Spanner: Google's Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, Dale Woodford Google, Inc.

Abstract

Spanner is Google's scalable, multi-version, globallydistributed, and synchronously-replicated database. It is the first system to distribute data at global scale and support externally-consistent distributed transactions. This paper describes how Spanner is structured, its feature set, the rationale underlying various design decisions, and a novel time API that exposes clock uncertainty. This API and its implementation are critical to supporting external consistency and a variety of powerful features: nonblocking reads in the past, lock-free read-only transactions, and atomic schema changes, across all of Spanner.

1 Introduction

1: Spanner is a scalable, globally-distributed database designed, built, and deployed at Google. At the highest level of abstraction, it is a database that shards data across many sets of Paxos [21] state machines in datacenters spread all over the world. Replication is used for global availability and geographic locality; clients automatically failover between replicas. Spanner automatically reshards data across machines as the amount of data or the number of servers changes, and it automatically migrates data across machines (even across datacenters) to balance load and in response to failures. Spanner is designed to scale up to millions of machines across hundreds of datacenters and trillions of database rows.

2: Applications can use Spanner for high availability, even in the face of wide-area natural disasters, by replicating their data within or even across continents. Our initial customer was F1 [35], a rewrite of Google's advertising backend. F1 uses five replicas spread across the United States. Most other applications will probably replicate their data across 3 to 5 datacenters in one geographic region, but with relatively independent failure modes. That is, most applications will choose lower latency over higher availability, as long as they can survive 1 or 2 datacenter failures.

3: Spanner's main focus is managing cross-datacenter replicated data, but we have also spent a great deal of time in designing and implementing important database features on top of our distributed-systems infrastructure. Even though many projects happily use Bigtable [9], we have also consistently received complaints from users that Bigtable can be difficult to use for some kinds of applications: those that have complex, evolving schemas, or those that want strong consistency in the presence of wide-area replication. (Similar claims have been made by other authors [37].) Many applications at Google have chosen to use Megastore [5] because of its semirelational data model and support for synchronous replication, despite its relatively poor write throughput. As a consequence, Spanner has evolved from a Bigtable-like versioned key-value store into a temporal multi-version database. Data is stored in

schematized semi-relational tables; data is versioned, and each version is automatically timestamped with its commit time; old versions of data are subject to configurable garbage-collection policies; and applications can read data at old timestamps. Spanner supports general-purpose transactions, and provides a SQL-based query language.

4: As a globally-distributed database, Spanner provides several interesting features. First, the replication configurations for data can be dynamically controlled at a fine grain by applications. Applications can specify constraints to control which datacenters contain which data, how far data is from its users (to control read latency), how far replicas are from each other (to control write latency), and how many replicas are maintained (to control durability, availability, and read performance). Data can also be dynamically and transparently moved between datacenters by the system to balance resource usage across datacenters. Second, Spanner has two features that are difficult to implement in a distributed database: it provides externally consistent [16] reads and writes, and globally-consistent reads across the database at a timestamp. These features enable Spanner to support consistent backups, consistent MapReduce executions [12], and atomic schema updates, all at global scale, and even in the presence of ongoing transactions.

5: These features are enabled by the fact that Spanner assigns globally-meaningful commit timestamps to transactions, even though transactions may be distributed. The timestamps reflect serialization order. In addition, the serialization order satisfies external consistency (or equivalently, linearizability [20]): if a transaction T1 commits before another transaction T2 starts, then T1's commit timestamp is smaller than T2's. Spanner is the first system to provide such guarantees at global scale.

6: The key enabler of these properties is a new TrueTime API and its implementation. The API directly exposes clock uncertainty, and the guarantees on Spanner's timestamps depend on the bounds that the implementation provides. If the uncertainty is large, Spanner slows down to wait out that uncertainty. Google's cluster-management software provides an implementation of the TrueTime API. This implementation keeps uncertainty small (generally less than 10ms) by using multiple modern clock references (GPS and atomic clocks).

7: Section 2 describes the structure of Spanner's implementation, its feature set, and the engineering decisions that went into their design. Section 3 describes our new TrueTime API and sketches its implementation. Section 4 describes how Spanner uses TrueTime to implement externally-consistent distributed transactions, lockfree read-only transactions, and atomic schema updates. Section 5 provides some benchmarks on Spanner's performance and TrueTime behavior, and discusses the experiences of F1. Sections 6, 7, and 8 describe related and future work, and summarize our conclusions.

2 Implementation 2.1 Spanserver Software Stack

Figure 1: Spanner server organization.

Figure 2: Spanserver software stack.

2.2 Directories and Placement

Figure 3: Directories are the unit of data movement between Paxos groups.

2.3 Data Model

```
CREATE TABLE Users {
   uid INT64 NOT NULL, email STRING
} PRIMARY KEY (uid), DIRECTORY;
CREATE TABLE Albums {
   uid INT64 NOT NULL, aid INT64 NOT NULL,
   name STRING
} PRIMARY KEY (uid, aid),
   INTERLEAVE IN PARENT Users ON DELETE CASCADE;
```


Figure 4: Example Spanner schema for photo metadata, and the interleaving implied by INTERLEAVE IN.

3 TrueTime

Method	Returns		
TT.now()	TTinterval: [earliest, latest]		
TT.after(t)	true if t has definitely passed		
TT.before(t)	true if t has definitely not arrived		

Table 1: TrueTime API. The argument t is of type *TTstamp*.

4 Concurrency Control

	Timestamp	Concurrency	
Operation	Discussion	Control	Replica Required
Read-Write Transaction	§ 4.1.2	pessimistic	leader
Read-Only Transaction	§ 4.1.4	lock-free	leader for timestamp; any for read, subject to $\S 4.1.3$
Snapshot Read, client-provided timestamp		lock-free	any, subject to § 4.1.3
Snapshot Read, client-provided bound	§ 4.1.3	lock-free	any, subject to § 4.1.3

Table 2: Types of reads and writes in Spanner, and how they compare.

- 4.1 Timestamp Management
- 4.1.1 Paxos Leader Leases
- 4.1.2 Assigning Timestamps to RW Transactions
- 4.1.3 Serving Reads at a Timestamp
- 4.1.4 Assigning Timestamps to RO Transactions
- 4.2 Details
- 4.2.1 Read-Write Transactions
- 4.2.2 Read-Only Transactions
- 4.2.3 Schema-Change Transactions
- 4.2.4 Refinements

5 Evaluation

- 5.1 Microbenchmarks
- 5.2 Availability
- 5.3 TrueTime
- 5.4 F1

6 Related Work

7 Future Work

8 Conclusions

To summarize, Spanner combines and extends on ideas from two research communities: from the database community, a familiar, easy-to-use, semi-relational interface, transactions, and an SQL-based query language; from the systems community, scalability, automatic sharding, fault tolerance, consistent replication, external consistency, and wide-area distribution. Since Spanner's inception, we have taken more than 5 years to iterate to the current design and implementation. Part of this long iteration phase was due to a slow realization that Spanner should do more than tackle the problem of a globallyreplicated namespace, and should also focus on database features that Bigtable was missing.

One aspect of our design stands out: the linchpin of Spanner's feature set is TrueTime. We have shown that reifying clock uncertainty in the time API makes it possible to build distributed systems with much stronger time semantics. In addition, as the underlying system enforces tighter bounds on clock uncertainty, the overhead of the stronger semantics decreases. As a community, we should no longer depend on loosely synchronized clocks and weak time APIs in designing distributed algorithms.