
C-Store:
Column-oriented DBMS
Group 10:

April 2024

Isabela Fernandez, Dora Sasson, Edwin Shen, Shrey Shivaiah

Authors: Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O'Neil, Pat O'Neil, Alex Rasin, Nga Tran, and Stan Zdonik

BACKGROUND &
MOTIVATION

BACKGROUND
● Address the challenge of designing a

column-oriented DBMS
○ Warehouse-style queries
○ OLTP-style transactions

● Aim to create hybrid architecture
○ Read-optimized component
○ Write-optimized component

● C-Store seeks to provide high performance for
○ Query processing
○ Transactional updates

3 - ISABELA

MOTIVATION
● Traditional relational DBMSs optimized for

write operations
● Leads to inefficiencies in read-heavy

environments
○ Data warehouses

● Balance crucial for organizations
○ Real-time data visibility
○ On-line updates
○ Improved query performance

RELATED WORK

RELATED
WORK

● Previous work only focused on either
○ write-optimized systems for OLTP applications
○ read-optimized systems for data warehousing

● Traditional row-oriented DBMSs excel at write
operations
○ suffer from inefficiencies when handling ad-hoc

queries on large datasets
● Column-oriented DBMSs have shown advantages in

query performance
○ lack support for efficient transactional updates

● Have not fully addressed problem
● Due to the inherent trade-offs between optimizing

for reads vs writes

5 - ISABELA

OVERVIEW

● C-Store introduces a novel column-oriented DBMS
architecture

● Handles both read-heavy queries and transactional updates
● Hybrid design with:

○ Read-Optimized Store (RS) for query performance
○ Writeable Store (WS) for high-performance inserts and

updates
○ Connected by tuple mover to facilitate data movement

● Focus on optimizing storage representation on disk through
data coding and dense-packing

● Overlapping projections of tables for efficient query
processing

● Efficient snapshot isolation

OVERVIEW

7 - ISABELA

TECHNICAL
DETAILS

Data Model
9 - EDWIN

Projections:
● Projections contain only specific columns from a base table

to serve targeted query needs.

● Access only the necessary columns, reducing disk I/O and

speeding up query execution.

● Each projection is pre-sorted based on the most frequently

queried columns to facilitate rapid data retrieval.

● Projections allow for more efficient data compression, as

columns with similar data types or patterns are stored

together.

Data Model
10 - EDWIN

Horizontal Partitioning:
● Data is divided into segments or chunks, allowing for more

manageable and efficient processing.

● Enables the database to perform operations on different

segments simultaneously, reducing overall query time.

Join Indices:
● Map the relationships between rows in different projections

that are related by common attributes.

● Provide a fast pathway to access joined data, reducing the

time to execute complex queries.

Read-optimized Column Store
11 - EDWIN

Type 1 - Self-order:

● Best suited for Low Cardinality, where a

limited number of distinct values occur

repeatedly

● Data is stored as sequence of triples:

(v-value, f-start position, n-times appears)

● Example: group of 4’s appears in positions

12-18 can be stored as (4, 12, 7)

Type 2 - Foreign-order:

● Best suited for few distinct values

● Represented by tuple, (v-value, b-bitmap)

● Bitmap indicates the positions in which the value

is stored.

● Example: A column of integers 0,0,1,1,2,1,0,2,1

can be encoded to three pairs: (0, 110000100),

(1, 001101001), and (2,000010010)

Read-optimized Column Store
12 - EDWIN

Type 3 - Self-order:

● Best suited for many distinct but

sequentially related values.

● Only the first value and subsequent deltas

(differences) are stored

● Example: A column of integers 1,4,7,7,8,12

can be encoded (1,3,3,0,1,4)

Type 4 - Foreign-order:

● Best suited for many distinct values

● Still under investigation in the paper for possible

compression techniques.

Write-optimized Column Store
13 - EDWIN

● Same logical design as RS but differs in physical representation to allow efficient

updates.

● Does not compress data due to the transactional nature of updates.

● Each column in WS is indexed by a B-tree for maintaining the sort order and

facilitates the efficient lookup of storage keys

● Designed to handle real-time data modifications, supporting transactional

applications with high update frequencies.

