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Background and Motivation
Processing large datasets is inherently complex and inefficient due to the sheer 
size of data being processed.
- Researchers at Google aimed to create a new paradigm based on principles 

from functional programming to address this challenge of processing large 
amounts of data using distributed computing.

- Employs powerful clusters of computers to efficiently process and return data 
based on the users specification of the map and reduce functions



Traditional Solutions to Large Data Processing
Many traditional systems aim to use existing paradigms to solve this issue, which 
results in some pitfalls due to inefficiencies
Batch Processing
- Dependent on software/hardware
- Not done in real time, not well suited for analysis

RDBMS
- Data is inflexible (must conform to schema)
- Same issues when it comes to large data processing, not optimized for 

distributed/parallel computing



Main Idea of Paper
This paper introduces the MapReduce programming model.
- Map: maps key value pairs to intermediate key value pairs
- Reduce: reduces intermediate key value pairs to resultant data output which 

can take any form
Utilizes computing clusters to process and return data
While relatively simple, these two functions used in tandem result in very powerful 
tools for data processing and analysis.

Acknowledgement:GeeksforGeeks. (2023, May 31). Map 
reduce in Hadoop. GeeksforGeeks. 
https://www.geeksforgeeks.org/map-reduce-in-hadoop/ 



Example: Inverted Index
An inverted index is similar to the index in the back of books. This is traditionally 
an involved process, requiring normalizing and tokenizing the words, creating 
intermediate data structures to store these with the corresponding IDs, and then 
restructuring the data to result in the inverted index.
With MapReduce its as simple as:
- Map: map <lineNum, line of text> to <text, lineNum>
- Reduce: <text, lineNum> -> <text, sortedLineNums>

Acknowledgement: Otten, N. V. (2023, November 14). How to implement inverted 
indexing [top 10 tools & future trends]. Spot Intelligence. 
https://spotintelligence.com/2023/10/30/inverted-indexing/ 



Technical
Details



Implementation: Execution Overview
● MapReduce library splits input files into 

M pieces (16-64 MB each).
● Program instances started on a cluster: 

one master and many workers.
● Master assigns map and reduce tasks to 

idle workers.
● Map tasks process input data and 

generate intermediate key/value pairs.
● Intermediate pairs are buffered and 

periodically written to local disks.
● Reduce tasks read intermediate data, sort 

it, and apply the Reduce function.
● Final output stored in R output files, one 

per reduce task.

Acknowledgement: Dean, J., & Ghemawat, S. (2004). 
MapReduce: Simplified Data Processing on Large Clusters. 
https://static.googleusercontent.com/media/research.google.com/en//
archive/mapreduce-osdi04.pdf



Implementation: Master Data Structures & Fault Tolerance

● Master tracks the state and location of map and reduce tasks.

● Fault tolerance: Worker failures detected via periodic pings.

● Completed map tasks re-executed if a worker fails.

● Reduce tasks read data from completed map tasks; re-execution managed by 

the master.

● Atomic commits ensure consistency of output data.



Implementation: Locality & Task Granularity
● Locality: MapReduce schedules tasks close to data locations to minimize 

network transfer.

● Task granularity: M and R chosen to be much larger than the number of 

workers for load balancing.

● Large M and R values improve fault recovery and dynamic task assignment.



Implementation: Backup Tasks
● Backup tasks launched for remaining in-progress tasks to handle stragglers.

● Significantly reduces completion time with minimal additional resource usage.

● Example: Sort program completion time increased by 44% without backup 

tasks.



Refinements: Partitioning Function & Ordering Guarantees 

● Partitioning function controls how intermediate data is distributed among 

reduce tasks.

● Custom partitioning functions can be provided for specific needs (e.g., URL 

partitioning by hostname).

● Ordering guarantees: Intermediate key/value pairs processed in increasing key 

order within each partition.



Refinements: Combiner Function
● Combiner function used for local aggregation to reduce data transfer.

● Operates on each machine that performs a map task.

● Often the same code is used for both the combiner and the reduce functions.



Input/Output Types: Side Effects & Skipping Bad Records
● Support for various formats, including text and binary. Custom formats can be 

implemented.
● Skipping bad records: Mechanism to skip records causing deterministic 

crashes, ensuring progress.
● Side effects: User code can produce additional outputs, but atomicity and 

idempotence must be ensured.



Input/Output Types: Status Information & Counters
● Status information: Master's internal HTTP server provides progress updates, 

worker status, and task details.
● Counters: Used for tracking occurrences of events (e.g., total words 

processed). Automatically maintained by the library.
● Example: Counters used to verify that output pairs match input pairs or to 

track document processing statistics.



Evaluation



Key Observations
• Scalability: MapReduce efficiently processes large datasets across thousands of machines, showcasing its adaptability to varying 

computational demands.

