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BACKGROUND & 
MOTIVATION



BACKGROUND
● Address the challenge of designing a 

column-oriented DBMS
○ Warehouse-style queries
○ OLTP-style transactions

● Aim to create hybrid architecture 
○ Read-optimized component
○ Write-optimized component

● C-Store seeks to provide high performance for
○ Query processing
○ Transactional updates
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MOTIVATION
● Traditional relational DBMSs optimized for 

write operations
● Leads to inefficiencies in read-heavy 

environments
○ Data warehouses

● Balance crucial for organizations
○ Real-time data visibility
○ On-line updates
○ Improved query performance



RELATED WORK



RELATED
WORK

● Previous work only focused on either
○  write-optimized systems for OLTP applications
○  read-optimized systems for data warehousing 

● Traditional row-oriented DBMSs excel at write 
operations
○ suffer from inefficiencies when handling ad-hoc 

queries on large datasets
● Column-oriented DBMSs have shown advantages in 

query performance
○ lack support for efficient transactional updates

● Have not fully addressed problem
● Due to the inherent trade-offs between optimizing 

for reads vs writes
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OVERVIEW



● C-Store introduces a novel column-oriented DBMS 
architecture

● Handles both read-heavy queries and transactional updates
● Hybrid design with:

○ Read-Optimized Store (RS) for query performance
○ Writeable Store (WS) for high-performance inserts and 

updates
○ Connected by tuple mover to facilitate data movement 

● Focus on optimizing storage representation on disk through 
data coding and dense-packing

● Overlapping projections of tables for efficient query 
processing

● Efficient snapshot isolation

OVERVIEW
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TECHNICAL 
DETAILS



Data Model
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Projections:
● Projections contain only specific columns from a base table 

to serve targeted query needs.

● Access only the necessary columns, reducing disk I/O and 

speeding up query execution.

● Each projection is pre-sorted based on the most frequently 

queried columns to facilitate rapid data retrieval.

● Projections allow for more efficient data compression, as 

columns with similar data types or patterns are stored 

together.



Data Model
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Horizontal Partitioning:
● Data is divided into segments or chunks, allowing for more 

manageable and efficient processing.

● Enables the database to perform operations on different 

segments simultaneously, reducing overall query time.

Join Indices:
● Map the relationships between rows in different projections 

that are related by common attributes.

● Provide a fast pathway to access joined data, reducing the 

time to execute complex queries.



Read-optimized Column Store
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Type 1 - Self-order:

● Best suited for Low Cardinality, where a 

limited number of distinct values occur 

repeatedly

● Data is stored as sequence of triples:   

(v-value, f-start position, n-times appears)

● Example: group of 4’s appears in positions 

12-18 can be stored as (4, 12, 7)

Type 2 - Foreign-order:

● Best suited for few distinct values

● Represented by tuple, (v-value, b-bitmap) 

● Bitmap indicates the positions in which the value 

is stored.

● Example:  A column of integers 0,0,1,1,2,1,0,2,1 

can be encoded to three pairs: (0, 110000100), 

(1, 001101001), and (2,000010010)



Read-optimized Column Store
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Type 3 - Self-order:

● Best suited for many distinct but 

sequentially related values.

● Only the first value and subsequent deltas 

(differences) are stored

● Example:  A column of integers 1,4,7,7,8,12 

can be encoded (1,3,3,0,1,4)

Type 4 - Foreign-order:

● Best suited for many distinct values

● Still under investigation in the paper for possible 

compression techniques.



Write-optimized Column Store
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● Same logical design as RS but differs in physical representation to allow efficient 

updates.

● Does not compress data due to the transactional nature of updates.

● Each column in WS is indexed by a B-tree for maintaining the sort order and 

facilitates the efficient lookup of storage keys

● Designed to handle real-time data modifications, supporting transactional 

applications with high update frequencies.

● Seamlessly collaborates with the Read-optimized Store, allowing data to be 

moved to RS for query efficiency after initial writes and updates.



