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Motivation and Overview
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Rise of Clustering Computing
Large number of low-end servers 
instead of deploying a smaller set 
of high-end servers.

Clustering Programming Tools
E.g. MapReduce, simple tool to 
express tasks for sophisticated 
distributed system.

Q: How to compare the MapReduce approach with 
parallel SQL database management systems?

A: Evaluate MapReduce and parallel SQL DBMS in 
terms of performance and development complexity.

- Define benchmark with parallel processing tasks
- Summarize trade-offs that future systems should 

take from both kinds of architectures
- schema format
- indexing & compression optimization
- How data is distributed
- Query execution strategies

Large Scale Data Analysis
Dividing any data set to be utilized 
into partitions, which are 
allocated to different nodes to 
facilitate parallel processing.



MapReduce
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Map

Reduce

- Reads set of records from input file
- Conducts filtering/transformation
- Outputs set of intermediate records in 
the form of key-value pairs

- Partitions key-value pairs into R disjoint 
buckets by applying hash function on keys
- Writes map bucket to the processing 
node’s local disk

- Executes R Reduce instances
- Related key-value pairs transferred over 
network from the Map node’s local disk
- Processes/combines records assigned to it
- Write records to an output file

Simplicity
MR scheduler decide:

- how many Map/Reduce instances to run;
- how to allocate them to available nodes

1. Map Reduce explained with example: https://www.youtube.com/watch?v=cHGaQz0E7AU&ab_channel=ByteMonk

Split



Parallel DBMS
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Database systems capable of running on clusters of shared nothing nodes. (since 1980s)
Example task: filter records in table T1 based on a predicate, along with a join to a second table 
T2 with an aggregate computed on the result of the join.

01
Most tables are partitioned over 
the nodes in a cluster.

02
The system uses an optimizer that 
translates SQL commands into a 
query plan whose execution is 
divided amongst multiple nodes.

Perform filter sub-query at nodes that already stored T1
(similar to Map function)

Join algorithms based on the size of data table T2

T2 is small

- Replicate T2 on all nodes
- Execute join in parallel at 
all nodes
- Compute aggregate at 
each node
- Final roll up

T2 is large

- Distribute T2 content across multiple 
nodes (different sets of attributes)
- Hash both T2 and the filtered T1 on 
the join attribute (similar to Split)
- Compute aggregate at each node
- Final roll up



Architectural Elements
● Schema Support 
● Indexing
● Programming Model
● Data distribution
● Execution strategy
● Flexibility
● Fault tolerance
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Schema Support
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MapReduce (MR) Parallel DBMS

Does not require data to adhere to a 
predefined schema.

Requires data to fit into the relational model 
of rows and columns.

Programmers have the freedom to structure 
data in any format.

Enforces data integrity and schema 
constraints automatically.

Custom parsers often needed for complex 
data structures.

Simplifies data sharing and reuse across 
applications.



Indexing
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MapReduce (MR) Parallel DBMS

Does not provide built-in indexes. Utilizes indexing (e.g., hash or B-tree 
indexes) to accelerate data access.

Programmers must implement any required 
indexing within their applications.

Supports multiple indexes per table.
Query optimizer decides the best index to 
use for each query.



Programming Model
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MapReduce (MR) Parallel DBMS

Low-level, procedural programming model. High-level, declarative SQL programming 
model.

Consists of Map and Reduce functions for 
processing key/value data pairs.

Abstracts away the underlying data storage 
and retrieval mechanisms.

Requires explicit algorithms for data 
manipulation. 

*Pig, Hive improve on this drawback.

Easier for users familiar with SQL; less 
flexibility for procedural programming.



Data Distribution
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MapReduce (MR) Parallel DBMS

“Share nothing” architecture “Share nothing” architecture

Data is manually distributed across nodes. Automatically manages data distribution.

Requires programmers’ effort to manage 
data distribution and processing.

Uses a parallel query optimizer to manage 
data distribution and query execution.

Data shipped from Mapper to Reducer. Program “finds” data by optimizer, pushing 
down when possible



Execution Strategy
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MapReduce (MR) Parallel DBMS

Pull-based model for data transfer between 
Map and Reduce phases.

Push-based model, avoiding materialization 
of intermediate results.

Data transfer between Map and Reduce 
phases can be a bottleneck due to disk I/O 
and network congestion. 

Optimizes execution plans globally, 
minimizing data transfer.



Flexibility
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MapReduce (MR) Parallel DBMS

Highly flexible in processing unstructured 
data.

