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● Query processor overview
● Estimate the size of results

● Projection
● Selection
● Joins

● Estimate the # of disk I/O’s
● Nested-loop join
● Hash join
● Index join



Query Optimization Overview
Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)

o Without executing the plan!
o Choose plan with lowest cost
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The Three Parts of an Optimizer
● Cost estimation 

○ Estimate size of results
○ Also consider whether output is sorted/intermediate results written to disk 

etc.

● Search space 
○ Algebraic laws, restricted types of join trees

● Search algorithm
○ Example: Selinger algorithm

4



Search Space
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Query: !1 ⋈ !2 ⋈ !3 ⋈ !4

Logical plan space: 
○ Several possible structures of the trees
○ Each tree can have n! permutations of relations on leaves 

Physical plan space: 
○ Different implementation (e.g., join algorithm) and scanning of intermediate 

operators for each logical plan



Heuristic for pruning plan space
Apply predicates as early as possible 

Avoid plans with cartesian products
● (" #, % ⋈ '((, ))) ⋈ S(%, () 

Consider only left-deep join trees
● Studied extensively in traditional query optimization literature 
● Works well with existing join algorithms such as nested-loop and hash join

● e.g., might not need to write tuples to disk if enough memory
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Search Algorithm
Selinger Algorithm: dynamic programming based 

o Based on System R (aka Selinger) style optimizer [1979]
o Consider different logical and physical plans at the same time
o Limited to joins: join reordering algorithm 
o Cost of a plan is I/O + CPU

Exploits ”principle of optimality”
○ Optimal for “whole” made up from optimal for ”parts”

Consider the search space of left-deep join trees 
o Reduces search space but still n! permutations 
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy



Notation and Setup 
OPT({R1, R2, R3}):
 Cost of optimal plan to join R1, R2, R3

T({R1, R2, R3}):
 Number of tuples in !1 ⋈ !2 ⋈ !3 

Simple Cost Model: Cost(! ⋈ +) = .(!) + .(+) 
 All other operations have 0 cost
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* The simple cost model used for illustration only, it is not used in practice

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Cost Model Example

Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 

OPT({R1, R2, R3})=
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OPT({R1, R2}) + T( {R1, R2} ) + T(R3)

OPT({R2, R3}) + T( {R3, R3} ) + T(R1)

OPT({R1, R3}) + T( {R1, R3} ) + T(R2)

* Valid only for the simple cost model

min

Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Selinger Algorithm 
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Selinger Algorithm 
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Selinger Algorithm 
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Selinger Algorithm 
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Selinger Algorithm 
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Selinger Algorithm 
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Try it yourself 
EXPLAIN command: Display the execution plan that 
the PostgreSQL planner generates for the supplied statement. 

23Source: https://www.postgresql.org/docs/current/sql-explain.html

https://www.postgresql.org/docs/current/sql-explain.html


A brief intro to learned query 
optimizers

Slides adapted from Machine Learning 
for Query Optimization … and beyond! 

by Ryan Marcus
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Source: Ryan Marcus

How to better leverage these 
results to improve optimizer?



Neo: A Learned Query Optimizer [VLDB’19]
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Source: Ryan Marcus

Complete replacement of default query optimizer
First to show we can have all learned everything

Deep reinforcement learning guided search

https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf


Neo: A Learned Query Optimizer [VLDB’19]
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Source: Ryan Marcus

Neo worked great on average but

Sample Inefficiency
• Typically takes > 1 day for pre-train

Brittleness to workload and schema change 
• The encoding of cardinality estimate needs retrain

Tail catastrophe
• Deep RL making wrong estimates due to sample inefficiency

https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf


Bao: Making Learned Query Optimization Practical 
[SIGMOD’21]

Bao: Bandit optimizer

By steering a traditional query 
optimizer, Bao:

