
Non-relational Data
Management Systems
CS4440 Technology Presentation

Dhruv Sharma, Karen Sun, Joanita Nandaula, Joo Lim

- Database that does not use the
relational models
- NoSQL (“Not only SQL”) refers to data
stores that do not use SQL for queries
- Four major categories of NoSQL:

- Document Store
- Key-Value Store
- Wide-Column Store
- Graph Store

What is
non-relational
database?

- Large hash table structure
- Associates each data value with an unique key
- Optimized for simple lookups, less suitable for querying across multiple tables
- Requires overwriting entire value for updates
- Use Cases: Storing session information, user profiles, preferences, shopping cart

data

Key-Value Store

https://learn.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data

- Extension of Key-Value, but Value as
Document

- Each field value = scalar item
- Number
- Compound element
- Parent-child collection

- Encoded in various ways
- XML, YAML, JSON, BSON, plain text, etc..

- Contains entire data for an entity
- Supports in-place updates
- Keys are often hashed

- Let DB create VS use an unique attribute as key
- Use Case: Content management systems,

blogging platforms, web analytics, real-time
analytics, e-commerce applications

Document Store

https://learn.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data

- Stores data as column families
- Optimized for fast retrieval of columns of data
- Reduces overall disk I/O and the amount of data need to load from disk
- Use Cases: Content management systems, blogging platforms, log

aggregation

Wide-Column Store

https://learn.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data

- Nodes and edges: entities
and relationships

- Perform queries by
traversing the network of
nodes and edges

- Use Cases: Fraud detection,
recommendation engines,
route optimization, pattern
discovery

Graph Store

https://learn.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data

- Internet paved the way for Big Data
- Social networks, high traffics

- Let’s upgrade the RDBMS server
- Scale up / Vertical scaling

- (memory, CPU, disk) ↑
- $$$$$

- Scale out / Horizontal scaling / Sharding
- High latency / Low throughput
- Updating columns / Schema changes
- Expensive JOIN operations
- Network congestions

- Let’s shift the priority
- ACID vs BASE
- CAP Theorem
- Low latency / high throughput

Why NoSQL?

https://www.linkedin.com/pulse/acid-vs-
base-database-properties-rudra-garnaik/

CAP Theorem

- Introduced in 2000 by Eric Brewer
- At most 2 of 3 properties:

- Consistency
- Availability
- Partition Tolerance

- Cannot achieve all 3
- RDBMS falls under CA database
- MongoDB fall under CP database
- Cassandra falls under AP database

https://www.ibm.com/topics/cap-theorem

https://www.techtarget.com/searchdatamanagement/infographic/NoSQL-database-comparison-to-help-you-choose-the-right-store

MongoDB

https://www.mongodb.com/why-use-mongodb#:~:text=MongoDB%20is%20built%20on%20a,like%20format%20to%20store%20documents.

● Created by MongoDB, In

● Open-source document database

● Classified as a NoSQL database product

● Stores data in a type of JSON format called BSON

MongoDB: Architecture

https://www.geeksforgeeks.org/mongodb-architecture/

Application and Driver: Applications interact with the
database using a Driver. Driver is the bridge between
your application and the MongoDB database.

Query router (Mongo): It acts as an interface
between the application and the sharded cluster.

Config Server: Config servers store metadata and
configuration settings for the cluster

Shard: Each shard contains a subset of the sharded
data.It is the approach to horizontal scaling.

The Primary Nodes: The primary node is the one that
handles read and write operations under normal
situations.

The Secondary Nodes: The Secondary nodes
replicate the primary data, providing redundancy and
enabling high availability.

MongoDB: Features

Why use mongodb and when to use it?. MongoDB. (n.d.-c).
https://www.mongodb.com/why-use-mongodb#:~:text=MongoDB%20is%20built%20o

● Integrating large amounts of diverse data
○ It is ideal for projects that require a unified view

from multiple data sources.
● Supporting agile development and collaboration

○ Document databases enable different teams to
manage distinct parts of a document.

○ It allows developers to store data in the
database immediately and change it whenever
necessary.

● Providing real-time analytics
○ With MongoDB, businesses can analyze any

data in place and deliver insights in real time.

MongoDB: Data Security

11 mongodb security features and best practices. Satori. (2023, April 22).
https://satoricyber.com/mongodb-security/11-mongodb-security-features-and-best-practices/

● Authentication
○ We need to create an “authentication database” that holds the authentication information of

users.
○ SCRAM and Kerberos

● Database Monitoring and Upgrading
○ It helps detect and fix potential flaws before they negatively impact the system’s performance.
○ Mongostat and mongotop

● Network Security
○ isolate your data and prevent inbound network access from the internet.
○ Allow just a one-way connection from your AWS, Azure, or Google Cloud to Atlas Clusters via

Private Endpoints.

