Emerging Database
lechnologies

Lecture 9
02/07/24

Recap

o Query processor overview

o Estimate the size of results
e Projection
e Selection
e JOINS

o Estimate the # of disk I/O’s
e Nested-loop join
e Hash join
e Index join

Query _
optimization

—

~——

SQL query
!

[Parse Query }

A

[Select logical query plan }

A 4

[Select physical plan }

A 4

[Query execution]

A 4

C query
expression tree

i logical query

plan tree

i physical query
plan tree

Query Optimization Overview

Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)
o Without executing the plan!

The Three Parts of an Optimizer

« (Cost estimation
o Estimate size of results
- Also consider whether output is sorted/intermediate results written to disk
etc.

o Search space
o Algebraic laws, restricted types of join trees

« Search algorithm
o Example: Selinger algorithm

Search Space

Query: R1 < R2 @ R3 X R4

N
R2

<
N/ \N el
R3/ \R1 RZ/ \R4 R3 R1

Bushy plan Left-deep plan

>
N/
RN
R4

Logical plan space:

o Several possible structures of the trees

o Each tree can have n! permutations of relations on leaves
Physical plan space:

o Different implementation (e.g., join algorithm) and scanning of intermediate
operators for each logical plan

Heuristic for pruning plan space
Apply predicates as early as possible

Avolid plans with cartesian products
e (R(AB)xT(C,D)) > S(B,C)

Consider only left-deep join trees
o Studied extensively in traditional query optimization literature
o Works well with existing join algorithms such as nested-loop and hash join
e e.g., might not need to write tuples to disk if enough memory

Search Algorithm

Selinger Algorithm: dynamic programming based
o Based on System R (aka Selinger) style optimizer [1979]
o Consider different logical and physical plans at the same time
o Limited to joins: join reordering algorithm
o Costofaplanis /O + CPU

)

Exploits ”
> Optimal for “whole” made up from optimal for "parts”

Consider the search space of left-deep join trees
o Reduces search space but still n! permutations

Principle of Optimality

Query: R1D><1 R2D><1 R3 D><I R4 < R5

R3 R2 Suppose,
this is an Optimal Plan
for joining R1...R5:

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Principle of Optimality
Query: R1D><1 R2D><1 R3 DI R4 < R5

This has to be the
optimal plan for joining R3, R2, R4, R1

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Principle of Optimality
Query: R1D><I R2D><1 R3 b<I R4 <1 R5

/ N
We are using the ./°/><\ S R1
associativity and R4 S
commutativity of joins /.’/><\ R4 ,
(RD<IS)DIT=RB(SDAT) |, :

RD<IS=SD<R /" R3 R2

This has to be the
optimal plan for joining R3, R2, R4

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Principle of Optimality

Query: R1D><1 R2 > ><1 Rn
Both are giving the same result N Suppose you chose
R the sub-optimal one
R2 DXIR3 DI R1 =R3 <1 R1 X1 R2 \Ri
<, .

/><\ | . \’\.\ Leads to sub-Optimal
/><\ /><\ f\ R2 for joining R1,...,Rn

R2 R3 R3 R1 - R3 R1 7
Optimal Sub-Optimal
for joining R1, R2, R3 | for joining R1, R2, R3

11
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Notation and Setup

OPT({R1, R2, R3}):
Cost of optimal plan to join R1, R2, R3

T({R1, R2, R3)}):
Number of tuples in R1 @ R2 4 R3

Simple Cost Model: Cost(R > S) =T(R) +T(S)
All other operations have O cost

* The simple cost model used for illustration only, it is not used in practice

Slides adapted from Duke CompSci 516 by Sudeepa Roy

12

Cost Model Example

X T TX) + T(T)

/ \ TR T(S)
R S

Total Cost: T(R) + T(S) + T(T) + T(X)

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

" OPT({R1, R2}) + T({RI, R2}) + T(R3)
OPT({R1, Re, R3})=min - opr({R2, R3}) + T({R3, R3}) + T(RI)

 OPT({RI, R3}) + T({RI, R3}) + T(R2)

* Valid only for the simple cost model

Slides adapted from Duke CompSci 516 by Sudeepa Roy

14

Selinger Algorithm

Query: R1D>< R2D><1 R3 ><1 R4

Progress
of
{R1, R2, R3, R4} algorithm

[R1,R2)R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

fR1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

bz

{R1} {R2} {R3} {R4}

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

Query: R1><1 R2D><1 R3 ><1 R4

Suppose this path is chosen by the algorithm Prog ress
How to translate to a query plan? of
{R1, R2, R3, R4} algorithm

