
CS 4440 A
Emerging Database
Technologies

Lecture 9
02/07/24

Recap

2

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

Query
optimization

query
expression tree

logical query
plan tree

physical query
plan tree

● Query processor overview
● Estimate the size of results

● Projection
● Selection
● Joins

● Estimate the # of disk I/O’s
● Nested-loop join
● Hash join
● Index join

Query Optimization Overview
Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)

o Without executing the plan!
o Choose plan with lowest cost

3

The Three Parts of an Optimizer
● Cost estimation

○ Estimate size of results
○ Also consider whether output is sorted/intermediate results written to disk

etc.

● Search space
○ Algebraic laws, restricted types of join trees

● Search algorithm
○ Example: Selinger algorithm

4

Search Space

5

Query: !1 ⋈ !2 ⋈ !3 ⋈ !4

Logical plan space:
○ Several possible structures of the trees
○ Each tree can have n! permutations of relations on leaves

Physical plan space:
○ Different implementation (e.g., join algorithm) and scanning of intermediate

operators for each logical plan

Heuristic for pruning plan space
Apply predicates as early as possible

Avoid plans with cartesian products
● (" #, % ⋈ '((,))) ⋈ S(%, ()

Consider only left-deep join trees
● Studied extensively in traditional query optimization literature
● Works well with existing join algorithms such as nested-loop and hash join

● e.g., might not need to write tuples to disk if enough memory

6

Search Algorithm
Selinger Algorithm: dynamic programming based

o Based on System R (aka Selinger) style optimizer [1979]
o Consider different logical and physical plans at the same time
o Limited to joins: join reordering algorithm
o Cost of a plan is I/O + CPU

Exploits ”principle of optimality”
○ Optimal for “whole” made up from optimal for ”parts”

Consider the search space of left-deep join trees
o Reduces search space but still n! permutations

7

8

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

9

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

10

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

11

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Notation and Setup
OPT({R1, R2, R3}):
 Cost of optimal plan to join R1, R2, R3

T({R1, R2, R3}):
 Number of tuples in !1 ⋈ !2 ⋈ !3

Simple Cost Model: Cost(! ⋈ +) = .(!) + .(+)
 All other operations have 0 cost

12

* The simple cost model used for illustration only, it is not used in practice

Slides adapted from Duke CompSci 516 by Sudeepa Roy

13

Cost Model Example

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

OPT({R1, R2, R3})=

14

OPT({R1, R2}) + T({R1, R2}) + T(R3)

OPT({R2, R3}) + T({R3, R3}) + T(R1)

OPT({R1, R3}) + T({R1, R3}) + T(R2)

* Valid only for the simple cost model

min

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

15
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

16
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

17
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

18
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

19
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

20
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

21
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

22
Slides adapted from Duke CompSci 516 by Sudeepa Roy

Try it yourself
EXPLAIN command: Display the execution plan that
the PostgreSQL planner generates for the supplied statement.

23Source: https://www.postgresql.org/docs/current/sql-explain.html

https://www.postgresql.org/docs/current/sql-explain.html

A brief intro to learned query
optimizers

Slides adapted from Machine Learning
for Query Optimization … and beyond!

by Ryan Marcus

24

25
Source: Ryan Marcus

How to better leverage these
results to improve optimizer?

Neo: A Learned Query Optimizer [VLDB’19]

26
Source: Ryan Marcus

Complete replacement of default query optimizer
First to show we can have all learned everything

Deep reinforcement learning guided search

https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf

Neo: A Learned Query Optimizer [VLDB’19]

27
Source: Ryan Marcus

Neo worked great on average but

Sample Inefficiency
• Typically takes > 1 day for pre-train

Brittleness to workload and schema change
• The encoding of cardinality estimate needs retrain

Tail catastrophe
• Deep RL making wrong estimates due to sample inefficiency

https://www.vldb.org/pvldb/vol12/p1705-marcus.pdf

Bao: Making Learned Query Optimization Practical
[SIGMOD’21]

Bao: Bandit optimizer

By steering a traditional query
optimizer, Bao:

• Outperforms PG after 1 hour of
training
• Reduces 99% latency
• Adaptsto changes in workload,

schema, and data.

