
Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,

Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, Dale

Woodford
Google, Inc.

Abstract
Spanner is Google’s scalable, multi-version, globallydistributed, and synchronously-replicated database. It
is the first system to distribute data at global scale and support externally-consistent distributed
transactions. This paper describes how Spanner is structured, its feature set, the rationale underlying
various design decisions, and a novel time API that exposes clock uncertainty. This API and its
implementation are critical to supporting external consistency and a variety of powerful features:
nonblocking reads in the past, lock-free read-only transactions, and atomic schema changes, across all of
Spanner.

1 Introduction
1: Spanner is a scalable, globally-distributed database designed, built, and deployed at Google. At the
highest level of abstraction, it is a database that shards data across many sets of Paxos [21] state machines
in datacenters spread all over the world. Replication is used for global availability and geographic
locality; clients automatically failover between replicas. Spanner automatically reshards data across
machines as the amount of data or the number of servers changes, and it automatically migrates data
across machines (even across datacenters) to balance load and in response to failures. Spanner is designed
to scale up to millions of machines across hundreds of datacenters and trillions of database rows.

2: Applications can use Spanner for high availability, even in the face of wide-area natural disasters, by
replicating their data within or even across continents. Our initial customer was F1 [35], a rewrite of
Google’s advertising backend. F1 uses five replicas spread across the United States. Most other
applications will probably replicate their data across 3 to 5 datacenters in one geographic region, but with
relatively independent failure modes. That is, most applications will choose lower latency over higher
availability, as long as they can survive 1 or 2 datacenter failures.

3: Spanner’s main focus is managing cross-datacenter replicated data, but we have also spent a great deal
of time in designing and implementing important database features on top of our distributed-systems
infrastructure. Even though many projects happily use Bigtable [9], we have also consistently received
complaints from users that Bigtable can be difficult to use for some kinds of applications: those that have
complex, evolving schemas, or those that want strong consistency in the presence of wide-area
replication. (Similar claims have been made by other authors [37].) Many applications at Google have
chosen to use Megastore [5] because of its semirelational data model and support for synchronous
replication, despite its relatively poor write throughput. As a consequence, Spanner has evolved from a
Bigtable-like versioned key-value store into a temporal multi-version database. Data is stored in

1



schematized semi-relational tables; data is versioned, and each version is automatically timestamped with
its commit time; old versions of data are subject to configurable garbage-collection policies; and
applications can read data at old timestamps. Spanner supports general-purpose transactions, and provides
a SQL-based query language.

4: As a globally-distributed database, Spanner provides several interesting features. First, the replication
configurations for data can be dynamically controlled at a fine grain by applications. Applications can
specify constraints to control which datacenters contain which data, how far data is from its users (to
control read latency), how far replicas are from each other (to control write latency), and how many
replicas are maintained (to control durability, availability, and read performance). Data can also be
dynamically and transparently moved between datacenters by the system to balance resource usage across
datacenters. Second, Spanner has two features that are difficult to implement in a distributed database: it
provides externally consistent [16] reads and writes, and globally-consistent reads across the database at a
timestamp. These features enable Spanner to support consistent backups, consistent MapReduce
executions [12], and atomic schema updates, all at global scale, and even in the presence of ongoing
transactions.

5: These features are enabled by the fact that Spanner assigns globally-meaningful commit timestamps to
transactions, even though transactions may be distributed. The timestamps reflect serialization order. In
addition, the serialization order satisfies external consistency (or equivalently, linearizability [20]): if a
transaction T1 commits before another transaction T2 starts, then T1’s commit timestamp is smaller than
T2’s. Spanner is the first system to provide such guarantees at global scale.

6: The key enabler of these properties is a new TrueTime API and its implementation. The API directly
exposes clock uncertainty, and the guarantees on Spanner’s timestamps depend on the bounds that the
implementation provides. If the uncertainty is large, Spanner slows down to wait out that uncertainty.
Google’s cluster-management software provides an implementation of the TrueTime API. This
implementation keeps uncertainty small (generally less than 10ms) by using multiple modern clock
references (GPS and atomic clocks).

7: Section 2 describes the structure of Spanner’s implementation, its feature set, and the engineering
decisions that went into their design. Section 3 describes our new TrueTime API and sketches its
implementation. Section 4 describes how Spanner uses TrueTime to implement externally-consistent
distributed transactions, lockfree read-only transactions, and atomic schema updates. Section 5 provides
some benchmarks on Spanner’s performance and TrueTime behavior, and discusses the experiences of F1.
Sections 6, 7, and 8 describe related and future work, and summarize our conclusions.

2 Implementation
2.1 Spanserver Software Stack

2



2.2 Directories and Placement

2.3 Data Model

3



3 TrueTime

4 Concurrency Control

4.1 Timestamp Management
4.1.1 Paxos Leader Leases
4.1.2 Assigning Timestamps to RW Transactions
4.1.3 Serving Reads at a Timestamp
4.1.4 Assigning Timestamps to RO Transactions
4.2 Details
4.2.1 Read-Write Transactions
4.2.2 Read-Only Transactions
4.2.3 Schema-Change Transactions
4.2.4 Refinements

5 Evaluation
5.1 Microbenchmarks
5.2 Availability
5.3 TrueTime
5.4 F1

6 Related Work

7 Future Work

4



8 Conclusions
To summarize, Spanner combines and extends on ideas from two research communities: from the
database community, a familiar, easy-to-use, semi-relational interface, transactions, and an SQL-based
query language; from the systems community, scalability, automatic sharding, fault tolerance, consistent
replication, external consistency, and wide-area distribution. Since Spanner’s inception, we have taken
more than 5 years to iterate to the current design and implementation. Part of this long iteration phase was
due to a slow realization that Spanner should do more than tackle the problem of a globallyreplicated
namespace, and should also focus on database features that Bigtable was missing.

One aspect of our design stands out: the linchpin of Spanner’s feature set is TrueTime. We have shown
that reifying clock uncertainty in the time API makes it possible to build distributed systems with much
stronger time semantics. In addition, as the underlying system enforces tighter bounds on clock
uncertainty, the overhead of the stronger semantics decreases. As a community, we should no longer
depend on loosely synchronized clocks and weak time APIs in designing distributed algorithms.

5