Storage Management

● How do we store projections across many compute units across our network?
● C-store uses a concept called co-location
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Update and Transactions
● Snapshot Isolation is a transaction that allows access to past states of the database
● Snapshot isolation uses “Maintaining the High Water Mark” which takes snapshots of database at certain 

epochs
● Locking-based concurrency for updates use 2pl for write operations
● Distributed Commit processing uses a master to assign locks to a particular transaction
● Distributed commit processing differs from 2PC in that it doesn’t send a prepare message
● If the master sends a commit message they release all locks and delete the UNDO log.
● Transaction Rollback is used when you abort

15 - SHREY



Update and Transactions
● Recovery processes in c-store are designed to handle various
● This explanation outlines a method for recovering data in a Writeable Store (WS) segment of a database 

system, specifically within the context of C-Store, which uses a combination of Writeable Store (WS) for 
updates and Read-optimized Store (RS) for querying. 

● When a WS segment needs to be recovered at a site, the system first checks for projections that cover the 
required key range and have an insertion timestamp indicating they are up-to-date or more recent than the 
lost data. This is done to identify which data segments can be used to restore the missing information.
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Tuple Mover
● The tuple mover's role involves transferring blocks of tuples from a Write Segment (WS) to a corresponding Read 

Segment (RS) while updating any join indexes during the process.
● It functions as an automated task that scans for suitable segment pairs and, upon finding one, initiates a merge-out 

process (MOP) on the identified WS and RS segment pair.

● The MOP segregates records in the WS segment based on their insertion time relative to the Low Water Mark 
(LWM), categorizing them into two groups:
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C-Store Query Execution
● Query operators and plan format
● 10 different node types which are capable of interacting with data in the form of projections, columns, or 

bitstrings, and additional arguments.
● Many operators such as decompress, select, mask, and project
● Query optimization process 
● Plan construction such as employing cost-based estimations to build efficient query plans
● cost based estimation takes into account the costs in terms of IO and memory usage of input data
● Decision making to make critical decisions
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EVALUATION
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● A column store architecture can be more efficient for read-mostly 
applications compared to traditional row store architectures.

● A hybrid architecture with a read and write-optimized component, heavily 
compressed columns with a column-oriented executor/optimizer, and 
redundant storage in overlapping projections can achieve high performance 
on both warehouse-style queries and OLTP-style transactions.

● The combination of materialized views, snapshot isolation, transaction 
management, and high availability techniques in C-Store can result in 
improved performance, K-safety, efficient retrieval, and high-performance 
transactions.

HYPOTHESIS



JUSTIFICATION AND 
BASELINES
● Design principles behind C-Store: benefits of a column store 

architecture for read-mostly applications, the advantages of a hybrid 
architecture for balancing write and read operations, and the use of 
snapshot isolation for query performance.

● Performance data: performance comparison using TCP-H queries to 
demonstrate that C-Store is substantially faster than popular 
commercial products.

● Comparisons with existing systems: compared C-Store with other 
systems that store data by columns, such as Sybase IQ, Addamark, 
Monet, and KDB, highlighting the unique features of C-Store like 
overlapping materialized projections, hybrid architecture and storing 
tables with indexing and record identifiers. Also compared with data 
mirrors, which goal is better query performance, while C-Store 
achieves better performance on update workloads and queries.
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CONCLUSION
• Aimed at the “read-mostly” DBMS market.

• A column store representation, with an associated 

query execution engine.

• A data model consisting of overlapping projections of

tables, unlike the standard fare of tables, secondary

indexes, and projections.

• A hybrid architecture that allows transactions on a 

column store.
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STUDY QUESTIONS 
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1. How does the hybrid architecture of C-Store 
impact query performance compared to traditional 
row-oriented and column-oriented DBMSs?

2. How does C-Store ensure high availability and 
data redundancy through its overlapping 
projections and K-safety mechanisms?


