
Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing

Team8

Minjun Kim, Nabin Kim, Sandra Kurian, Seohee Yoon

Title Page

Authors: Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica; University of California, Berkeley

NSDI'12, April 2012

1

Title Page Background

Efficient Management of Distributed Memory

How to design a distributed memory

abstraction that is interactive, iterative,

and fault-tolerant?

Figure 1.Iterative Operations on MapReduce

Figure 2. Interactive Operations on MapReduce

Figure 3. Fault Tolerance

2: Nabin KimLee, I. (n.d.). Fault tolerance. Wallarm. Retrieved April 10, 2024, from https://www.wallarm.com/what/what-is-fault-tolerance.
Interactive Operations on MapReduce. (n.d.). Tutorials point. Retrieved April 10, 2024, from https://www.tutorialspoint.com/apache_spark/apache_spark_quick_guide.htm.

Iterative Operations on MapReduce. (n.d.). Tutorials point. Retrieved April 10, 2024, from https://www.tutorialspoint.com/apache_spark/apache_spark_quick_guide.htm.

Title Page Background

RDD Abstraction
Resilient Distributed Datasets (Spark, parallel data processing)

Creation:

From Stable Data.

From Other RDDs.

Transformations: Deterministic operations like map, filter, and join

Lineage: Records RDD derivation, enabling failure recovery

User Control: Management of persistence and partitioning

3: Nabin Kim

Title Page Background Motivation

Spark Programming Interface

Figure 5, 6, 7. Code Snippet

4: Nabin Kim

Title Page Background Motivation

RDD vs DSM (Distr. Shared Mem.)

5: Nabin Kim

Title Page Background Motivation

Applications Not Suitable for RDDs

RDDs unsuitable for asynchronous fine-grained updates to shared state

Multiple processes concurrently update data non-uniformly

Examples: Storage systems for web apps / Incremental web crawlers

Traditional systems with update logging and data checkpointing are more efficient

Examples: RAMCloud, Percolator, Piccolo

RDDs focus on efficient batch analytics rather than handling asynchronous updates

6: Nabin Kim

Title Page Background Motivation Overview

Overview
RDDs reduce the reliance on disk I/O and data replication for iterative

algorithm and interactive data mining tools

It stores data in memory and uses lineage information to reconstruct lost

data

Not only accelerates data processing but also simplifies fault recovery

Spark with RDDs is 20x faster than Hadoop for iterative applications and

speeds up data analytics reports by 40x

7: Seohee Yoon

Title Page Background Motivation Overview Spark Programming

Transformations

Take existing RDD and produce new RDD

Form Lineage graph for RDD’s dependencies

EX) map, filter, sample...

Actions

Launch a computation to return a value

EX) count, collect...

8: Seohee Yoon

Spark Programming Interface - Application

Title Page Background Motivation Overview Spark Programming

Spark Programming Interface - Application
Logistic Regression

A common classification algorithm that searches

for a hyperplane w that best separates two sets of

points

EX) Classify spam and non-spam emails

Using a persistent RDD in Spark, we can reuse

intermediate results across multiple computations,

resulting in 20x speedup

9: Seohee Yoon

Figure 8 Code Snippet

Title Page Background Spark ProgramMotivation Overview Representing RDDs

Representing RDDs
Spark proposes representing RDDs through interfaces

A set of partitions

Accessible nodes list from p

A set of dependencies on parent RDDs

A function for computing the dataset from

the parents

Metadata about partitioning scheme and

data placement

10: Seohee Yoon

Title Page Background Spark ProgramMotivation Overview Representing RDDs

Representing RDDs
Narrow dependencies (Preferred)

A parent RDD is used by at most one child RDD

Pipelined execution on one cluster node to compute all

parent partition

Only the lost parent partitions need to be recomputed

Wide dependencies

A parent RDD is used by multiple child RDD

All parent partitions are required to be available

A single failed node might cause a complete re-

execution

Sketched Implementation

HDFS files, map, union, join
11: Seohee Yoon

Title Page Background Spark ProgramRepresenting RDDsMotivation Overview

Implementation - Job Scheduling
When an action is run, Spark’s scheduler builds a Directed Acyclic
Graph (DAG) of stages based on the RDD’s lineage graph, as
shown in Figure 5.

Each of the stages contain as many pipelined transformations
with narrow dependencies as possible.
The boundaries of the stages are the wide dependencies and
any already computed partitions.