Company using MongoDB

Cisco. MongoDB. (n.d.-a). https://www.mongodb.com/customers/cisco

Jurczak, S. (2023, June 15). Ulta beauty solves seasonal shopping: Mongodb blog. MongoDB. https://www.mongodb.com/blog/post/ulta-beauty-solves-seasonal-shopping

• Ulta Beauty: Ulta Beauty used MongoDB to better manage their expansive data and to
scale offerings quickly and successfully.

• Lyft: Lyft adopted MongoDB to handle large volumes of data with varying structures,

support agile development practices, and ensure scalability for their growing service
offerings.

• Cisco: With their existing relational database in WebEx Social, complex SQL queries
were time consuming. MongoDB now serves as the primary real-time data store for
features in the platform that are write-heavy.

● Shutterfly
○ a major Digital Picture Exchange and Private Publishing Company with over 6

billion photographs

● Problem: Shutterfly will generate a massive volume of new content that needs to
be stored and available 24/7 for editing in real time. However, the relational
database is inflexible to operate and costly to scale.

● Solution: Shutterfly chosed MongoDB as its document database platform running
on AWS.

MongoDB: Case Study

Shutterfly brings scalability and user experience into focus with mongodb atlas on AWS. MongoDB. (n.d.-c).
https://www.mongodb.com/customers/shutterfly#:~:text=Shutterfly%20used%20MongoDB’s%20Mongomirror%20tool,applications
%20continued%20to%20function%20normally.

Enhancing Scalability and Flexibility: MongoDB increased the capacity of Atlas
clusters during peak season and then reduce it back when usage slows down
again, resulting in up to a 20% cost savings compared to their previous data setup.

Rapid Service Deployment: shutterfly now can launch new services much more
quickly and thus easily manage resources for new projects, significantly saving
time and effort previously spent on manual process.

MongoDB: Case Study continue

MongoDB: Market Data and Analysis

MongoDB commands 6.69% market share in Database Management System. and its marketshare. (n.d.).
https://enlyft.com/tech/products/mongodb

MongoDB: Market Data and Analysis

MongoDB commands 6.69% market share in Database Management System. and its marketshare. (n.d.).
https://enlyft.com/tech/products/mongodb

• Apache Cassandra: Distributed, wide-column
store NoSQL database management system.

• Inception
• Originating from Facebook in 2007, Cassandra

addressed the exponential data growth challenge
faced by platforms like Messenger

• Designed for scalability and high availability in
distributed environments.

• Widely used for managing large volumes of
structured data across multiple nodes.

Apache Cassandra

• Distributed Architecture
• Peer-to-peer architecture with no single

point of failure.
• Ring topology for distributing data across

nodes.
• Consistency Levels

• Tunable consistency allowing trade-offs
between consistency and availability.

• Data Model
• Column-family based data model

supporting wide rows and flexible
schemas.

Cassandra Technical Details

Data Model

https://data-flair.training/blogs/cassandra-data-model/

• The Cassandra Query Language (CQL) is the primary interface for interacting
with Cassandra databases.

• Syntax - CQL syntax is similar to SQL, making it familiar and easy to learn for
developers accustomed to relational databases.

• Features:
• Data Definition Language (DDL): Create, alter, and drop keyspaces, tables, and indexes.
• Data Manipulation Language (DML): Insert, update, delete, and select data from tables.
• Data Control Language (DCL): Grant and revoke permissions on keyspaces and tables.

• Consistency: CQL supports tunable consistency levels, allowing developers to
balance between consistency and availability based on application
requirements.

Cassandra Query Language

Sample Keyspace Creation in CQL

https://en.wikipedia.org/wiki/Apache_Cassandra

• Linear Scalability
• Additions of nodes lead to linear scaling of performance and capacity.

• Tunable Consistency
• Ability to adjust consistency levels dynamically based on application

requirements.
• Fault Tolerance

• Built-in replication and data distribution ensure fault tolerance and high
availability.

Cassandra Features and Functionalities

Tunable Consistency

https://tdwi.org/articles/2016/07/18/tunable-consistency-in-cassandra-nosql.aspx

• Endurance
• Despite there being many NoSQL contemporaries, Cassandra has solidified its position

as a robust database solution.
• Adoption

• Cassandra is utilized by approximately 90% of Fortune 100 companies, reflecting its
growing appeal in managing vast amounts of data.

• Growth
• Driven by global distribution and constant connectivity demands, Cassandra remains a

crucial component for data-intensive applications.
• Integrations

• Cassandra's commitment to operational simplicity at scale and integration with Apache
Spark and Apache Kafka reflects its adaptability.

Market Positioning of Cassandra

Netflix manages petabytes of data in Apache Cassandra
which must be reliably accessible to users in mere
milliseconds. They built sophisticated control planes that
turn their persistence layer based on Apache Cassandra into
a truly self-driving system.

Spotify uses Cassandra as a solution for all personalization
needs and are confident to scale it up to serve personalized
experience to their ever growing size of engaged user base.