• Outperforms PG after 1 hour of 
training
• Reduces 99% latency
• Adaptsto changes in workload, 

schema, and data.
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Source: Ryan Marcus

https://dl.acm.org/doi/pdf/10.1145/3448016.3452838
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PostgreSQL Integration
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Github: https://github.com/learnedsystems/BaoForPostgreSQL

https://github.com/learnedsystems/BaoForPostgreSQL


Moving onto Transactions… 
• What are transactions and why are they useful?
• Overview of ACID properties 
• Using transactions in SQL 
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Reading Materials

Fundamental of Database Systems (7th Edition)
• Chapter 20 - Introduction to Transaction 

Processing Concepts and Theory

Supplementary materials
Database Management Systems (Third Edition)
• Chapter 16 – Overview of Transaction 

Management
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Motivation: Concurrent Execution
Single-User System:
• At most one user at a time can use the system. 

Multiuser System:
• Many users can access the system concurrently.

Concurrent execution of user programs is essential for good DBMS 
performance. 

• Disk accesses are frequent, and relatively slow 
• it is important to keep the CPU busy by working on several user programs concurrently 
• We focus on the interleaved processing case (concurrent execution of processes is 

interleaved in a single CPU) instead of the parallel processing case (processes are 
concurrently executed in multiple CPUs)



Transactions

A user’s program may carry out many operations on the data 
retrieved from the database
• But the DBMS is only concerned about what data is read/written from/to 

the database 

A transaction is the DBMS’s abstract view of a user program 
• A sequence of reads and write
• The same program executed multiple times would be considered as 

different transactions
• Beyond enforcing some integrity constraints, the DBMS does not really 

understand the semantics of the data (e.g., it does not understand how 
the interest on a bank account is computed) – it only cares about “read” 
and “write” sequences 
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Example

• Intuitively, the first transaction is transferring $100 from B’s account to A’s 
account. The second is crediting both accounts with a 6% interest 
payment 

• There is no guarantee that T1 will execute before T2 or vice-versa, if both 
are submitted together. 

• However, the net effect must be equivalent to these two transactions 
running serially in some order 
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Consider two transactions



Example

40

Consider a possible interleaving (schedule):

This is Ok. But what about

The DBMS’s view of the second schedule



Commit and Abort

• A transaction might commit after completing all its actions 
• or it could abort (or be aborted by the DBMS) after executing 

some actions 
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Desirable Properties of Transactions 

ACID properties:
• Atomicity: A transaction is an atomic unit of processing; it is either performed 

in its entirety or not performed at all.
• Consistency: A correct execution of the transaction must take the database 

from one consistent state to another.
• Isolation: A transaction should not make its updates visible to other 

transactions until it is committed.
• Durability: Once a transaction changes the database and the changes are 

committed, these changes must never be lost because of subsequent failure.



Atomicity
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A user can think of a transaction as always executing all its actions 
in one step, or not executing any actions at all 
• Users do not have to worry about the effect of incomplete 

transactions 



Consistency

44

Each transaction, when run by itself with no concurrent execution 
of other actions, must preserve the consistency of the database 
• e.g., if you transfer money from the savings account to the 

checking account, the total amount still remains the same 



Isolation
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A user should be able to understand a transaction without 
considering the effect of any other concurrently running transaction 
• Even if the DBMS interleaves their actions
• Transaction are “isolated or protected” from other transactions 



Durability
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Once the DBMS informs the user that a transaction has been 
successfully completed, its effect should persist
• even if the system crashes before all its changes are 

reflected on disk

Next, how we maintain all these four properties on a high level 



Ensuring Consistency
• User’s responsibility to maintain the integrity constraints, as the 

DBMS may not be able to catch such errors in user program’s logic 
• e.g. if the credit is (debit – 1) 

• However, the DBMS may be in inconsistent state “during a 
transaction” between actions 
• which is ok, but it should leave the database at a consistent state when it 

commits or aborts 
• Database consistency follows from transaction consistency, 

isolation, and atomicity 
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Ensuring Isolation 

• DBMS guarantees isolation 
• If T1 and T2 are executed concurrently, either the effect would 

be T1->T2 or T2->T1 (and from a consistent state to a 
consistent state) 
• But DBMS provides no guarantee on which of these order is 

chosen 
• Often ensured by “locks” but there are other methods too 
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Ensuring Atomicity

