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Vector DB Overview



What is Vector DBs?

e Specialized databases storing and querying high-dimensional vector data.
e Al & Machine Learning models (e.g. LLM)

e Embedding vectors for complex unstructured data
e Efficient similarity search

What is a vector database?. IBM. (n.d.). https://www.ibm.com/topics/vector-database
What is a vector database? - vector databases explained - AWS. (n.d.). https://aws.amazon.com/what-is/vector-databases/



https://www.ibm.com/topics/vector-database

Core Concepts

e Embedding vectors:
High-dimensional vectors transformed from
complex unstructured and semi-structured
data that capture the meaning and context of

an asset.

Image -> Image embeddings
Text -> Text embeddings
Graph -> Graph embeddings
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What is a vector database? - vector databases explained - AWS. (n.d.). https://aws.amazon.com/what-is/vector-databases/

What are vector embeddings?: A comprehensive vector embeddings guide. Elastic. (n.d.). https://www.elastic.co/what-is/vector-embedding
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Core Concepts

e Similarity search:
Find k most similar data objects to a given query object, based on some measure
of similarity or distance (e.g. cosine similarity, L-2 distance, etc)

e k-NN index

Efficient and fast lookup of the k nearest neighbors of a query vector in a large
collection of vectors

e Approximate Nearest Neighbor (ANN) Algorithms
Hierarchical Navigable Small World (HNSW)

What is a vector database? - vector databases explained - AWS. (n.d.). https://aws.amazon.com/what-is/vector-databases/
Schwaber-Cohen, R. (n.d.). What is a vector database & how does it work? use cases + examples. Pinecone. https://www.pinecone.io/learn/vector-database/



The Role of Vector Databases in Al Industry

e Recommender system
e Al-based Semantic Search
e Retrieval-Augmented Generation (RAG)
Large Language Model (LLM) -> hallucination
RAG -> accurate, grounded to the provided knowledge bases

What is a vector database?. IBM. (n.d.). https://www.ibm.com/topics/vector-database



LLM Hallucination

._«.? . what new discoveries from the James Webb Space Telescope can | tell my 9 year old about?

Your 9-year old might like these recent discoveries made by The James Webb Space Telescope (JWST):

» In 2023, The JWST spotted a number of galaxies nicknamed “green peas.” They were given this
name because they are small, round, and green, like peas.

» The telescope captured images of galaxies that are over 13 billion years old. This means that
the light from these galaxies has been traveling for over 13 billion years to reach us.

+ JWST took the very first pictures of a planet outside of our own solar system. These distant
worlds are called “exoplanets.” Exo means “from outside.”

These discoveries can spark a child's imagination about the infinite wonders of the universe.

(||| C || v Checkit

Kan, M. (2023, February 8). No, that’s wrong: Google’s bard ai demo spouts incorrect info. PCMAG.
https://www.pcmag.com/news/no-thats-wrong-googles-bard-ai-demo-spouts-incorrect-info



Retrieval-Augmented Generation
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Ali, M. (2023, September 12). The 5 best vector databases: A list with examples. DataCamp. https://www.datacamp.com/blog/the-top-5-vector-databases



Brief History of Vector DB

e Late 1970s: Initial need of storing vast vector data in DNA sequencing
e 1980s to Mid-2000s: More development of Vector DB in scientific research (NIH

and Stanford)

e 2000s to 2019: Application in genetic researches with parallel computing and
storage (e.g. UniVec)

e 2019to 2022: Surge of vector DB (creation of Pinecone, Weaviate, and Milvus)
into Al and Machine Learning

e 2022 to Now: LLMs (e.g. ChatGPT) and Rise of Large Multi-Modal Al (e.g.
language, image, audio, etc) necessitating large-scale vector databases

Norlin, E. (2023, April 25). In search of the history of The vector database. SW2.ai. https://sw2.beehiiv.com/p/search-history-vector-database



Features of Vector DB

e Performance and Scalability:
Efficient storage and query of vectors

e Ease of Use and Community Support:

User-friendly interfaces
Integration with Al models and other database ecosystems

e Reliability and Security:
Fault tolerance, authentication, access control, data management
e Accessibility and Deployment Options

