DBaaS) offerings were
"containerized" versions of existing DBMSs.

* There are new DBMSs that are designed from scratch
explicitly for running in a cloud environment.

xeround Google

5y Seesnowfloke i ams e CloudDabase - SN NEY
.ﬁ\l Amazon

@

Dice y F/\ U N /\ DynamoDB Aurore 0?, @
a" Microsoft

37



2010s - Shared-disk engines

* Instead of writing a custom storage manager, the DBMS
leverages distributed storage.
« Scale execution layer independently of storage.
 Favors log-structured approaches.

* This is what most people think of when they talk about a data
lake.

cloudera
APACHE j druid ;"2 snow flake IMPALA 9 plno'

DRILL ar L o arackE

presto - [imen  HgH SPAK

B Microsoft

38



2010s - Graph systems

« Systems for storing and querying graph data.
 Similar to the network data model (CODASYL)

* Their main advantage over other data models is to provide a graph
centric query API

« SQL:2023 is adding graph query syntax (SQL/PCG)

« Recent research (2023) demonstrated that is unclear whether there is any
benefit to using a graph-centric execution engine and storage manager.

@ : Tigefcraph Q; NebulaGraph “f":'ia‘.-n.
@neosj [A MM Y

JénusGra h
@ aDgraph G P
grdphbaseai TerminusDB < IndraDB

¢
e
L)
[
e
®

] ]
32
3
[
L}

]
a
[ )
.
S
I

Q>

39


https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf

2010s - Timeseries systems

« Specialized systems that are designed to store timeseries /
event data.

* The design of these systems make deep assumptions about
the distribution of data and workload query patterns.

@ M3 & TIMESCALE @ inﬂuxdb

(© GreptimeDB SMEI%E?RIA | ClickHouse @ g

:CMU-DB

«

40



2020s — Specialized Systems

* Embedded DBMSs
* Multi-Model DBMSs
« Hardware Acceleration

 Array / Matrix / Vector DBMSs



.d
NGt Glti-Model DBMSs
Pon:&Base

3Iockcha|n DBMSs

CORNER;}‘ L
3

&

LEM

orware Acceleratlon

M ApACHE

A g ‘
"4
" lnstantDB d
=

‘ PERFORMANCE Dt

—-— -

fodion S 4\ MEMSQ

eg)hAcr_&’W CIRgd

‘ siaéaMm Mlcrosoﬂmm Ti @.te

%2 Storm RIGCHAIN
,1 .a')-p- I o \\3 PR ri
% /2.
\/(

i

‘l\\ :l

ENg G
m‘-) l- Y

{ > -
= —Plsummitps = Sp RSt )' ‘
SUI IBpgress [

. / ' ". ‘, 5
=y Toky
Cabmet aﬁ,.



Final Thoughts

* The demarcation lines of DBMS categories will continue to blur
over time as specialized systems expand the scope of their
domains.

« Every NoSQL DBMS (except for Redis) now supports SQL

* The relational model and declarative query languages promote
better data engineering.



	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Agenda
	Slide 3: The essentials
	Slide 4: The essentials
	Slide 5: Course materials
	Slide 6: Course Learning Objectives
	Slide 7: Grading
	Slide 8: Assignments Overview 
	Slide 9: Course Project
	Slide 10: Exams 
	Slide 11: Attendance
	Slide 12: Course Policy - IMPORTANT
	Slide 13: Course Outline 

	history
	Slide 14: A brief history of databases  (1960s-2020s)
	Slide 15: Main takeaway: history repeats itself
	Slide 16: 1960s - IDS
	Slide 17: 1960s - CODASYL
	Slide 18: Network data model - schema
	Slide 19: Network data model - instance
	Slide 20: 1960s – IBM IMS
	Slide 21: Hierarchical Data Model
	Slide 22: 1970s - Relational data model
	Slide 23: 1970s - Relational data model
	Slide 24: Relational Data Model - schema
	Slide 25: Relational Data Model - instance
	Slide 26: 1970s – Relational Model
	Slide 27: 1980s - Relational model
	Slide 28: 1980s - Object-oriented databases
	Slide 29: Object-oriented Model
	Slide 30: Object-oriented Model
	Slide 31: 1990s - Boring days
	Slide 32: 2000s - Internet boom
	Slide 33: 2000s - Data warehouses
	Slide 34: 2000s – MapReduce Systems
	Slide 35: 2000s - NoSQL Systems
	Slide 36: 2010s - NewSQL
	Slide 37: 2010s - Cloud systems
	Slide 38: 2010s - Shared-disk engines
	Slide 39: 2010s - Graph systems
	Slide 40: 2010s - Timeseries systems
	Slide 41: 2020s – Specialized Systems
	Slide 42
	Slide 43: Final Thoughts