Transactions can be incomplete due to several reasons 
• Aborted (terminated) by the DBMS because of some anomalies 

during execution 
• in that case automatically restarted and executed anew 

• The system may crash (e.g., no power supply) 
• A transaction may decide to abort itself encountering an 

unexpected situation 
• e.g., read an unexpected data value or unable to access disks 
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Ensuring Atomicity

• A transaction interrupted in the middle can leave the database in 
an inconsistent state 
• DBMS has to remove the effects of partial transactions from the 

database 
• DBMS ensures atomicity by “undoing” the actions of incomplete 

transactions 
• DBMS maintains a “log” of all changes to do so 
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Ensuring Durability 

• The log also ensures durability 
• If the system crashes before the changes made by a completed 

transactions are written to the disk, the log is used to remember 
and restore these changes when the system restarts 
• “recovery manager” 
•  takes care of atomicity and durability 
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Using Transactions in SQL 
● SQL allows the programmer to group several statements in a single transaction
● Either all operations are performed or none are
● A single SQL statement is always considered to be atomic.  

52

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

COMMIT; Causes transaction to 
end successfully

Marks beginning of 
transaction



Using Transactions in SQL 
● ROLLBACK causes the transaction to abort and undo any changes

53

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

ROLLBACK;

We find that there are 
insufficient funds to make 
transfer



Using Transactions in SQL 
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SET [GLOBAL | SESSION] TRANSACTION 
 transaction_characteristic [, 
transaction_characteristic] ... 

transaction_characteristic: { 
 ISOLATION LEVEL level 
 | access_mode } 

level: { 
 REPEATABLE READ
              | READ COMMITTED 
              | READ UNCOMMITTED 
              | SERIALIZABLE} 

access_mode: { 
 READ WRITE 
               | READ ONLY }



Using Transactions in SQL 
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SET [GLOBAL | SESSION] TRANSACTION 
 transaction_characteristic [, transaction_characteristic] ... 

transaction_characteristic: { 
 ISOLATION LEVEL level 
 | access_mode } 

level: { 
 REPEATABLE READ
              | READ COMMITTED 
              | READ UNCOMMITTED 
              | SERIALIZABLE} 

access_mode: { 
 READ WRITE 
               | READ ONLY }

Isolation Levels
• With SERIALIZABLE: the interleaved 

execution of transactions will adhere to 
our notion of serializability. 

• However, if any transaction executes at a 
lower level, then serializability may be 
violated. 



Using Transactions in SQL 
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SET [GLOBAL | SESSION] TRANSACTION 
 transaction_characteristic [, transaction_characteristic] ... 

transaction_characteristic: { 
 ISOLATION LEVEL level 
 | access_mode } 

level: { 
 REPEATABLE READ
              | READ COMMITTED 
              | READ UNCOMMITTED 
              | SERIALIZABLE} 

access_mode: { 
 READ WRITE 
               | READ ONLY }

Access Mode
• The default is READ WRITE unless the 

isolation level of READ UNCOMITTED is 
specified, in which case READ ONLY is 
assumed.



Read-only transactions
● Transactions that only read data and do not write can be executed in parallel
● Tell SQL system before running transaction:
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SET TRANSACTION READ ONLY;



Dirty reads
Reading data written by a transaction that has not yet committed

Consider this seat selection example: 
1. Find available seat and reserve by setting seatStatus to ‘occupied’
2. Ask customer for approval of seat

a. If so, commit
b. If not, release seat by setting seatStatus to ‘available’ and repeat Step (1)

58



Dirty read
● If we allow dirty reads, this can happen
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User 1 finds seat 22A empty and
reserves it (22A is occupied)

User 1 disapproves the 22A 
reservation

time
User 2 is told that seat 22A is
already occupied (dirty read)



Dirty reads
● If this result is acceptable, the transaction processing can be done faster

○ DBMS does not have to prevent dirty reads
○ Allows more parallelism

● Tell SQL system:
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SET TRANSACTION READ WRITE
ISOLATION LEVEL READ UNCOMMITTED;