Open-source vs proprietary
Self-hosted vs cloud-hosted

e Cost-effectiveness

What is a vector database? - vector databases explained - AWS. (n.d.). https://aws.amazon.com/what-is/vector-database
Froberg, E. (n.d.). Picking a vector database: a comparison and guide for 2023. Vector View. https://benchmark.vectorview.ai/vectordbs.html



https://aws.amazon.com/what-is/vector-database

Open source
(Apache 2.0 or MIT license)

Source available

or commercial

Dedicated vector databases

Databases that support vector search
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Technical Details & Existing
Products



Existing Vector DB Implementations
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Technical Details: Overview R
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In an application, vector DBs serve as a k-NN
wrapper around some embedding of underlying
embedded documents, images or other data pinecone.io/learn/vector-database



Technical Details: 3 Stages of Vector Retrieval

Vectors

———

Vector
Database

(2] =
l . l ;( Post
Querfing Pro:;ssmﬂj]

Builds a data structure to

~__

make query operations faster

k-NN Similarity = Re-rank or
filter results
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Optimization 1: Low Dimensional Indexing

Construct a random projection matrix to store embeddings as m << n sized
vectors, which preserves similarity but is faster to compare with a query
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pinecone.io/learn/vector-database



Optimization 2: Locally Sensitive Hashing

Bucket 1
e Rather than give exact results, LSH B
approximates vectors into different
buckets using a hash function
e Each bucket attempts to include —
similar input vectors such that the Function |
qguery vector only has to calculate ~ Query Vector
similarity within the bucket
e Different hash functions can be used . =d -
depending on input modality, but = Bucket 2
MinHash is used for arbitrary vectors Result vextioe

pinecone.io/learn/vector-database
pinecone.io/learn/series/faiss/locality-sensitive-hashing



Optimization 2.5: Hierarchical Clustering

We can imagine grouping close
clusters of vectors into higher

At query time, we perform k-NN : s
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pinecone.io/learn/vector-database
pinecone.io/learn/series/faiss/hnsw



Optimization 3: Filtering

o Post-filtering e Insome search applications, we
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Existing Vector DB Implementations
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OpenSearch Implementation

Provides three different k-NN

approximation algorithms, implementing
Hierarchical Small World Navigation
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Example Vector DB Pipeline on AWS
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Sample Applications & Marketing
Data



Vector DB Sample Applications

e Anomaly and Fraud Detection
o ldentifying patterns that reveal fraudulent behavior
o Providing efficient storage for readily accessible data
e E-Commerce Recommendations
o Understanding customer preferences & analyzing
purchasing behavior
o Product embeddings capture semantic relationships
o Create customized experiences for users

https://www.singlestore.com/blog/the-power-of-vector-databases-in-anomaly-detection/
https://www.algolia.com/blog/ai/semantic-search-and-why-it-matters-for-e-commerce/



Companies Incorporating Vector DBs

e Microsoft

o Enables for securely running GenAl Applications within the cloud
o No need to maintain additional infrastructure

e Notion
o Incorporates embeddings through workspace data
o Stores embeddings for retrieval within Pinecone database

e Amazon Web Services
o Combines RAG Workflow with pre-trained models from Bedrock
o SageMaker model hosts for LLMs while Pinecone supports knowledge base

=. Microsoft @ Noton AWS

https://www.notion.so/help/notion-ai-security-practices
https://www.pinecone.io/partners/aws/
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High Performance Long-Term Memory Enterprise Ready
Scale beyond billions of Storing, searching and Utilizing data encryption at
vectors without retrieving data helps transit and rest grants
compromising performance provide relevant, quick enterprise-level security

responses

https://www.pinecone.io/partners/azure/



Defining the Vector DB Market

e $1.3Billion Market Value in
2022 and anticipated for JL Market Value (2022) CAGR (2023-2032)  Market Value {2032)

20.5% Compound annual STATISTICS $1.3 BN >20.5% $8.2 BN
growth rate by 2032 il

e Covid-19 accelerates Soistionsegmaent |  Prosessing (HLE] Segment
digital transformation " 63% “45% VALUATION
across industries

e Growthdrivers such as >

=
. . 9 ‘;"4 North America
real-time analytics and i, > - Matket Share (2022
© -

geo-spatial data analysis R 35%

https://www.gminsights.com/industry-analysis/vector-database-market

#Global Market Insights VECTOR DATABASE
MARKET




Vector Database Market Size

Vector Database Market Size, By Type, 2021 - 2032, (USD Billion)
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https://www.gminsights.com/industry-analysis/vector-database-market