{R1,R2/R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

fR1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

AN

{R1} {R2} { R3} {R4}

Slides adapted from Duke CompSci 516 by Sudeepa Roy

4

16

Selinger Algorithm

Query: R1><1 R2D>< R3 ><1 R4

Q. How to optimally compute join of {R1, R2, R3, R4}?

Progress
Ans: First optimally join {R1, R3, R4} then join with R2 as inner. of
{ R1, R2, R3, R4} algorithm

[R1,R2)R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

[R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2, R4} {R3 R4}

DN

{R1} {R2} {R3} {R4}

Slides adapted from Duke CompSci 516 by Sudeepa Roy

17

Selinger Algorithm

Query: R1><1 R2D>< R3 ><1 R4

Q. How to optimally compute join of {R1, R3, R4}?

Progress
Ans: First optimally join {R1, R3}, then join with R4 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2 R3, R4}

[R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2, R4} {R3 R4}

AN

{R1} {R2} {R3} {R4}

Slides adapted from Duke CompSci 516 by Sudeepa Roy

18

Selinger Algorithm

Query: R1D><d R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R1, R3}?

Progress
Ans: First optimally join {R3}, then join with R1 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

[{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2, R4} {R3 R4}

AN

{R1} {R2} {R3} {R4}

Slides adapted from Duke CompSci 516 by Sudeepa Roy

19

Selinger Algorithm

Query: R1D><1 R2D><1 R3 D>< R4

Q. How to optimally compute join of {R3}?

Progress
Ans: Single relation — so optimally scan R3. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

[R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2, R4} {R3 R4}

AN

{R1} {R2} { R3} {R4}

Slides adapted from Duke CompSci 516 by Sudeepa Roy

20

Selinger Algorithm

Query: R1D><t R2D><1 R3 ><1 R4

Final optimal plan:

{R1,R2, R3, R4}

(R, Rzms, R4)
T ST N R
{R1,R2} {R1,R3} {R1,R4} {RZ R3} {R2 R4} {R3 R4}
QQ % /><\ R4
{R1} {R2} {R3} {R4}

R3 R1

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan

21
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm
Query: R1><1 R2D><1 R3 D> R4

NOTE:
This is *NOT* done by top-down recursive calls.
 Thisis done BOTTOM-UP computing the optimal cost of *all*

nodes in this lattice only once (dynamic programming). Progress
of
algorithm

{R1, R2, R3, R4}
Is it efficient? © {R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2, R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2, R4} {R3, R4}

Reduces n! to 2" i/;z% &z

{R1} {R2} {R3} {R4}

Other optimizations employed too..

Slides adapted from Duke CompSci 516 by Sudeepa Roy

22

Try it yourself

EXPLAIN command: Display the execution plan that
the PostgreSQL planner generates for the supplied statement.

EXPLAIN SELECT * FROM foo;

QUERY PLAN

Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)
(1 row)

EXPLAIN SELECT *x FROM foo WHERE 1 = 4;

QUERY PLAN

Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)
Index Cond: (i = 4)
(2 rows)

Source: https://www.postgresqgl.org/docs/current/sgl-explain.html >

https://www.postgresql.org/docs/current/sql-explain.html

A brief intro to learned query
optimizers

Slides adapted from Machine Learning
for Query Optimization ... and beyond!
by Ryan Marcus

24

Query Optimization

a—aib ~ ene

How to better leverage these
results to improve optimizer? Latency Result

Source: Ryan Marcus

Neo: A Learned Query Optimizer [VLD

Complete replacement of default query optimizer
First to show we can have all learned everything

Deep reinforcement learning guided search

T

— Engine

\4

Latency

Result

Source: Ryan Marcus

3'19]

Neo: A Learned Query Optimizer. VLDB ‘19

https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf

Neo: A Learned Query Optimizer [VLDB'19]

Neo worked great on average but 2.5
g

Sample Inefficiency % 15
 Typically takes > 1 day for pre-train g |

S 0.5

Brittleness to workload and schema change
* The encoding of cardinality estimate needs retrain

Tall catastrophe

Source: Ryan Marcus

Péstgres ———-
Neo (R-Vectors)

0 20 40 60 80 100

Iterations

~32 hours
* Deep RL making wrong estimates due to sample inefficiency

27

https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf

Ba0: Making Learned Query Optimization Practical
SIGMOD’21]

Bao: Bandit optimizer

| reduce median and

By steering a traditional query tail latency!

optimizer, Bao:
» Qutperforms PG after 1 hour of
training
» Reduces 99% latency

» Adaptsto changes in workload,
schema, and data.

28

https://dl.acm.org/doi/pdf/10.1145/3448016.3452838

Query Hints

Slow query. Run EXPLAIN.

> Loop join plan, S . 60.2s mEE PostgreSQL
> Low selectivity S |

a

> 40

O

c

g

© 20 -

-

)

>

(@4 0 -

16b
JOB Query

Source: Ryan Marcus

Query Hints

Slow query. Run EXPLAIN.

