
CS 4440 A

Emerging Database
Technologies

Lecture 1

01/06/25

Agenda

Course logistics and overview

A brief history of databases
• 1960s – 2020s

2

The essentials

Instructor: Kexin Rong
• Office: Klaus 3322

TAs:
• Jeff Xu

• Tianji Yang

3

How to reach us: cs4440-staff@groups.gatech.edu

• The above email reaches all of the course staff. You are strongly

encouraged to use this, instead of emailing individual course staff.

mailto:cs6400-staff@groups.gatech.edu

The essentials

Course website: https://kexinrong.github.io/sp25-cs4440/

 schedule, assignments, and course material

Canvas/Gradescope : submitting assignments

Piazza: discussing course contents, finding teammates
• https://piazza.com/gatech/spring2025/cs4440a/home

Email: special requests

OH: Starting next week. Time will be announced.

4

https://kexinrong.github.io/sp25-cs4440/
https://piazza.com/gatech/spring2025/cs4440a/home

Course materials

● Textbooks:

○ Database Systems: The Complete
Book (2nd edition)

○ Fundamentals of Database Systems

○ Can use interchangeably

● Both books have international
versions and have PDFs
searchable online

5

Course Learning Objectives

Learn about advanced and emerging database technologies
beyond what is covered in CS4400 and get hands on experience
with building database applications.

Multiple ways to learn:

• Through lectures on database fundamentals

• Through surveying technologies in the wild

• Through an implementation-oriented course project

6

Grading

Assignments – 30%
• Combination of individual and group assignments

Course Project – 25%
• Team-based

Exams – 40%
• Exam 1 (in-class) – 20%

• Exam 2 (take-home) – 20%

Participation - 5%

7
https://kexinrong.github.io/sp25-cs4440/grading/

https://kexinrong.github.io/sp25-cs4440/grading/

Assignments Overview

Assignment 1: Technology Review (5%)
• Released by EOD today; due Jan 27

Assignment 2: Technology Review (10%)
• Group-based

Assignment 3: Query Optimization (5%)

Assignment 4: TBD (10%)

8

Course Project

Groups of 4, implementation-oriented

Need to use some database systems

Examples of past projects can be found on Canvas
• Files -> Sample Projects

9

Exams

Written tests based on material covered in lectures
• Exam 1: in-class (Feb 10) – 20%

• Exam 2: take-home (Mar 26) – 20%
• focus on materials that are not covered by Exam 1

10

11

Attendance

I dislike mandatory attendance.

But in the past we noticed…
• People who did not attend did worse

• People who did not attend used more course resources

• People who did not attend were less happy with the course

This year’s policy: voluntary attendance
• Except during guest lectures and student presentations

Course Policy - IMPORTANT

Follow the Georgia Tech Honor Code!

Late policy: One automatic late day without penalty (only applicable
to individual assignments). Otherwise 10% deduction per 24 hours.

Generative AI policy: Clearly attribute AI-generated contents (e.g.,
direct quotes, different color text). No more than 10% AI-generated
contents in submissions.

12
Details: https://kexinrong.github.io/sp25-cs4440/policy/

https://kexinrong.github.io/sp25-cs4440/policy/

Course Outline

13

1. How can one use a DBMS (programmer’s/designer’s perspective)
• We will NOT teach SQL

• Design a good database (design theory)

2. How does a DBMS work (system’s perspective, also for programmers

for writing better queries)
• Physical design: Storage and index

• Query processing and optimization

• Transactions: recovery and concurrency control

3. Beyond relational databases
• Map Reduce, Spark, NewSQL

• Selected research papers

A brief history of
databases
(1960s-2020s)

Acknowledgement: The following slides were adapted from Prof. Andy Pavlo (CMU)
14

What Goes Around Comes Around.
Readings in DB Systems. 2006.

https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf

Main takeaway: history repeats itself

Old database issues are still relevant today.
• Many of the ideas in today’s database systems are not new.