Current Trends & Issues



Future of Vector Databases

e Increase in functionalities provided
o Currently, mainly approximate nearest
neighbor search
o Exact search or matching will soon
become areality
e Users canuse both functionalities together
e Will likely support additional vector
computing functionalities
o Vector clustering and classification

Zicari, R. V. (2024, January 17). On The Future of Vector Databases. Interview with Charles Xie. ODBMS Industry Watch.
https://www.odbms.org/blog/2024/01/on-the-future-of-vector-databases-interview-with-charles-xie/
Duhaime, D. (2015, September 12). Clustering Semantic Vectors with Python. https://douglasduhaime.com/posts/clustering-semantic-vectors.html


https://www.odbms.org/blog/2024/01/on-the-future-of-vector-databases-interview-with-charles-xie/

Current Relevance

e Vector databases are more relevant than ever

e Vector databases’ biggest strength is ability to
work with unstructured data

e Amount of unstructured data is increasing
with LLMs

e LLMs deal with unstructured data of all kinds
and produce unstructured data as well

Warnecke, T. and Poojary, T. (2023, June 12). Data Trends: How Vector Databases Are Meeting New Challenges. Camelot Consulting Group.

Structured Data ) Unstructured Data

Can be displayed
in rows, columns and
relational databases

Numbers, dates
and strings

Estimated 20% of
enterprise data (Gartner)

Requires less storage

Easier to manage
and protect with
legacy solutions

https://blog.camelot-group.com/2023/06/data-trends-how-vector-databases-are-meeting-new-challenges.

Deep Talk. (2021, October 21). 80% of the world’s data is unstructured. Medium.
https://deep-talk.medium.com/80-of-the-worlds-data-is-unstructured-7278e2ba6éb73

Cannot be displayed
in rows, columns and
relational databases

Images, audio, video,
word processing files,
e-mails, spreadsheets

Estimated 80% of
enterprise data (Gartner)

Requires more storage

More difficult to
manage and protect
with legacy solutions



Current Issues

e Relatively new compared to existing databases so harder to ensure data
integrity, consistency, and scalability
e High latency when working with large datasets
e Performing similarity searches and creating vectors can be computationally
expensive
e Estimated to cost $125,000 to create vector embeddings for 100,000,000
chunks of data.
o Chunk s 250 tokens or word fragments
o $7000 to $8000 per month to maintain this in a vector database

Lim, D. (2023, June 25). 11 known issues of vector-based database used for Al prompting. Medium.
https://medium.com/@don-lim/known-issues-of-vector-based-database-for-ai-ae44a2b0198c



Research: Generalized Vector Databases

e [Zhanget. al 2024] explores how well a - '
generalized vector database performs compared _ | == mst
to a specialized vector database =

e No fundamental limitation to using a relational
database (e.g., PostgreSQL) to support efficient
vector data management

e Careful implementation is most importantin SN GSTIM  DEEFIM  SFTION  DEEPLON TURNGLON
making this happen

o Factors that like parallel computing and
memory management highlighted
o In-memory database instead of disk-based
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Fig. 14: Search Time for IVF_FLAT

Y.Zhang, S. Liu, and J. Wang, “Are There Fundamental Limitations in Supporting Vector Data Management in Relational Databases? A Case Study of PostgreSQL,”
Proc. 40th IEEE International Conference on Data Engineering (ICDE) IEEE Transactions on Knowledge and Data Engineering, Utrecht, Netherlands, May 2024.



Research: Data Cleaning in Vector Databases

e [DeCastro-Garciaet. al 2018] explores a
method to remove unnecessary data and
compute redundancy in vector databases

e Redundant information common in vector
databases

e Tested on acyber database

o Many sources of information
o Datais not uniform
e Found high redundancy and approximately
two-thirds of the data could be useless for
further analysis

N. DeCastro-Garcia, A. Castafieda, M. Rodriguez, and M. V. Carriegos, "On Detecting and Removing Superficial Redundancy in Vector Databases", in Mathematical
Problems in Engineering, Vol. 2018, May 2018.



Questions



