
CS 4440 – April 7, 2025
databases in the wild

Nick Downey – Guest lecturer
(Founder and CEO of Merch Logix, inc., ga tech Cmpe ‘02)

POP QUIZ
• How many seconds are in a day?
• 86,400

•WHY are manholes round?
• End-user proof

•What is the primary difference between science and engineering?
• Money

•What is the definition of legacy software?
• Software that works

•What is the best DBMS?
• Trick Question

Fashionable is not a design criteria
•Oracle is really fast and has trustworthy replication
• It is usually the most expensive choice, sometimes prohibitively

• IMB’s db2 is trusted by enterprise
• Premium support is only available on IBM hardware

•Microsoft SQL server is easy to use and a “safe” choice
• Friends don’t let friends run Microsoft

• PostgreSQL is free, and almost as fast as oracle
• You have to make a plan for support yourself

familiarity is not a design criteriA
•Mongo dB scales easy and has tons of support
• It is a document store NOT a key-value store, nor can it do graphs

•Couchbase does both documents and key-value
• Support is not as mature as Mongo dB

• Redis is fast and great for real-time application
• How much ram you got there, padre?

•Cassandra is produced by Apache, and supports wide columns
• Beware of the slippery slope, RDBMS’s still have a role to play

Pipe wrenches make poor hammers
• Understand the physical constraints
• Volume, variety and velocity of the data

• Understand the temporal constraints
• Time to ingest, time to synthesize, time to report, time to recover

• Understand the legal constraints
• Ownership, custody and compliance

• Understand the financial constraints
• Cost to create, cost to run, cost to maintain

Guiding principles for dba’s
• Think of yourself as a “curator of thought”
• table and column names can live for decades, choose carefully. E.g.
denotations vs connotations

• The claim of “over-normalization” is often a smoke screen for
apathy or laziness.
• You can’t query or join on columns and tables that don’t exist.

•Do not succumb to vendor lock-in, try to keep it ”agnostic”
• Fancy is your enemy in a production failure

Background on case study (1 of 3)
• Retail stores homogeneity reality check
• Localization

•What is a Stock Keeping unit (sku)
• some UPC’s are SKU’s, not all SKU’s are UPC’s

•What is gross margin (not a trick question)
•What is performance data
• Transaction log “TLOG” - one line item from one receipt

•What is a planogram – live demo!

Background on case study (2 of 3)
• Ticket – a store level sales record of one or more TLOG’s, namely:
• The Store ID, The store local date, The store local time
• The distinct SKU’s you purchased, and the quantity of each
• the unit price you paid for each SKU, and the extended price
• The discounts and coupons you used
• and the total sale amount

• Department -> Category -> Subcategory
• Oral care -> tooth brushes -> electric

• Division -> Region -> district -> Metro -> store
• east -> southeast -> greater Atlanta -> Smyrna -> Cumb. #121

Background on case study (3 of 3)
•merchant – performance based compensation
• Store Manager – performance based compensation
• Suppliers – obviously want to sell as much as possible
•Wall street benchmarks
• Same store sales – usually expressed as a percentage, in relation to
historical e.g. 10% increase from Q1 to Q2, or 18% year-over-year.
• Gross margin per square foot, by category – exp. in dollars/sq. ft.
• Average ticket size – expressed in dollars

Case study – Client Profile / objective
•National grocery chain
• $13,000,000,000.00 (thirteen billion) Annual gross sales
•534 stores in the united states
• Average ticket size is $65, with 7 distinct sku’s.
•Client goal – compute gross margin per square foot, per
category, over any arbitrary time window (t0- 104 wks.), over
any store, district, region or division, and/or by planogram.

Case study – current state
• AWS / LINUX / nginX / PHP / NodeJS / POSTGRESL
• All floorplans are in-system (tb_location_floorplan*)
• All planograms are in-system (TB_PLANOGRAM*)
• All product data are in-system (TB_PRODUCT*)
• Performance (sales) data (TLOG’s) are not in-system (tb_???)
• Schema is purely relational (~1,200 tables)
• Largest customers are in the 10’s of GB’s

Where do we start!? (hint: see slide 5)
• Size of the data (physical constraints)

•
$"#$
%&
$'(

)*+,-)

= 200𝑀	𝑡𝑖𝑐𝑘𝑒𝑡𝑠/𝑦𝑟

•200𝑀	𝑡𝑖𝑐𝑘𝑒𝑡𝑠/𝑦𝑟	 ∗ 7 !"#$
.%

!&'()!
= 1.4𝐵	𝑡𝑙𝑜𝑔*𝑠/𝑦𝑟

•104	𝑤𝑘𝑠	 ∗ 52𝑤𝑘/𝑦𝑟	 ∗ 1.4𝐵 !"#$.%
+,

= 2.8𝐵	𝑡𝑙𝑜𝑔*𝑠	

•Great! How big is one (1) TLOG?
• Next slide!