Cassandra was the only database that fulfilled all of
Discord’s requirements, as they can add nodes to scale it
and it can tolerate a loss of nodes without any impact on the
application. Related data is stored contiguously on disk
providing minimum seeks and easy distribution around the
cluster.

Companies that Use Cassandra

Testimony from : https://cassandra.apache.org/_/case-studies.html

• Bloomberg undertook a multi-year project to develop an Index Construction
Platform to manage the daily production of the Bloomberg Barclays fixed
income indices.

• Technical Components
• Apache Cassandra Backend Database: Deployed to store millions of data points

generated daily, ensuring scalability and reliability for data management.
• Apache Solr-backed Search Platform: Implemented to handle thousands of searches per

minute, supporting efficient retrieval of index-related information.
• Distributed Computational Engine: Engineered to process millions of computations daily,

facilitating complex calculations required for index construction.
• Apache Cassandra offered a distributed, fault-tolerant database solution

capable of handling the massive influx of data points while ensuring high
availability.

Case Study: Bloomberg Barclays using Cassandra

Relational → Non-Relational Databases

Image from MongoDB, 2015

Apache Cassandra

● Unencrypted Data Files
○ Cassandra doesn’t automatically encrypt data in storage.
○ Attackers with file-system access can extract information directly.
○ Mitigation: Encrypt sensitive information before writing to the database and use OS-level

mechanisms to prevent unauthorized file access.
● Complexity

○ The clustered node system can be complex
○ Challenges with maintenance and troubleshooting

● Intercluster Communication
○ Nodes on a cluster communicate freely without encryption or authentication.
○ Suggested Mitigation: The current stable branch can support encryption on intercluster

communication, which should be enabled.

Current Problems with NoSQL databases

https://ieeexplore.ieee.org/abstract/document/6120863?casa_token=l-AsxMwSMLcAAAAA:H5bC
-BIHLvrfCt6tj_pW6qKifrhjE1Qh2gCcI55El87iVEWDBvlP4YjI_3kJwEVSlNfq_OyjTQ

Apache Cassandra
● Injection Attacks

○ Despite being NoSQL, Cassandra is vulnerable to injection attacks like SQL.

unsafe CQL query: SELECT * FROM users WHERE username='[user_input]' AND
password='[user_input]' ALLOW FILTERING;

unsanitized input: SELECT * FROM users WHERE username='admin'/*' AND
password='*/ and password >'' ALLOW FILTERING;

● Limited Query Support
○ Does not support joins

● Requires a lot of storage

Current Problems with NoSQL databases

https://medium.com/@harsh.b26/drawbacks-of-apache-cassandra-fecaa4704d14
https://www.invicti.com/blog/web-security/investigating-cql-injection-apache-cassandra/

MongoDB
● Injection Attacks

○ MongoDB is susceptible to injection attacks, similar to Cassandra.
○ It uses JavaScript, an interpreted language, increasing its vulnerability.

● Document Size Limit
○ Size limit of 16MB
○ Has GridFS API, but can be inefficient
○ Nest only upto 100 levels

● Data Redundancy, Inefficient Memory Usage
○ Stores information in <key,value> pairs, multiple similar keys → more storage
○ Even worse if keys are long strings
○ $lookup operator exists for left outer joins but has some tradeoffs

Current Problems with NoSQL databases

https://ieeexplore.ieee.org/abstract/document/6120863?casa_token=l-AsxMwSMLcAAAAA:H5bC-BIHLvrfCt6tj_pW6qKifrhjE1Q
h2gCcI55El87iVEWDBvlP4YjI_3kJwEVSlNfq_OyjTQ
https://www.geeksforgeeks.org/mongodb-advantages-disadvantages/

The benefits of non-relational databases have led to majority migration from relational
to non relational database management system.
Most of the ongoing research is in data migration from relational to non relational
databases.
Before Migration:

• Planning
• Number of records
• Mapping the data types (Data types must match)
• Character Encoding (to prevent automatic replacement of characters and loss)
• Tests (carry out tests on small subsets first)
• Implementation (identify how long it may take to migrate, provision for losses)
• Partial and Final Monitoring

Future Trends & Ongoing Research

http://archive.sciendo.com/MJSS/mjss.2018.9.issue-2/mjss-2018-0042/mjss-2018-0042.pdf

NoSQLayer framework is divided into:
Data Migration Module

• Identify Elements of the original Database (metadata required)
• Create equivalent structure using NoSQL model
• Completely migrate the data

Data Mapping Module
• Intercepts any queries issued to the application to NoSQL DBMS
• extracts information from SQL operations such as tables and “WHERE”clauses
• Translates the SQL operations to their equivalent NoSQL ones

Framework for Migration from SQL →NoSQL

https://www.researchgate.net/publication/277931056_A_Framework_for_Migrating_Relational_Datasets_to_NoSQL1

Questions?

