
BlinkDB: queries with bounded errors and 
bounded response times on very large data

Presenter: Bozhou Lu, Dominic DiResta, Karen Sun, Zhong Zhang

Authors: Sameer Agarwal, Aurojit Panda, Barzan Mozafari, Samuel Madden, Ion Stoica

8th ACM European Conference on Computer Systems
15 April 2013

1



Background & Motivation

2



• Problem

• Present query results near real time for large data

• Unpredictable queries

• Uneven data distribution

• Why matters

• Growing need for faster responsiveness in data analytics applications 

• Update ads based on real time search history 

• Compare prices of financial securities in real time

BlinkDB - Motivation 

3 Zhong



BlinkDB - Background 

4 Zhong

• Example 

• Computing average over 10 TB data

• 30 - 45 minutes on Hadoop

• 5 - 10 minutes in memory

 

• BlinkDB - seconds with statistical error bound



BlinkDB - Background 

5 Zhong

• Within an error range
SELECT COUNT(*)
FROM Sessions
WHERE Genre = ‘western’
GROUP BY OS
ERROR WITHIN 10% AT CONFIDENCE 95% 

• Within a time range
SELECT COUNT(*), RELATIVE ERROR AT 95% CONFIDENCE
FROM Sessions
WHERE Genre = ‘western’
GROUP BY OS
WITHIN 5 SECONDS



Related Work

6



• 1. Sampling
• Execute queries on a subset of data

• Limitation: require assumptions about the query types and data distributions

• 2. Sketch-based Solution
• Reorganize the data for quick and approximate aggregate operations (count, sum)

• Limitation: require assumptions about the query types and data distributions

BlinkDB - Existing Solutions 

7 Zhong



• 3. Online Aggregation (OLA)
• Offers preliminary results and allows users to stop the query early

• Fewer assumptions on the data

• Limitation: poor performance on rare tuples

• Current

• BlinkDB is no longer maintained

BlinkDB - Existing Solutions 

8 Zhong 



Overview

9



● BlinkDB would answer the queries over huge data quickly in the absence of 

perfect answers.

● Develop a multi-dimensional, multi-granular stratified sampling strategy

● Cast the decision of what stratified samples to build as an optimization problem:
○ The skew of the data distribution 

○ Query templates

○ The storage overhead of each sample

● Develop a run-time dynamic sample selection strategy 

Overview

10 Karen



● Workload characteristics 
○ the query templates remain fairly stable over time

■ To optimize the creation of samples
● Queries with joins 

○ BlinkDB supports two types of joins
■ arbitrary joins
■ joins with a join-key

● Closed-form aggregates
○ focus on a small set of aggregation operators: COUNT, SUM, MEAN, MEDIAN/QUANTILE
○ estimate the error of certain aggregate functions using standard closed-form error estimations.

● Offline Sampling
○ a sample may not represent the full dataset accurately
○ periodically replace samples with new ones in the background to maintain accuracy without 

significant performance costs

Settings and Assumptions

11 Karen



● BlinkDB builds on the Apache Hive 
framework and has two major components.

● Offline sampling module that creates and 
maintains samples over time

○ Offline Sample Creation
○ Sample Maintenance
○ Storage Optimization

● Run-time sample selection module that 
creates an Error-Latency Profile for ad-hoc 
queries

○ ELP (Error-Latency Profile)

Architecture

12 Karen



• creates several multidimensional and 
multi-resolution samples based on past 
query templates and the data distribution

• In the example, decides to create two 
sample families of stratified samples: one 
on City, and another one on (OS,URL).

• creates several instances of each sample 
family, each with a different size, or 
resolution.

• For every query, at run time, BlinkDB 
selects the appropriate sample family and 
the appropriate sample resolution to 
answer the query based on the user 
specified error or response time bounds.

13 Bozhou

Example



Sample Creation

14



• Why stratified samples are needed
• It both provides faster convergence of answer 

estimates and avoids missing subgroups in 
results.

• How it is done
• BlinkDB creates stratified samples based on 

subsets of columns that are frequently queried 
together.

• It constructs smaller samples from the larger 
ones, and thus need an amount of storage 
equivalent to maintaining only the largest sample.

Multi-resolution Stratified Samples

15 Karen



Optimization Framework

16 Karen

● Problem formation 
○ Non-uniformity (skew) of the data

■ The greater the skew for a set of columns, the more important it is to 
have a stratified sample on those columns.

■ Non-uniformity metric
○ Workload 

■ Ues a query workload defined as a set of query templates and their 
weights (normalized frequency or importance)

○ Storage cost 
■ We use Store(φ) to denote the storage cost (say, in MB) of building a 

sample family on a set of columns φ.

● Scaling the Solution
○ To reduce the number of candidate column-sets found by the optimization 

framework, we restrict the candidate subsets to only those that have 
appeared together at least in one of the query templates.