28
Source: Ryan Marcus

https://dl.acm.org/doi/pdf/10.1145/3448016.3452838

29
Source: Ryan Marcus

30
Source: Ryan Marcus

31
Source: Ryan Marcus

32

33

PostgreSQL Integration

34

Github: https://github.com/learnedsystems/BaoForPostgreSQL

https://github.com/learnedsystems/BaoForPostgreSQL

Moving onto Transactions…
• What are transactions and why are they useful?
• Overview of ACID properties
• Using transactions in SQL

35

Acknowledgement:
The following slides have been created adapting the instructor material of the
[RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.

Reading Materials

Fundamental of Database Systems (7th Edition)
• Chapter 20 - Introduction to Transaction

Processing Concepts and Theory

Supplementary materials
Database Management Systems (Third Edition)
• Chapter 16 – Overview of Transaction

Management

36

Slide 17- 37

Motivation: Concurrent Execution
Single-User System:
• At most one user at a time can use the system.

Multiuser System:
• Many users can access the system concurrently.

Concurrent execution of user programs is essential for good DBMS
performance.

• Disk accesses are frequent, and relatively slow
• it is important to keep the CPU busy by working on several user programs concurrently
• We focus on the interleaved processing case (concurrent execution of processes is

interleaved in a single CPU) instead of the parallel processing case (processes are
concurrently executed in multiple CPUs)

Transactions

A user’s program may carry out many operations on the data
retrieved from the database
• But the DBMS is only concerned about what data is read/written from/to

the database

A transaction is the DBMS’s abstract view of a user program
• A sequence of reads and write
• The same program executed multiple times would be considered as

different transactions
• Beyond enforcing some integrity constraints, the DBMS does not really

understand the semantics of the data (e.g., it does not understand how
the interest on a bank account is computed) – it only cares about “read”
and “write” sequences

38

Example

• Intuitively, the first transaction is transferring $100 from B’s account to A’s
account. The second is crediting both accounts with a 6% interest
payment

• There is no guarantee that T1 will execute before T2 or vice-versa, if both
are submitted together.

• However, the net effect must be equivalent to these two transactions
running serially in some order

39

Consider two transactions

Example

40

Consider a possible interleaving (schedule):

This is Ok. But what about

The DBMS’s view of the second schedule

Commit and Abort

• A transaction might commit after completing all its actions
• or it could abort (or be aborted by the DBMS) after executing

some actions

41

Slide 17- 42

Desirable Properties of Transactions

ACID properties:
• Atomicity: A transaction is an atomic unit of processing; it is either performed

in its entirety or not performed at all.
• Consistency: A correct execution of the transaction must take the database

from one consistent state to another.
• Isolation: A transaction should not make its updates visible to other

transactions until it is committed.
• Durability: Once a transaction changes the database and the changes are

committed, these changes must never be lost because of subsequent failure.

Atomicity

43

A user can think of a transaction as always executing all its actions
in one step, or not executing any actions at all
• Users do not have to worry about the effect of incomplete

transactions

Consistency

44

Each transaction, when run by itself with no concurrent execution
of other actions, must preserve the consistency of the database
• e.g., if you transfer money from the savings account to the

checking account, the total amount still remains the same

Isolation

45

A user should be able to understand a transaction without
considering the effect of any other concurrently running transaction
• Even if the DBMS interleaves their actions
• Transaction are “isolated or protected” from other transactions

Durability

46

Once the DBMS informs the user that a transaction has been
successfully completed, its effect should persist
• even if the system crashes before all its changes are

reflected on disk

Next, how we maintain all these four properties on a high level

Ensuring Consistency
• User’s responsibility to maintain the integrity constraints, as the