Someone invents a ”SQL replacement” every decade. It then fails
and/or SQL absorbs the key ideas into standards.

• The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.

• Spoiler: The relational model almost always wins.

15

1960s - IDS

• Integrated Data Store

• Developed internally at GE in the early
1960s.

• GE sold their computing division to
Honeywell in 1969.

• One of the first DBMSs:
• Network data model.

• Tuple-at-a-time queries.

16

1960s - CODASYL

• COBOL people got together and proposed
a standard for how programs will access a
database. Lead by Charles Bachman.
• Network data model.

• Tuple-at-a-time queries.

• Bachman also worked at Culliane
Database Systems in the 1970s to help
build IDMS.

17

Bachman

Turing Award 1973

https://en.wikipedia.org/wiki/Charles_Bachman

Network data model - schema

18

Network data model - instance

19

1960s – IBM IMS

• Information Management System

• Early database system developed to keep track of purchase
orders for Apollo moon mission.
• Hierarchical data model.

• Programmer-defined physical storage format.

• Tuple-at-a-time queries.

20

Hierarchical Data Model

21

Schema Instance

1970s - Relational data model

• Ted Codd was a mathematician working at IBM
Research. He saw developers spending their
time rewriting IMS and CODASYL programs
every time the database's schema or layout
changed.

• Database abstraction to avoid this maintenance:
• Store database in simple data structures.

• Access data through set-at-a-time high-level
language.

• Physical storage left up to implementation.

22

Codd

Turing Award 1981

From Jim Gray

https://www.youtube.com/watch?v=y9aPyk0ORXM&ab_channel=TuringAwardeeClips

1970s - Relational data model

• Ted Codd was a mathematician working at
IBM Research. He saw developers spending
their time rewriting IMS and CODASYL
programs every time the database's schema
or layout changed.

• Database abstraction to avoid this
maintenance:
• Store database in simple data structures.
• Access data through high-level language.
• Physical storage left up to implementation.

23

Codd

Turing Award 1981

Relational Data Model - schema

24

Relational Data Model - instance

25

1970s – Relational Model
• Early implementations of relational DBMS:

• Peterlee Relational Test Vehicle – IBM Research (UK)

• System R–IBM Research

• INGRES–U.C. Berkeley

• Oracle–Larry Ellison

26
Gray Stonebraker Ellison

Turing Award 1998 Turing Award 2015

1980s - Relational model

• The relational model wins.
• IBM first releases SQL/DS in 1981.

• IBM then turns out DB2 in 1983.

• “SEQUEL” becomes the standard (SQL).

• Many new “enterprise” DBMSs but
Oracle wins marketplace.

• Stonebraker creates Postgres as an
“object-relational” DBMS

27

1980s - Object-oriented databases

• Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

• Few of these original DBMSs from the 1980s still exist today but
many of the technologies exist in other forms (JSON, XML)

28

Object-oriented Model

29

Object-oriented Model

30

1990s - Boring days

• No major advancements in database systems or application
workloads.
• Microsoft forks Sybase and creates SQL Server.

• MySQL is written as a replacement for mSQL.

• Postgres gets SQL support.

• SQLite started in early 2000.

• Some DBMSs introduced pre-computed data cubes for faster
analytics.

31

https://en.wikipedia.org/wiki/Data_cube

2000s - Internet boom

• All the big players were heavyweight and expensive. Open-
source databases were missing important features.

• Many companies wrote their own custom middleware to
scale out database across single-node DBMS instances.

32

2000s - Data warehouses

• Rise of the special purpose OLAP DBMSs.
• Distributed / Shared-Nothing

• Relational / SQL

• Usually closed-source.

• Significant performance benefits from using columnar data
storage model.

33

2000s – MapReduce Systems

• Distributed programming and execution model for analyzing large
data sets.
• First proposed by Google (MapReduce).

• Yahoo! created an open-source version (Hadoop).

