
A Comparison of Approaches
to Large-Scale Data Analysis
Andrew Pavol, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, Michael Stonebraker
Published in SIGMOD ‘09

Presented by Mingxiao (Michelle) Song, Huaijin (Tony) Tu, Anh Nguyen,
Natasha Mohanty

1

Motivation and Overview

2 (Michelle)

Rise of Clustering Computing
Large number of low-end servers
instead of deploying a smaller set
of high-end servers.

Clustering Programming Tools
E.g. MapReduce, simple tool to
express tasks for sophisticated
distributed system.

Q: How to compare the MapReduce approach with
parallel SQL database management systems?

A: Evaluate MapReduce and parallel SQL DBMS in
terms of performance and development complexity.

- Define benchmark with parallel processing tasks
- Summarize trade-offs that future systems should

take from both kinds of architectures
- schema format
- indexing & compression optimization
- How data is distributed
- Query execution strategies

Large Scale Data Analysis
Dividing any data set to be utilized
into partitions, which are
allocated to different nodes to
facilitate parallel processing.

MapReduce

3 (Michelle)

Map

Reduce

- Reads set of records from input file
- Conducts filtering/transformation
- Outputs set of intermediate records in
the form of key-value pairs

- Partitions key-value pairs into R disjoint
buckets by applying hash function on keys
- Writes map bucket to the processing
node’s local disk

- Executes R Reduce instances
- Related key-value pairs transferred over
network from the Map node’s local disk
- Processes/combines records assigned to it
- Write records to an output file

Simplicity
MR scheduler decide:

- how many Map/Reduce instances to run;
- how to allocate them to available nodes

1. Map Reduce explained with example: https://www.youtube.com/watch?v=cHGaQz0E7AU&ab_channel=ByteMonk

Split

Parallel DBMS

4 (Michelle)

Database systems capable of running on clusters of shared nothing nodes. (since 1980s)
Example task: filter records in table T1 based on a predicate, along with a join to a second table
T2 with an aggregate computed on the result of the join.

01
Most tables are partitioned over
the nodes in a cluster.

02
The system uses an optimizer that
translates SQL commands into a
query plan whose execution is
divided amongst multiple nodes.

Perform filter sub-query at nodes that already stored T1
(similar to Map function)

Join algorithms based on the size of data table T2

T2 is small

- Replicate T2 on all nodes
- Execute join in parallel at
all nodes
- Compute aggregate at
each node
- Final roll up

T2 is large

- Distribute T2 content across multiple
nodes (different sets of attributes)
- Hash both T2 and the filtered T1 on
the join attribute (similar to Split)
- Compute aggregate at each node
- Final roll up

Architectural Elements
● Schema Support
● Indexing
● Programming Model
● Data distribution
● Execution strategy
● Flexibility
● Fault tolerance

5 (Tony)

Schema Support

6 (Tony)

MapReduce (MR) Parallel DBMS

Does not require data to adhere to a
predefined schema.

Requires data to fit into the relational model
of rows and columns.

Programmers have the freedom to structure
data in any format.

Enforces data integrity and schema
constraints automatically.

Custom parsers often needed for complex
data structures.

Simplifies data sharing and reuse across
applications.

Indexing

7(Tony)

MapReduce (MR) Parallel DBMS

Does not provide built-in indexes. Utilizes indexing (e.g., hash or B-tree
indexes) to accelerate data access.

Programmers must implement any required
indexing within their applications.

Supports multiple indexes per table.
Query optimizer decides the best index to
use for each query.

Programming Model

8 (Tony)

MapReduce (MR) Parallel DBMS

Low-level, procedural programming model. High-level, declarative SQL programming
model.

Consists of Map and Reduce functions for
processing key/value data pairs.

Abstracts away the underlying data storage
and retrieval mechanisms.

Requires explicit algorithms for data
manipulation.

*Pig, Hive improve on this drawback.

Easier for users familiar with SQL; less
flexibility for procedural programming.

Data Distribution

9 (Tony)

MapReduce (MR) Parallel DBMS

“Share nothing” architecture “Share nothing” architecture

Data is manually distributed across nodes. Automatically manages data distribution.

Requires programmers’ effort to manage
data distribution and processing.

Uses a parallel query optimizer to manage
data distribution and query execution.

Data shipped from Mapper to Reducer. Program “finds” data by optimizer, pushing
down when possible

Execution Strategy

10 (Tony)

MapReduce (MR) Parallel DBMS

Pull-based model for data transfer between
Map and Reduce phases.

Push-based model, avoiding materialization
of intermediate results.

Data transfer between Map and Reduce
phases can be a bottleneck due to disk I/O
and network congestion.

Optimizes execution plans globally,
minimizing data transfer.