● Seamlessly collaborates with the Read-optimized Store, allowing data to be

moved to RS for query efficiency after initial writes and updates.

Storage Management

● How do we store projections across many compute units across our network?
● C-store uses a concept called co-location

14 - SHREY

Update and Transactions
● Snapshot Isolation is a transaction that allows access to past states of the database
● Snapshot isolation uses “Maintaining the High Water Mark” which takes snapshots of database at certain

epochs
● Locking-based concurrency for updates use 2pl for write operations
● Distributed Commit processing uses a master to assign locks to a particular transaction
● Distributed commit processing differs from 2PC in that it doesn’t send a prepare message
● If the master sends a commit message they release all locks and delete the UNDO log.
● Transaction Rollback is used when you abort

15 - SHREY

Update and Transactions
● Recovery processes in c-store are designed to handle various
● This explanation outlines a method for recovering data in a Writeable Store (WS) segment of a database

system, specifically within the context of C-Store, which uses a combination of Writeable Store (WS) for
updates and Read-optimized Store (RS) for querying.

● When a WS segment needs to be recovered at a site, the system first checks for projections that cover the
required key range and have an insertion timestamp indicating they are up-to-date or more recent than the
lost data. This is done to identify which data segments can be used to restore the missing information.

16 - SHREY

Tuple Mover
● The tuple mover's role involves transferring blocks of tuples from a Write Segment (WS) to a corresponding Read

Segment (RS) while updating any join indexes during the process.
● It functions as an automated task that scans for suitable segment pairs and, upon finding one, initiates a merge-out

process (MOP) on the identified WS and RS segment pair.

● The MOP segregates records in the WS segment based on their insertion time relative to the Low Water Mark
(LWM), categorizing them into two groups:

17 - SHREY

C-Store Query Execution
● Query operators and plan format
● 10 different node types which are capable of interacting with data in the form of projections, columns, or

bitstrings, and additional arguments.
● Many operators such as decompress, select, mask, and project
● Query optimization process
● Plan construction such as employing cost-based estimations to build efficient query plans
● cost based estimation takes into account the costs in terms of IO and memory usage of input data
● Decision making to make critical decisions

18 - SHREY

EVALUATION

EVALUATION
20 - DORA

● A column store architecture can be more efficient for read-mostly
applications compared to traditional row store architectures.

● A hybrid architecture with a read and write-optimized component, heavily
compressed columns with a column-oriented executor/optimizer, and
redundant storage in overlapping projections can achieve high performance
on both warehouse-style queries and OLTP-style transactions.

● The combination of materialized views, snapshot isolation, transaction
management, and high availability techniques in C-Store can result in
improved performance, K-safety, efficient retrieval, and high-performance
transactions.

HYPOTHESIS

JUSTIFICATION AND
BASELINES
● Design principles behind C-Store: benefits of a column store

architecture for read-mostly applications, the advantages of a hybrid
architecture for balancing write and read operations, and the use of
snapshot isolation for query performance.

● Performance data: performance comparison using TCP-H queries to
demonstrate that C-Store is substantially faster than popular
commercial products.

● Comparisons with existing systems: compared C-Store with other
systems that store data by columns, such as Sybase IQ, Addamark,
Monet, and KDB, highlighting the unique features of C-Store like
overlapping materialized projections, hybrid architecture and storing
tables with indexing and record identifiers. Also compared with data
mirrors, which goal is better query performance, while C-Store
achieves better performance on update workloads and queries.

21 - DORA

CONCLUSION

CONCLUSION
• Aimed at the “read-mostly” DBMS market.

• A column store representation, with an associated

query execution engine.

• A data model consisting of overlapping projections of

tables, unlike the standard fare of tables, secondary

indexes, and projections.

• A hybrid architecture that allows transactions on a

column store.

23 - EDWIN

STUDY
QUESTIONS

STUDY QUESTIONS
25 - DORA & ISABELA

1. How does the hybrid architecture of C-Store
impact query performance compared to traditional
row-oriented and column-oriented DBMSs?

2. How does C-Store ensure high availability and
data redundancy through its overlapping
projections and K-safety mechanisms?