> Loop join plan, S 60.2s mmm PostgreSQL
> Low selectivity § mmm PostgreSQL (no loop join)
(V)]
Try disabling loop join > 40
> Huge improvement I3
(©
—_— 20_
-
)
)
@ 0 -

16b

JOB Query

Source: Ryan Marcus

Query Hints

Slow query. Run EXPLAIN.

> Loop join plan, 326
> Low selectivity S
Q
Try disabling loop join >4
> Huge improvement 3
(©
52
Apply this hint globally v
> ... other regressions ©

60.2s

o

o

o

o

16b

Source: Ryan Marcus

B PostgreSQL
i PostgreSQL (no loop join)

19.7s

JOB Query

0.45 L

24b

Bao

 Bao automatically determines the right hint to use.

e Consider different hints as arms Iin a contextual multi-
armed bandit

Loop plan
Q < Hash plan
Merge plan

Traditional Query Optimizer

Bao

* Bao automatically determines the right hint to use.

e Consider different hints as arms Iin a contextual multi-
armed bandit

Predicted Performance

<

Loop plan - 20
Hash plan - 25
Merge plan - 18

Traditional Query Optimizer

i

uonNIaxg

— (

Actual

Latency

Merge plan 38

"

Model Training

)

PostgreSQL Integration

Bao, a learned query optimizer. For PostgreSQL.

Github: https://github.com/learnedsystems/BaoForPostgreSQL

34

https://github.com/learnedsystems/BaoForPostgreSQL

Moving onto Transactions...

* What are transactions and why are they useful?
» Overview of ACID properties
 Using transactions in SQL

Acknowledgement:
The following slides have been created adapting the instructor material of the

[RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

35

Reading Materials

Fundamental of Database Systems (7/th Edition)

» Chapter 20 - Introduction to Transaction
Processing Concepts and Theory

Supplementary materials
Database Management Systems (Third Edition)

» Chapter 16 — Overview of Transaction
Management

£ 'n
’:iF

ST ANAVATHE
IF fEd] NS
. T 'k 1

36

Motivation: Concurrent Execution

Single-User System:
« At most one user at a time can use the system.

Multiuser System:
* Many users can access the system concurrently.

Concurrent execution of user programs is essential for good DBMS

performance.
» Disk accesses are frequent, and relatively slow
 itis important to keep the CPU busy by working on several user programs concurrently

» We focus on the interleaved processing case (concurrent execution of processes is
interleaved in a single CPU) instead of the parallel processing case (processes are

concurrently executed in multiple CPUs)

ransactions

A user’s program may carry out many operations on the data
retrieved from the database

« But the DBMS is only concerned about what data is read/written from/to
the database

A transaction is the DBMS’s abstract view of a user program

* A sequence of reads and write
* The same program executed multiple times would be considered as
different transactions

« Beyond enforcing some integrity constraints, the DBMS does not really
understand the semantics of the data (e.g., it does not understand how
the interest on a bank account is computed) — it only cares about “read”

and “write” sequences

Example

Consider two transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

* |ntuitively, the first transaction is transferring $100 from B’s account to A’s
account. The second is crediting both accounts with a 6% interest
payment

* There is no guarantee that T1 will execute before T2 or vice-versa, if both
are submitted together.

* However, the net effect must be equivalent to these two transactions
running serially in some order

39

T1: BEGIN A=A+100, B=B-100 END

Examp‘e T2: BEGIN A=1.06*A, B=1.06*B END
Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100

T2: A=1.06%A, B=1.06"B
This is Ok. But what about

T1: A=A+100, B=B-100

T2: A=1.06*A, B=1.06*B

The DBMS’s view of the second schedule

T1: R(A), W(A),

T2: R(A), W(A), R(B), W(B)

R(B), W(B)

40

Commit and Abort

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06"B END

A transaction might commit after completing all its actions

* Or it could abort (or be aborted by the DBMS) after executing
some actions

41

Desirable Properties of Transactions

ACID properties:

« Atomicity: A transaction is an atomic unit of processing; it is either performed
IN its entirety or not performed at all.

« Consistency: A correct execution of the transaction must take the database
from one consistent state to another.

* |solation: A transaction should not make its updates visible to other
transactions until it is committed.

 Durability: Once a transaction changes the database and the changes are
committed, these changes must never be lost because of subsequent failure.