Flexibility

11 (Tony)

MapReduce (MR) Parallel DBMS

Highly flexible in processing unstructured
data.

Primarily designed for structured data
processing.

Supports a wide range of custom data
processing tasks beyond traditional
database queries.

Less flexible in handling unstructured data
compared to MR.

Fault tolerance

12 (Tony)

MapReduce (MR) Parallel DBMS

Highly fault-tolerant with automatic task
retries and data replication.

Provides fault tolerance mainly through
data replication.

Designed to handle failures gracefully
during query execution.

May require complete query restarts in the
event of node failures (costly when query
takes long to run).

Configuring Tested Systems

13 (Natasha)

1

2

3

Jupiter

Jupiter is the biggest planet of them all

Hadoop
Framework for distributed storage & datasets

DBMS-X
Parallel-SQL DBMS storing row-oriented data

Vertica
Analytics parallel DBMS for large warehouses

NeptuneNeptune is the farthest from the Sun

The Original MR Task

14 (Natasha)

● Creation statement where input data is stored as text files

The “Grep Task” represents a multifaceted task for storing large subsets of data programs
where it scans through 100-byte records looking for a three-character pattern. To measure
scaling performance, the task is executed on two unique datasets

15 (Natasha)

01
Data Loading focuses on the time taken for to
load test data

02
Task Execution measures how well each system
scales as number of available nodes increases

Subsets of “Grep Task”

Data Loading - System Method

16 (Natasha)

● Loading process involves two phases:
executing the load-sql command in
parallel and delimiting the data by a
special character

● The system must redistribute the
tuples to other clusters because the
data generator generates random keys

● After loading the data, the
administrative command is executed to
reorganize the data

DBMS-X and Vertica (DBMS’s)

● Two ways to load: either through the
command line utility to upload files or
custom data loader program to write
data to internal API

● Files on each node are loaded in
parallel as plain-text

● Allows for MR programs to access data
using Hadoop TextInputFormat data
format

Hadoop (MapReduce)

Data Loading - Performance Comparison

17 (Natasha)

Task Execution - SQL Statement

18 (Natasha)

● The following SQl Statement focuses on pattern search for a particular field

The MR Program contains a singular Map function splitting a record into its key/value pairs. By
performing a sub-string match for a search value. If a search pattern is found, then the Map
function outputs an input key/value pair to HDFS

Task Execution - Performance Comparison

19 (Natasha)

20 (Anh)

Analytical
Tasks

Data Loading Data Aggregation Data Selection JOIN

Data Loading - UserVists and Ranking

21 (Anh)

● Use UDF that processes the documents
on each node at runtime and loads the
data into a temporary table

● Significantly faster with the ability to
directly load structured data

DBMS-X and Vertica (DBMS’s)

● Loads the Documents files into its
internal storage system

● Requires custom data loaders to
modify the datasets for MR
compatibility

● This process is manual

Hadoop (MapReduce)

Data Selection - DBMS

22 (Anh)

● Execute a simple SQL query

DBMS-X and Vertica (DBMS’s)

23 (Anh)

Data Selection - MR

Map

Reduce No reduce function is needed in this case

Filters records based on a threshold value (e.g., pageRank > x)

Data Selection - Performance Breakdown

24 (Anh)

Data Aggregation - DBMS

25 (Anh)

● Execute a simple SQL query to group and perform summation

DBMS-X and Vertica (DBMS’s)

26 (Anh)

Map

Reduce Adds together all of the adRevenue values for each sourceIP
and then outputs the sourceIP and its revenue total

Outputs the sourceIP field and the adRevenue field as a new
key/value pair

Data Aggregation - MapReduce

Data Aggregation - Performance Comparison

27 (Anh)

Join Task - DBMS

28 (Anh)

● SQL queries:

DBMS-X and Vertica (DBMS’s)

Join Task - MapReduce

29 (Anh)

Filtering Records

Perform Actual Join Aggregating results1

2 3

Join Task - Performance Comparison

30 (Anh)

Conclusion
● Parallel database systems demonstrated significant performance advantage

compared to Hadoop
○ DBMS-X was 3.2x faster than MR & Vertical was 2.3x than DBMS-X
○ Performance advantage due to numerous current technologies

● Future areas to focus on:
○ Evaluating the performance penalty in parallel computing scope
○ Understanding the schema implementation of MR

31 (Natasha)

Study Question
Question 1: Considering the performance advantages of parallel DBMS over
MapReduce for the tasks in the benchmark, what are the potential implications for
the future development of data processing frameworks, and how might
MapReduce adapt to remain competitive?

Question 2: Given the ease of use and setup of MapReduce compared to parallel
databases, as noted in the paper, what strategies could parallel databases employ
to improve their usability and reduce setup complexity, and how might this impact
their adoption in various industries?

32 (Tony)