The scheduler assigns tasks based on locality, using delay
scheduling.

For wide dependencies, Spark materializes intermediate records
making fault recovery easier.

Implementation

12: Minjun Kim

Title Page Background Spark ProgramRepresenting RDDsMotivation Overview Implementation

Implementation - Interpreter Integration
Spark has an in-memory Scala interpreter option to query big
datasets.

Figure 6 shows how the modified interpreter translates a set of
lines typed by the user to Java objects.

13: Minjun Kim

Title Page Background Spark ProgramRepresenting RDDsMotivation Overview Implementation

Implementation - Memory Management
Spark provides three options for storage of persistent RDDs:

In-memory storage as deserialized Java objects (fastest performance as Java VM can access RDD elements natively)
In-memory storage as serialized data (memory-efficient representation compared to Java object graphs when space is
limited.)
On-disk storage (for RDDs that are too large to keep in RAM but costly to recompute on each use)

To manage the limited memory available, Spark uses an LRU (Least Recently Used) eviction policy at the level of RDDs.

When a new RDD partition is computed but there is not enough space to store it, Spark evicts a partition from the least
recently accessed RDD, unless this is the same RDD as the one with the new partition. In that case, Spark keeps the old
partition in memory to prevent cycling partitions from the same RDD in and out.

14: Minjun Kim

Title Page Background Spark ProgramRepresenting RDDsMotivation Overview Implementation

Implementation - Support for Checkpointing
Checkpointing is useful for RDDs with long lineage graphs containing wide
dependencies. Figure 3 shows an example of a lineage graph for datasets in
PageRank where checkpointing may or may not be helpful.

In these cases, a node failure in the cluster may result in the loss of some slice
of data from each parent RDD, requiring a full recomputation. So,
checkpointing will come in handy.

In contrast, for RDDs with narrow dependencies on data in stable storage,
checkpointing may never be worthwhile.

15: Minjun Kim

Title Page Background Spark ProgramMotivation Overview Evaluation

Evaluation
Previously computing frameworks were inefficient in:

iterative algorithms
interactive data mining tools

compared Spark against
Hadoop (standard)
HadoopBinMem (modified Hadoop)

input data is converted into a low-overhead binary format in the first iteration and stored in an in-memory HDFS instance
comparison highlights the benefits of in-memory storage and optimized data formats

evaluated through Amazon EC2

16: Sandra Kurian

Title Page Background Spark ProgramMotivation Overview Evaluation

Evaluation
Task: read text input from HDFS (Hadoop Distributed File System)

First iterations of their experiments
HadoopBinMem slowest b/c convert data to a binary format

In subsequent iterations,
logistic regression application

25.3× faster than Hadoop
20.7× faster than HadoopBinMem.

k-means application
speedups ranging from 1.9× - 3.2×

Spark’s efficiency in handling subsequent iterations and scaling with
cluster size compared to traditional Hadoop-based approaches

17: Sandra Kurian

Title Page Background Spark ProgramMotivation Overview Evaluation

Evaluation
Task: performance comparison between Spark and Hadoop for
PageRank using a 54 GB Wikipedia dataset

10 iterations of the PageRank algorithm on a link graph, ~4 million
articles.

in-memory storage: 2.4× speedup w/t 30 nodes
controlling the partitioning: 7.4 speedup w/t 30 nodes

ensure consistency across iterations
linear scaling up to 60 nodes

Spark's efficiency in handling iterative algorithms like PageRank,
leveraging in-memory storage and optimized RDD partitioning to
achieve substantial performance gains over Hadoop, with scalable
performance observed across a growing number of nodes.

18: Sandra Kurian

Title Page Background Spark ProgramMotivation Overview Evaluation

Evaluation
Task: assess the cost of reconstructing RDD partitions using lineage after
a node failure during the execution of a k-means application

10 iterations of k-means algorithm on a 75-node cluster under normal
conditions -vs- when a node failed at the start of the 6th iteration
~58 seconds until the end of the 5th iteration.
6th iteration: node fail

tasks and partitions were lost
re-executed these tasks in parallel (re-reading and reconstructing
RDDs)
80 seconds.

returned to 58 seconds.

Spark has a lightweight and efficient approach to fault tolerance and
recovery in distributed data processing 19: Sandra Kurian

Title Page Background Spark ProgramMotivation Overview Evaluation

Evaluation
Task: investigated the behavior of Spark when there is insufficient
memory to store all RDDs across iterations

configure to limit the amount of memory used to store RDDs on
each machine
performance of logistic regression tasks degraded as the
available storage space for RDDs decreased.