Atomicity

A user can think of a transaction as always executing all its actions
IN one step, or not executing any actions at all

» Users do not have to worry about the effect of incomplete
transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*"B END

43

Consistency

Each transaction, when run by itself with no concurrent execution
of other actions, must preserve the consistency of the database

* e.g., If you transfer money from the savings account to the
checking account, the total amount still remains the same

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*"B END

44

|solation

A user should be able to understand a transaction without

considering the effect of any other concurrently running transaction

» Even if the DBMS interleaves their actions
 Transaction are “isolated or protected” from other transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*"B END

45

Durability

Once the DBMS informs the user that a transaction has been
successfully completed, its effect should persist

 even If the system crashes before all its changes are
reflected on disk

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*"B END

Next, how we maintain all these four properties on a high level

46

Ensuring Consistency

« User’s responsibility to maintain the integrity constraints, as the
DBMS may not be able to catch such errors in user program’s logic

* e.g. if the credit is (debit — 1)

* However, the DBMS may be in inconsistent state “during a
transaction” between actions

* which is ok, but it should leave the database at a consistent state when it
commits or aborts

» Database consistency follows from transaction consistency,
Isolation, and atomicity

Ensuring Isolation

« DBMS guarantees isolation

 |[f T1 and T2 are executed concurrently, either the effect would
be T1->T2 or T2->T1 (and from a consistent state to a
consistent state)

« But DBMS provides no guarantee on which of these order is
chosen

» Often ensured by “locks” but there are other methods too

Ensuring Atomicity

Transactions can be incomplete due to several reasons

» Aborted (terminated) by the DBMS because of some anomalies
during execution
* in that case automatically restarted and executed anew

« The system may crash (e.g., no power supply)

A transaction may decide to abort itself encountering an
unexpected situation

* e.g., read an unexpected data value or unable to access disks

Ensuring Atomicity

A transaction interrupted in the middle can leave the database in
an inconsistent state

 DBMS has to remove the effects of partial transactions from the
database

« DBMS ensures atomicity by “undoing” the actions of incomplete
transactions

« DBMS maintains a “log” of all changes to do so

Ensuring Durabillity

* The log also ensures durability

* If the system crashes before the changes made by a completed
transactions are written to the disk, the log is used to remember
and restore these changes when the system restarts

 “recovery manager”
» takes care of atomicity and durabillity

Using Transactions in SQL

o SQL allows the programmer to group several statements in a single transaction

o FEither all operations are performed or none are

e Asingle SQL statement is always considered to be atomic.

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

COMMIT,

Marks beginning of
transaction

Causes transaction to

end successfully
52

Using Transactions in SQL

« ROLLBACK causes the transaction to abort and undo any changes

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

We find that there are
insufficient funds to make

transfer ROLLBACK;

Using Transactions in SQL

SET [GLOBAL | SESSION]| TRANSACTION
transaction characteristic
transaction characteristic

transaction _characteristic: {
ISOLATION LEVEL level
| access_mode }

level: {
REPEATABLE READ
| READ COMMITTED
| READ UNCOMMITTED
| SERIALIZABLE}

access_mode: {
READ WRITE
| READ ONLY }

54

Using Transactions in SQL

SET [GLOBAL | SESSION] TRANSACTION
transaction _characteristic |, transaction _characteristic

transaction _characteristic: {
ISOLATION LEVEL level

| access_mode }
Isolation Levels

level: { « With SERIALIZABLE: the interleaved
REPEATABLE READ execution of transactions will adhere to
READ COMMITTED our notion of serializability.
READ UNCOMMITTED * However, if any transaction executes at a
SERIALIZABLE} lower level, then serializability may be
violated.

access_mode: {
READ WRITE

| READ ONLY } >

Using Transactions in SQL

SET [GLOBAL | SESSION] TRANSACTION
transaction _characteristic |, transaction _characteristic

transaction _characteristic: {
ISOLATION LEVEL level

| access_mode }

level: {
REPEATABLE READ

READ COMMITTED
READ UNCOMMITTED Access Mode
SERIALIZABLE} * The default is READ WRITE unless the
iIsolation level of READ UNCOMITTED is
access _maode: { specified, in which case READ ONLY is
READ WRITE assumed.

| READ ONLY } o6

Read-only transactions

Transactions that only read data and do not write can be executed in parallel
Tell SQL system before running transaction:

SET TRANSACTION READ ONLY;

57

Dirty reads

Reading data written by a transaction that has not yet committed

Consider this seat selection example:

1. Find available seat and reserve by setting seatStatus to ‘occupied’
2. Ask customer for approval of seat
a. |f SO, commit

o. I Not, release seat by setting seatStatus to ‘available’ and repeat Step (1)

Dirty read

o If we allow dirty reads, this can happen

User 1 finds seat 22A empty and
reserves 1t (22A 1s occupied)
time

User 1 disapproves the 22A
reservation

User 2 1s told that seat 22A 1s
already occupied (dirty read)

59

Dirty reads

o If this result is acceptable, the transaction processing can be done faster
- DBMS does not have to prevent dirty reads
- Allows more parallelism

o Tell SQL system:

SET TRANSACTION READ WRITE
ISOLATION LEVEL READ UNCOMMITTED;