• Data Processing Rate: The system achieves impressive data processing rates, reaching up to 30 GB/s in the Grep experiment and 

maintaining high rates in the Sort operation.

• Fault Tolerance: MapReduce's robustness is evident in its ability to handle machine failures, ensuring the reliability of the computation.

• Efficiency of Backup Tasks: The introduction of backup tasks significantly reduces the impact of stragglers, leading to faster and more 

uniform job completion times.

• Impact on Real-world Applications: The use of MapReduce in large-scale indexing at Google highlights its effectiveness in practical 

scenarios beyond theoretical use cases.



Detailed Analysis of Sort Experiment and Figure 3(a)
• Experiment Setup: Sorting 1 terabyte of data across approximately 1800 

machines, with data split into 64MB chunks.

• Data Processing Phases: The operation includes reading input, shuffling 

data, and writing sorted output, as illustrated in Figure 3(a).

• Performance Metrics: Peak input reading rate of 13 GB/s, shuffling rate 

of 10 GB/s, and output writing rate of 2-4 GB/s.

• Efficiency of Backup Tasks: Backup tasks significantly reduce the tail of 

the job completion time, improving overall efficiency.

• Key Observations: The sort experiment demonstrates MapReduce's 

capability to handle large-scale data sorting with high efficiency and 

fault tolerance.

Acknowledgement: Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters. 
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf



Cluster Configuration and Grep Performance
• Cluster Specs Summary: Google's cluster for MapReduce includes dual-processor 

x86 systems with 4GB of RAM and gigabit Ethernet, providing robust support for 

data-intensive tasks.

• Grep Experiment Overview: A 10TB dataset was used to evaluate MapReduce's 

search capabilities, demonstrating swift processing of extensive text data to locate a 

simple pattern.

• Performance Metrics Highlight: MapReduce reached a peak rate of 30 GB/s during 

the Grep task, underscoring its ability to efficiently tackle large-scale data operations.

• Graph of Data Transfer Rate (Figure 2): A sharp spike in data transfer rates is shown 

in Figure 2, exemplifying MapReduce's rapid scaling to full operational capacity and 

sustained performance.

Acknowledgement: Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters. 
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf



Resilience in MapReduce: Backup Tasks and Machine 
Failures

• Backup Tasks Efficiency: Backup tasks in MapReduce preempt straggler 

delays, effectively accelerating completion times for robust system 

throughput.

• Machine Failure Management: Built to cope with the reality of machine 

failures, MapReduce's automated task rerouting ensures continuous 

operation, highlighting its inherent fault tolerance.

• Graphical Depiction (Refer to Figure 3): 

1. In Figure 3(b), observe the prolonged job times without backup 

tasks.

2. Figure 3(c) illustrates MapReduce's resilience, with minimal impact 

on job times despite machine failures.

Acknowledgement: Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters. 
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf



MapReduce in Practice: Applications and Experience
• Large-Scale Data Processing: MapReduce has been integral in processing extensive datasets for various Google products, 

demonstrating its versatility and reliability in production environments.

• Indexing System Rewrite: A noteworthy application of MapReduce is the complete rewrite of Google's indexing system. This 

task highlights the simplification of complex distributed computations and the subsequent benefits in operation and 

maintenance.

• User-Friendly Framework: The adoption of MapReduce by a wide range of developers, even those with no prior experience in 

parallel and distributed systems, underscores the framework's accessibility and ease of use.

• Ecosystem Growth: The growing ecosystem around MapReduce, including the development of open-source implementations 

like Apache Hadoop, reflects its widespread acceptance and the community's recognition of its value in big data processing.



Related Works
• HDFS Architecture Guide (updated 2022)

• Hadoop, The Definitive Guide (2009)

• The Google File System (2003)

• Spark: Cluster Computing with Working Sets (2010)

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf


Conclusion
• Main Contributions:

• Simplified data processing on large clusters
• Automatic parallelization and distribution
• Fault-tolerance mechanism
• Scalability and efficiency in processing large data sets

• Limitations:
• Not optimized for real-time data processing
• Can be resource-intensive for small data sets
• Limited to specific types of data processing tasks

• Future Work:
• Enhancing real-time processing capabilities
• Optimizing resource usage for various data sizes
• Expanding the applicability to a broader range of tasks



Study Questions
Question 1: Application of MapReduce Counter

- In the context of MapReduce counter facility, which allows for tracking the 
occurrences of various events, how would a map function use a counter to 
keep track of a specific condition, such as the number of capitalized words 
within a dataset?

Question 2: Locality Optimization
- What is locality optimization in the context of MapReduce, and why is it 

important? How does MapReduce achieve this optimization, and what 
benefits does it bring to the processing of large data sets?


