
Pig Latin: A Not-So-
Foreign Language for

Data Processing

Taylor Doering, Charlotte Hettrich,
Amanda Lee, Joanita Nandaula

Ravi Kumar, Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, and Ansrew Tomkins

Published by the Association for Computing Machinery

1

 Declarative SQL-style
Language

Procedural Map-Reduce
Model

Developers find unnatural Low-level and rigid

Taylor 2

 Declarative SQL-style
Language

Procedural Map-Reduce
Model

Developers find unnatural Low-level and rigid

Pig-Latin

Taylor 3

Impact Across
Sectors

1

Overcoming
the Bottleneck

2

Broadening
Access

3

Why it Matters

Taylor 4

Example
Suppose we have a table:

urls: (url, category, page rank)

Simple SQL query that finds, for each sufficiently large category, the
average pagerank of high-pagerank urls in that category:

SQL is concise and familiar
for structured queries
Limited in handling more
complex, unstructured data
Does not explicitly show the
data transformation steps

Taylor 5

With
Pig-

Latin

Pig Latin simplifies complex data transformations
Sequence of steps shows clear data flow
Balances high-level abstraction and control over data
processing

Taylor 6

Related Work

DynamoDryad

Pig Latin

Microsoft's solution for complex,
parallel workflows
More adaptable than MapReduce,
but still requires simplification
through DryadLINQ

Amazon's key-value store designed
for internal use
Excels in scalability and
distributed storage, focusing on
transactional data

Handles multi-stage data operations
Balances ease-of-use with analytical power
Innovative in handling complex data and debugging

Dynamo: Amazon’s highly available key-value store
Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks

Taylor 7

https://assets.amazon.science/ac/1d/eb50c4064c538c8ac440ce6a1d91/dynamo-amazons-highly-available-key-value-store.pdf
http://www.michaelisard.com/pubs/eurosys07.pdf

Overview

Bridging the gap
between SQL ease and

MapReduce power

Main Claims:

Simplification of Data Processing Workflows1.
Enhanced Flexibility and User Control2.
Support for Complex, Multi-Stage Data Operations3.
User-Defined Functions for Custom Processing4.

Proposed Solution:

Pig Latin: A high-level data processing language

Taylor 8

SQL PIg Latin Map-Reduce

Set of declarative
constraints

Sequence of (single
transformation) steps

Order of operation based
on engine

No fixed order of
operation

Reordering not possible

Technical Features
Dataflow Language

Easy to track variables and overall analysis process
Optimization through reordering

Amanda 9

Technical Features
Quickstart

Interoperability

Pig’s functionality to parse a file into tuples
Eliminates time-consuming data imports

Output of a program formatted according to the user’s choosing
Operates over data in external files and does not take control over
data

Facilitates interoperability with other applications

Amanda 10

Technical Features
Nested Data Model

Several benefits compared to flat tables:
Closer to how we think
Data is stored on disk in a nested format
Allows for algebraic language and richer user-defined
functions

GROUP construct example

grouped_data = GROUP dataset1 BY field1;

query_data = FOREACH grouped_data GENERATE field1,

SUM(field2.amount);

Amanda 11

Technical Features
UDFs: User-defined functions

Customization of common functions i.e. grouping, filtering, joining, etc.
Accepts non-atomic values as input and output

SQL PIg Latin

SELECT: only scalar functions
FROM: only set-valued functions
Aggregation functions only with GROUP BY

One type fits all

Amanda 12

groups = GROUP urls BY category;

output = FOREACH groups GENERATE category, top10(urls);

Continuing with our Example 1, suppose we want to find the top 10 highest
ranking urls for each category:

UDF that accepts a set of urls and outputs a set with the
top 10 urls by page rank, one group at a time

UDFs Example

top10()

Amanda 13

Technical Features

Parallelism
Handles large volumes of data by distributing the workload across
multiple nodes in the cluster
Only for a small set of primitives

Debugging
Generates an example data table to illustrate the output of each step

Amanda 14

Data Model of Pig Latin
The data model consists of four types:

Atom: A simple atomic value such
as a string
Tuple: A sequence of fields each of
which can be any of the data types
Bag: A collection of tuples with
possible duplicates
Map: A collection of data types
where each item has an associated
key

Joanita 15

Specifying Data Input: LOAD
The “LOAD” command is used.
First, specify what
the input data files are, and how the
file contents are to be
deserialized, i.e., converted into
Pig’s data model.

Here, the input files are deserialized
using a custom myLoad()
deserializer.

queries = LOAD

‘query_log.txt’USING

myLoad() AS (userId,

queryString,timestamp;

Joanita 16

Per Tuple Processing: FOREACH
The FOREACH command processes
individual tuples.
The GENERATE clause can be
followed by a list of expressions in
various forms. In this example, we are
FLATTENING the data

 WITHOUT FLATTENING:

expanded_queries = FOREACH

queries GENERATE userId,

FLATTEN(expandQuery(queryStr

ing));

 WITH FLATTENING:

Joanita 17

Discarding Unwanted Data: FILTER
The FILTER command is used to
retain a subset of data of interest and
discard the rest
This command filters out bot traffic
from the bag of queries.
Filtering conditions in Pig Latin can
involve a combination of expressions,
comparison operators (==, eq, !=,
neq), and logical connectors (AND,
OR, NOT).
User-Defined Functions (UDFs) can
be used in filtering.