Anatomy of a transaction / receipt
{

 “tid”: numeric(32,8), //external surrogate key

 “store” : numeric(6), //store number/surrogate key

 “date” : date_stamp, //date of sale local to store

 “time” : time_stamp, //time of sale local to store

 ”tlog” : [//array of items purchased in this sale

 {

 “SKU” : numeric(32,0), //unique sku number of this item

 “quantity” : int, //quantity purchased

 “unit price” : numeric(9,2), //per unit price

 “ext. price” : numeric(9,2), //quantity * unit price

 “unit cost” : numeric(9,2), //per unit cost

 “coupons” : [], //array of coupons used for this item

 “discounts” : [] //array of discounts used for this item

 }

]

 “total list price” : numeric(9,2),

 “total discounts” : numeric(9,2),

 “total coupons” : numeric(9,2),

 “total sale” : numeric(9,2)

}

Approximate size on disk
•One TLOG can be safely approximated as “many hundreds of bytes”
•We can sanely round up to 1 kilobyte (1KB)

• From earlier slide
•104	𝑤𝑘𝑠	 ∗ -./(%

+,
	 ∗ 1.4𝐵 !"#$.%

+,
= 2.8𝐵	𝑡𝑙𝑜𝑔*𝑠	

•2.8𝐵	𝑡𝑙𝑜𝑔*𝑠	 ∗ 1,024 0+!)%
!"#$

≅ 2.8𝑇𝐵

•How many bytes per day coming in?
• ..234
.+,

= 5.634
78-9:+%

= 3.8𝐺𝐵/𝑑𝑎𝑦	

Temporal considerations (ingestion)
• How many tlogs coming in and at what frequency?

•
!.#$!"#$

%&
'(

%&')*'%&'(

= %.()	+,-.%/
012

≅ !&34	+,-.%/
56

≅ 7.&4	+,-.%/
89:

≅ 45 +,-.%/
/;<-:0

• How long does the validation routine for one (1) tlog take?
• Array of text (bytes) is actually valid JSON (Unicode/ascii, escaped?, etc)
• regular expression on total payload and/or each field
• Validate surrogate keys (store, SKU) and sanity (all $ >= 0, all qty > 0)
• The correct answer is: microseconds

• What is the write speed of the database?
• Postgres Can keep up - if property configured

Temporal considerations (analysis / reporting)
•we’re being paid for synthesis and reporting
•What, if any, indexes are on these data?
• How long does vacuuming take on billions of rows?
• How much space do the indexes occupy on disk?

•What is the read speed, while writing, of the DB and disk?
•What is round-trip time from user to disk and back?
• Most of the time “too slow” – split read/write?

•Do we pay a penalty for mass delete?
• Table locking is the bane of everyone's digital lives

Temporal considerations (Analysis)
• The basic use case: How much money did 1 SKU make, on 1 day, at 1
store. Formally: “What is the gross margin per SKU, per store, per day.”
• E.g. how much money did I earn on avocados at store #456, yesterday.

• they want store-org-level roll-ups, and sliding windows!
• E.g. how much money did I earn on avocados at all the stores in district
#12, last week. Did bananas do any better?

• They also want category-level roll-ups layered on-top
• e.g. how much money did we earn on produce at all the stores in the
metro-phoenix region, over the trailing 4-weeks.

Temporal considerations (Analysis Cont.)
• A fancy use case: How much gross margin did this planogram generate
in the last fiscal quarter.
• E.g. how much money did I earn on each SKU at on this planogram at one
or more stores over QX. Presumes same planogram at multiple stores.

• A fancier use case: how did the gross margin for planogram A compare
to planogram B, over all of last year
• E.g. which of these two similar planograms has better margin performance.

• A yet fancier use case: HOW did the gross margin for a set of
planograms compare to another set of planograms for a given region.
• Please hold for a brief story about coke-zero

Existential decision making time
•Dear DBA – what say you? How should we go about this? Please
let us know your recommendations for Systems, architecture,
schema, and/or CRON.
• Existing system is PostgreSQL, and purely relational
• Inbound data is likely to impose significant physical constraints
• Use cases are likely to impose significant temporal constraints
• Service level agreement (SLA) mandates:
• 99.99% uptime (~52 min/yr. of *unscheduled* downtime)
• Page load time less than 5 seconds

How did it shake out?
• TLOG data is validated by an AWS LAMDA function - .000015 sec.
• Validated TLOG DATA is stored in MONGO DB (NOSQL)
•CRON JOBS compute roll-up data (from NOSQL) every 15 minutes
• Dependent/derived roll-ups are on triggers

• Roll-up data is stored in PostgreSQL relational tables
• Memcached + custom extension keep things fresh

• User-interfaces are pushed refresh notification(s)

Key Take AWAYS
• Think about your problems holistically and critically before you start
making decisions that are expensive to reverse.
• There’s never enough time and money to do it right the first time, but
there is always enough time and money to do it twice.

• 90% of gainful software employment is maintenance, net-new code is
the exception, not the rule.
• Design and implement your systems as if you personally have to maintain
them for the next 10 years.

• “I don’t know” is a legitimate answer, and when used appropriately
should be heard often.
• Dunning Kruger is worse for your long-term future than most medical
conditions. Look it up.

Questions and answers
•Got any brain cells left?
• I would Love to take your questions!

Last SLIDE!

WHO WANTS A JOB?!
Come get a business card!