Run Time

17



Sample Selection

18 Bozhou

● Selecting the Sample Family
○ Tried to select the stratified sample that contains the union of the columns 

appeared in each predicates
○ If not found, run Q in parallel on the smallest sample of all sample families 

then select based on: 
■ the number of rows selected by Q
■ the number of rows read by Q (i.e., number of rows in that sample)

● Selecting the Sample size
○ Construct Error-Latency Profile 

■ The ELP characterizes the rate at which the error decreases (and the 
query response time increases) with increasing sample sizes, and is built 
simply by running the query on smaller samples to estimate the 
selectivity and project latency and error for larger samples.



Uniform Sample: (EASY:)
- suppose we take a uniform sample with 40% 

of the rows of the original table. 
- scale the final sums of the session times by 

1/0.4 = 2.5 in order to produce an unbiased 
estimate of the true answer

19 Bozhou

Query Answer for Uniform Sample



Stratified Sample:
- Strategy for Uniform Sample 

doesn't work
- different values were sampled 

with different rates
- to produce unbiased answers, 

BlinkDB keeps track of the 
effective sampling rate applied to 
each row

20 Bozhou

Query Answer for Stratified Sample



Evaluation

21 Dominic



❖ Hypothesis: Sampling provides higher query response times compared to no 
sampling when querying on a large dataset, even on simple queries

❖ Hypothesis: When querying rare subgroups, multi-dimensional, multi-resolution 
stratified samples attain higher accuracy and convergence over random 
uniform sampling and single-column stratified sampling approaches

❖ Hypothesis: BlinkDB accurately selects a sample for a desired query response 
time with its runtime selection strategy for sample family and sample size 

Hypothesis

22 Dominic



● Performance of BlinkDB versus frameworks executing on complete data were 
evaluated on 100 node EC2 cluster using two workloads

● Conviva Inc. Workload
○ 17TB dataset about video streams viewed by Internet users

● TPC-H Benchmark Workload
○ 1TB dataset for query benchmarking to ensure generality of results

● Evaluated response time of a simple query executed on Hive on Hadoop 
MapReduce, Hive on Spark, and BlinkDB
○ Query on 2.5 & 7.5TB subset: average of user session time, filter on dt (date column), and 

GROUP BY on city column 
○ Utilized 1% error bound at 95% confidence for BlinkDB

● Results: For both datasets, BlinkDB answered query in a few seconds compared 
to thousands of seconds for other frameworks

23 Dominic

BlinkDB vs. No Sampling



BlinkDB vs. No Sampling

24 Dominic



25 Dominic

Multi-Dimensional Stratified Sampling
● Error and convergence were measured for BlinkDB’s stratified-sampling strategy, 

simple random sampling, and one-dimensional stratified sampling
● The three samples were generated on the Conviva and TPC-H datasets with 50% 

storage constraint
○ Columns to stratify chosen by BlinkDB optimization framework
○ Random sample contained 50% of entire data chosen uniformly at random

● Error measurement: For set of 40 queries, average statistical error at 95% 
confidence from query running 10 seconds recorded for each sample

● Convergence measurement: Multiple queries run to determine latency for 
achieving an error bound with 95% confidence

● Results: Across both data sets, BlinkDB’s multidimensional stratified sampling 
approach had lower error and faster convergence compared to the other 
sampling methods



26 Dominic

Multi-Dimensional Stratified Sampling



27 Dominic

Time/Accuracy Guarantees
● Effectiveness of BlinkDB at meeting a time and error bounds specified by the user 

was evaluated
● Time-bounded evaluation: sample of 20 Conviva queries, each ran 10 times, for 

time bounds from 1 to 10 seconds
● Error-bounded evaluation: error was recorded for same set of queries, with 

specified error bounds ranging from 2% to 32%
● Results: BlinkDB consistently selects a sample that meets a specified time bound 

and the measured error. Measured error is almost always less than or equal to 
requested error

● Scaling up: BlinkDB’s ability to scale to different cluster sizes was also measured 
for two sets of query workloads: high selective queries and number crunching 
queries



28 Dominic

Time/Accuracy Guarantees



Conclusion

29



30 Bozhou

BlinkDB

● A parallel, sampling- based approximate query engine that provides support for 
ad-hoc queries with error and response time constraints. Based on two key ideas:

○ a multi-dimensional, multi-granularity sampling strategy that builds and maintains a large 
variety of samples

○ a run-time dynamic sample selection strategy that uses smaller samples to estimate query 
selectivity and choose the best samples for satisfying query constraints. 

● Evaluation results on real data sets and on deployments of up to 100 nodes 
demonstrate the effectiveness of BlinkDB at handling a variety of queries with 
diverse error and time constraints, answering a range of queries within 2 seconds 
on 17 TB of data with 90-98% accuracy.



Challenges 
- Maintaining stratified samples over time
- Potential issues in adapting to new, unforeseen query types.

Further Work
- Explore more adaptive sampling techniques and enhanced algorithms for 

optimizing sample selection and maintenance.

31 Bozhou

Challenges and Further Work



1. Why does BlinkDB use stratified sampling over other sampling methods like 
random uniform sampling?

1. How BlinkDB balances the trade-off between query accuracy and response 
time?

32

Study Questions