Use of FILTER command:

real_queries = FILTER

queries BY userId neq ‘bot’;

real_queries = FILTER

queries BY NOT

isBot(userId);

The UDF isBot(userId) is used to
filter out bot traffic.

Joanita 18

Getting Related Data Together: COGROUP

 COGROUP command allows for
the aggregation of tuples from
different datasets that share
common attributes.
Each tuple in the 'grouped_data'
output contains a group
identifier (the 'queryString'),
followed by bags containing
tuples from each input dataset
belonging to that group.

grouped_data = COGROUP results

BY queryString, revenue BY

queryString;

Joanita 19

Nested Operations
When we have nested bags
within tuples, Pig Latin allows
some commands to be nested
within a FOREACH command.
Currently, only FILTER, ORDER,
and DISTINCT are allowed to be
nested within FOREACH.

query_revenues = FOREACH

grouped_revenue{ top_slot =

FILTER revenue BY adSlot eq

‘top’; GENERATE queryString,

SUM(top_slot.amount),

SUM(revenue.amount); }

Joanita 20

Map-Reduce in Pig Latin
Map-reduce program in Pig Latin is
straightforward with the GROUP and
FOREACH statements.
Map function operates on one input
tuple at a time and outputs a bag of
key-value pairs.

map_result = FOREACH input GENERATE

FLATTEN(map(*));

key_groups = GROUP map_result BY $0;

output = FOREACH key_groups GENERATE

reduce(*);

OTHER COMMANDS:
UNION: Returns the union of two or
more bags
CROSS: Returns the cross product of
two or more bags
 ORDER: Order a bag by the
specified field(s)
DISTINCT: Eliminates duplicate
tuples in a bag.

Joanita 21

Implementation
Pig Latin is fully implemented by
the system, Pig.
Current implementation uses
Hadoop, an open-source
implementation of map-reduce
as the execution platform.
Pig Latin programs are compiled
into map-reduce jobs, and
executed using Hadoop.

c = COGROUP a BY ..., b BY ...

Pig verifies that the bags a and b
have already been defined.
Pig builds a logical plan for every
bag the user defines.
The logical plan for c consists of a
cogroup command having the logical
plans for a and b as inputs.
Processing is only triggered when
the user invokes a STORE command
on a bag.

Charlotte 22

Map-Reduce Plan Compilation

Their compiler begins by converting each (CO)GROUP command into the
logical plan into a distinct map-reduce job with its own map and reduce
functions.

Charlotte 23

Debugging Environment
The left-hand panel is where the user
enters Pig Latin commands.
The right-hand panel is populated
automatically, and shows the effect of
the user’s program on the sandbox
data set.
The sandbox data set also helps users
understand the schema at each step.

Three primary objectives in selecting a sandbox data set: realism, conciseness,
and completeness.

Charlotte 24

Usage Scenarios
Rollup

Aggregates
Temporal
Analysis

Session
Analysis

The primary reason to use Pig rather than a database/OLAP system for
these rollup analyses, is that the search logs are too big and continuous to
be curated and loaded into databases.

Charlotte 25

Goes back
to Slide 3

The Main Hypothesis
Pig Latin fits in a sweet spot between the declarative SQL-style
language, and the procedural map-reduce model, and improves
user productivity for ad-hoc analysis of large-scale datasets.

Charlotte 26

Future Work

“Safe”
Optimizer

User
Interfaces

External
Functions

Unified
Environment

Charlotte 27

Summary

We have described a new data processing environment
being deployed at Yahoo! called Pig, and its associated
language Pig Latin.
We also described a debugging environment, Pig Pen.
Pig has an active and growing user base inside Yahoo!, and
with their recent open-source release they are beginning to
attract users in the broader community.

Charlotte 28

Study Questions

What are the advantages of using Apache Pig for data processing
compared to writing MapReduce jobs directly?

1.

Explain the concept of flattening in Pig Latin and provide an
example.

2.

Amanda + Joanita 29

G. DeCandia et al. Dynamo: Amazon’s highly available key-value store.
In Proc. SOSP, 2007.

M. Isard et al. Dryad: Distributed data-parallel programs from
sequential building blocks. In European Conference on Computer
Systems (EuroSys), pages 59–72, Lisbon, Portugal, March 21-23 2007.

Olston, C., Reed, B., Srivastava, U., Kumar, R. & Tomkins, A. (2008). Pig
latin: a not-so-foreign language for data processing.. In J. T.-L. Wang
(ed.), SIGMOD Conference (p./pp. 1099-1110), : ACM. ISBN: 978-1-
60558-102-6

Reference

30