DBMS may not be able to catch such errors in user program’s logic
• e.g. if the credit is (debit – 1)

• However, the DBMS may be in inconsistent state “during a
transaction” between actions
• which is ok, but it should leave the database at a consistent state when it

commits or aborts
• Database consistency follows from transaction consistency,

isolation, and atomicity

47

Ensuring Isolation

• DBMS guarantees isolation
• If T1 and T2 are executed concurrently, either the effect would

be T1->T2 or T2->T1 (and from a consistent state to a
consistent state)
• But DBMS provides no guarantee on which of these order is

chosen
• Often ensured by “locks” but there are other methods too

48

Ensuring Atomicity

Transactions can be incomplete due to several reasons
• Aborted (terminated) by the DBMS because of some anomalies

during execution
• in that case automatically restarted and executed anew

• The system may crash (e.g., no power supply)
• A transaction may decide to abort itself encountering an

unexpected situation
• e.g., read an unexpected data value or unable to access disks

49

Ensuring Atomicity

• A transaction interrupted in the middle can leave the database in
an inconsistent state
• DBMS has to remove the effects of partial transactions from the

database
• DBMS ensures atomicity by “undoing” the actions of incomplete

transactions
• DBMS maintains a “log” of all changes to do so

50

Ensuring Durability

• The log also ensures durability
• If the system crashes before the changes made by a completed

transactions are written to the disk, the log is used to remember
and restore these changes when the system restarts
• “recovery manager”
• takes care of atomicity and durability

51

Using Transactions in SQL
● SQL allows the programmer to group several statements in a single transaction
● Either all operations are performed or none are
● A single SQL statement is always considered to be atomic.

52

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

COMMIT; Causes transaction to
end successfully

Marks beginning of
transaction

Using Transactions in SQL
● ROLLBACK causes the transaction to abort and undo any changes

53

START TRANSACTION

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

ROLLBACK;

We find that there are
insufficient funds to make
transfer

Using Transactions in SQL

54

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [,
transaction_characteristic] ...

transaction_characteristic: {
 ISOLATION LEVEL level
 | access_mode }

level: {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE}

access_mode: {
 READ WRITE
 | READ ONLY }

Using Transactions in SQL

55

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic: {
 ISOLATION LEVEL level
 | access_mode }

level: {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE}

access_mode: {
 READ WRITE
 | READ ONLY }

Isolation Levels
• With SERIALIZABLE: the interleaved

execution of transactions will adhere to
our notion of serializability.

• However, if any transaction executes at a
lower level, then serializability may be
violated.

Using Transactions in SQL

56

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic: {
 ISOLATION LEVEL level
 | access_mode }

level: {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE}

access_mode: {
 READ WRITE
 | READ ONLY }

Access Mode
• The default is READ WRITE unless the

isolation level of READ UNCOMITTED is
specified, in which case READ ONLY is
assumed.

Read-only transactions
● Transactions that only read data and do not write can be executed in parallel
● Tell SQL system before running transaction:

57

SET TRANSACTION READ ONLY;

Dirty reads
Reading data written by a transaction that has not yet committed

Consider this seat selection example:
1. Find available seat and reserve by setting seatStatus to ‘occupied’
2. Ask customer for approval of seat

a. If so, commit
b. If not, release seat by setting seatStatus to ‘available’ and repeat Step (1)

58

Dirty read
● If we allow dirty reads, this can happen

59

User 1 finds seat 22A empty and
reserves it (22A is occupied)

User 1 disapproves the 22A
reservation

time
User 2 is told that seat 22A is
already occupied (dirty read)

Dirty reads
● If this result is acceptable, the transaction processing can be done faster

○ DBMS does not have to prevent dirty reads
○ Allows more parallelism

● Tell SQL system:

60

SET TRANSACTION READ WRITE
ISOLATION LEVEL READ UNCOMMITTED;