Primarily designed for structured data 
processing.

Supports a wide range of custom data 
processing tasks beyond traditional 
database queries.

Less flexible in handling unstructured data 
compared to MR.



Fault tolerance
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MapReduce (MR) Parallel DBMS

Highly fault-tolerant with automatic task 
retries and data replication.

Provides fault tolerance mainly through 
data replication.

Designed to handle failures gracefully 
during query execution.

May require complete query restarts in the 
event of node failures (costly when query 
takes long to run).



Configuring Tested Systems 
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1

2

3

Jupiter

Jupiter is the biggest planet of them all

Hadoop
Framework for distributed storage & datasets

DBMS-X
Parallel-SQL DBMS storing row-oriented data

Vertica
Analytics parallel DBMS for large warehouses

NeptuneNeptune is the farthest from the Sun



The Original MR Task
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● Creation statement where input data is stored as text files

The “Grep Task” represents a multifaceted task for storing large subsets of data programs 
where it scans through 100-byte records looking for a three-character pattern.  To measure 
scaling performance, the task is executed on two unique datasets
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01
Data Loading focuses on the time taken for to 
load test data

02
Task Execution measures how well each system 
scales as number of available nodes increases

Subsets of “Grep Task”



Data Loading - System Method
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● Loading process involves two phases: 
executing the load-sql command in 
parallel and delimiting the data by a 
special character

● The system must redistribute the 
tuples to other clusters because the 
data generator generates random keys

● After loading the data, the 
administrative command is executed to 
reorganize the data

DBMS-X and Vertica (DBMS’s)

● Two ways to load: either through the 
command line utility to upload files or 
custom data loader program to write 
data to internal API

● Files on each node are loaded in 
parallel as plain-text

● Allows for MR programs to access data 
using Hadoop TextInputFormat data 
format

Hadoop (MapReduce)



Data Loading - Performance Comparison
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Task Execution - SQL Statement
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● The following SQl Statement focuses on pattern search for a particular field 

The MR Program contains a singular Map function splitting a record into its key/value pairs. By 
performing a sub-string match for a search value. If a search pattern is found, then the Map 
function outputs an input key/value pair to HDFS 



Task Execution - Performance Comparison
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Analytical 
Tasks

Data Loading Data Aggregation Data Selection JOIN



Data Loading - UserVists and Ranking
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● Use UDF that processes the documents 
on each node at runtime and loads the 
data into a temporary table 

● Significantly faster with the ability to 
directly load structured data

DBMS-X and Vertica (DBMS’s)

● Loads the Documents files into its 
internal storage system

● Requires custom data loaders to 
modify the datasets for MR 
compatibility

● This process is manual

Hadoop (MapReduce)



Data Selection - DBMS
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● Execute a simple SQL query

DBMS-X and Vertica (DBMS’s)
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Data Selection - MR

Map

Reduce No reduce function is needed in this case

Filters records based on a threshold value (e.g., pageRank > x)



Data Selection - Performance Breakdown
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Data Aggregation - DBMS
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● Execute a simple SQL query to group and perform summation

DBMS-X and Vertica (DBMS’s)
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Map

Reduce Adds together all of the adRevenue values for each sourceIP 
and then outputs the sourceIP and its revenue total 

Outputs the sourceIP field and the adRevenue field as a new 
key/value pair 

Data Aggregation - MapReduce



Data Aggregation - Performance Comparison
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Join Task - DBMS
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● SQL queries:

DBMS-X and Vertica (DBMS’s)



Join Task - MapReduce

29 (Anh)

Filtering Records

Perform Actual Join Aggregating results1

2 3



Join Task - Performance Comparison
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Conclusion
● Parallel database systems demonstrated significant performance advantage 

compared to Hadoop
○ DBMS-X was 3.2x faster than MR & Vertical was 2.3x than DBMS-X
○ Performance advantage due to numerous current technologies

●  Future areas to focus on:
○ Evaluating the performance penalty in parallel computing scope
○ Understanding the schema implementation of MR
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Study Question
Question 1: Considering the performance advantages of parallel DBMS over 
MapReduce for the tasks in the benchmark, what are the potential implications for 
the future development of data processing frameworks, and how might 
MapReduce adapt to remain competitive?

Question 2: Given the ease of use and setup of MapReduce compared to parallel 
databases, as noted in the paper, what strategies could parallel databases employ 
to improve their usability and reduce setup complexity, and how might this impact 
their adoption in various industries?

32 (Tony)