Spark is capable of adapting to memory constraints by gracefully
degrading performance as memory availability decreases,
highlighting its ability to handle scenarios where job data exceeds
available memory resources in a distributed computing environment.

20: Sandra Kurian

Title Page Background Spark ProgramMotivation Overview Evaluation

Evaluation
Task: showcase Spark's capability for interactive querying of large
datasets using 1TB of Wikipedia page view logs

Queries were designed to find total views of all pages, pages with
titles exactly matching a specified word, ...
Response times for these queries were analyzed and compared
using different subsets of the dataset

Spark took 5–7 seconds.
querying from disk took 170 seconds.

The findings illustrate that RDDs make Spark an efficient and powerful
tool for interactive data mining, providing substantial performance
improvements over traditional on-disk data querying methods.

21: Sandra Kurian

Title Page Background Spark ProgramMotivation Overview Discussion

Discussion
Expressing Existing Programming Models

22: Sandra Kurian, Minjun Kim

MapReduce
This model can be expressed using the flatMap and groupByKey operations in Spark, or reduceByKey if there is a combiner.

DryadLINQ
The DryadLINQ system provides a wider range of operators than MapReduce over the more general Dryad runtime, but these
are all bulk operators that correspond directly to RDD transformations available in Spark (map, groupByKey, join, etc).

SQL
Like DryadLINQ expressions, SQL queries perform data-parallel operations on sets of records.

Pregel
 Pregel applies the same user function to all the vertices on each iteration, so we can implement Pregel with RDDs.
Spark can store the vertex states for each iteration in an RDD and perform a bulk transformation (flatMap) to apply this function
and generate an RDD of messages. It can then join this RDD with the vertex states to perform the message exchange.
Pregel is implemented as a 200-line library in Spark.

Title Page Background Spark ProgramMotivation Overview Discussion

Discussion
Leveraging RDDs for Debugging

RDDs were orginally designed to be deterministically recomputable for fault tolerance purposes, but this property also facilitates
debugging.

By logging the lineage of RDDs created during a job, one can:
Reconstruct these RDDs later and let the user query them interactively
Re-run any task from the job in a single-process debugger, by recomputing the RDD partitions it depends on

This approach adds virtually zero recording overhead because only the RDD lineage graph needs to be logged.

23: Sandra Kurian, Minjun Kim

Title Page Background Spark ProgramMotivation Overview Related Work

Related Works
Cluster Programming Models

Data Flow Models (MapReduce, Dryad, Ciel)

High-level Programming Interfaces (DryadLINQ, FlumeJava)

Specialized Systems (Pregel, Twister, HaLoop)

Caching Systems

Systems with Caching Capabilities (Nectar, Ciel, FlumeJava)

Proposals for In-memory Caching (Ananthanarayanan et al.)

Lineage

Relational Databases

24: Nabin Kim

Title Page Background Spark Program

Future plans / Shortcomings

investigate sharing RDDs across instances of Spark through a unified

memory manager

Companies using RDDs

Monarch: Twitter spam classification

SNAP: DNA sequence analysis

Mobile Millennium: traffic prediction

Motivation Overview Conclusion

Conclusion

25: Sandra Kurian

Title Page Background Spark ProgramMotivation Overview Study Question

Study Questions

1. How do Resilient Distributed Datasets (RDDs) facilitate fault tolerance in distributed computing?

Discuss the implications of using lineage for recovery in terms of computational overhead and system

performance.

2. Explain the impact of narrow and wide dependencies on the performance of Spark applications.

Provide an example of a computation that would benefit from narrow dependencies and discuss how

each dependency affects the fault recovery process.

Title Page Background Spark ProgramMotivation Overview Citations

Citations
Lee, I. (n.d.). Fault tolerance. Wallarm. Retrieved April 10, 2024, from
https://www.wallarm.com/what/what-is-fault-tolerance.

Interactive Operations on MapReduce. (n.d.). Tutorials point. Retrieved April 10, 2024, from
https://www.tutorialspoint.com/apache_spark/apache_spark_quick_guide.htm.

Iterative Operations on MapReduce. (n.d.). Tutorials point. Retrieved April 10, 2024, from
https://www.tutorialspoint.com/apache_spark/apache_spark_quick_guide.htm.