• Data model decided by user-written functions.

• People (eventually) realized this was a bad idea and added SQL
on top of MR. That was a bad idea too.

34

2000s - NoSQL Systems

• Focus on high-availability & high-scalability:
• Schemaless (i.e., “Schema Last”)

• Non-relational data models (document, key/value, etc)

• No ACID transactions

• Custom APIs instead of SQL

• Usually open-source

35

2010s - NewSQL
• Provide same performance for OLTP workloads as NoSQL

DBMSs without giving up ACID:
• Relational / SQL

• Distributed

• Almost all the first group of systems failed

• Second wave of “distributed SQL” systems are (potentially)
doing better

36

2010s - Cloud systems

• First database-as-a-service (DBaaS) offerings were
"containerized" versions of existing DBMSs.

• There are new DBMSs that are designed from scratch
explicitly for running in a cloud environment.

37

2010s - Shared-disk engines

• Instead of writing a custom storage manager, the DBMS
leverages distributed storage.
• Scale execution layer independently of storage.

• Favors log-structured approaches.

• This is what most people think of when they talk about a data
lake.

38

2010s - Graph systems

• Systems for storing and querying graph data.
• Similar to the network data model (CODASYL)

• Their main advantage over other data models is to provide a graph
centric query API
• SQL:2023 is adding graph query syntax (SQL/PCG)

• Recent research (2023) demonstrated that is unclear whether there is any
benefit to using a graph-centric execution engine and storage manager.

39

https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf

2010s - Timeseries systems

• Specialized systems that are designed to store timeseries /
event data.

• The design of these systems make deep assumptions about
the distribution of data and workload query patterns.

40

2020s – Specialized Systems

• Embedded DBMSs

• Multi-Model DBMSs

• Hardware Acceleration

• Array / Matrix / Vector DBMSs

41

42

Final Thoughts

• The demarcation lines of DBMS categories will continue to blur
over time as specialized systems expand the scope of their
domains.
• Every NoSQL DBMS (except for Redis) now supports SQL

• The relational model and declarative query languages promote
better data engineering.

43

	Default Section
	Slide 1: CS 4440 A Emerging Database Technologies
	Slide 2: Agenda
	Slide 3: The essentials
	Slide 4: The essentials
	Slide 5: Course materials
	Slide 6: Course Learning Objectives
	Slide 7: Grading
	Slide 8: Assignments Overview
	Slide 9: Course Project
	Slide 10: Exams
	Slide 11: Attendance
	Slide 12: Course Policy - IMPORTANT
	Slide 13: Course Outline

	history
	Slide 14: A brief history of databases (1960s-2020s)
	Slide 15: Main takeaway: history repeats itself
	Slide 16: 1960s - IDS
	Slide 17: 1960s - CODASYL
	Slide 18: Network data model - schema
	Slide 19: Network data model - instance
	Slide 20: 1960s – IBM IMS
	Slide 21: Hierarchical Data Model
	Slide 22: 1970s - Relational data model
	Slide 23: 1970s - Relational data model
	Slide 24: Relational Data Model - schema
	Slide 25: Relational Data Model - instance
	Slide 26: 1970s – Relational Model
	Slide 27: 1980s - Relational model
	Slide 28: 1980s - Object-oriented databases
	Slide 29: Object-oriented Model
	Slide 30: Object-oriented Model
	Slide 31: 1990s - Boring days
	Slide 32: 2000s - Internet boom
	Slide 33: 2000s - Data warehouses
	Slide 34: 2000s – MapReduce Systems
	Slide 35: 2000s - NoSQL Systems
	Slide 36: 2010s - NewSQL
	Slide 37: 2010s - Cloud systems
	Slide 38: 2010s - Shared-disk engines
	Slide 39: 2010s - Graph systems
	Slide 40: 2010s - Timeseries systems
	Slide 41: 2020s – Specialized Systems
	Slide 42
	Slide 43: Final Thoughts

