
CS 4440 A
Emerging Database
Technologies

Lecture 8
02/05/24

Announcements

● Technology presentation group and schedule announced
○ Presentation schedule on course website
○ 7~8min per person (25 min for teams of 3, 35min for teams of 4, 40min for teams of 5)
○ Detailed instructions in Assignment 4, 5

● Assignment 2 (proposal draft) due this Wednesday

Recap

● Static hash table
● Linear probing hashing
● Cuckoo hashing

● Dynamic hash table
● Chained hashing
○ Extensible hashing
○ Linear hashing

3

1111

0000
00

01

i = 2
n = 3
r = 5

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101
1010

10

0001

1001
1010

0001 1

2

1100 2

0010

Buckets Data blocks

00
01

i = 2

10
11

Reading Materials

● Query execution (Chapters 15.1 - 15.6)
○ Physical operators
○ Implementing operators and estimating costs

● Query optimization (Chapters 16.1 - 16.5)
○ Parsing
○ Algebraic laws
○ Parse tree -> logical query plan
○ Estimating result sizes
○ Cost-based optimization

4

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang.

Query processor

● Group of components of a DBMS that turns user queries and data-modification
commands into a sequence of database operations and executes them

5

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

Query
optimization

query
expression tree

logical query
plan tree

physical query
plan tree

Parse query

● SQL to relational algebra expression tree (= logical query plan)

6

SELECT starName

FROM StarsIn X, Movies Y

WHERE X.title = Y.title

AND studioName = ‘Ghibli’

AND year = 2008;

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute

7

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Q: How could we rewrite this query to make it run faster?

Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute

8

πstarName

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push selections
down so it
occurs earlier

σyear = 2008 AND studioName = ‘Ghibli’

Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute

9

πstarName

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push selections
down so it
occurs earlier

σstudioName = ‘Ghibli’σyear = 2008

Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute

10

πstarName

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push projection
down so it
occurs earlier

σstudioName = ‘Ghibli’σyear = 2008

Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute

11

πstarName

⋈

StarsIn
Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push projection
down so it
occurs earlier

σstudioName = ‘Ghibli’

σyear = 2008

πstarName, title

Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute

12

πstarName

⋈

StarsIn
Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

σstudioName = ‘Ghibli’

σyear = 2008

πstarName, title
There can be
many possible
logical plans

Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

13

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

14

πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

Physical query plan 1 σyear = 2008 AND studioName = ‘Ghibli’

Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

15

πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

Physical query plan 2 σyear = 2008 AND studioName = ‘Ghibli’

Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

16

πstarName

⋈

StarsIn Movies

(Index scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

Physical query plan 3 σyear = 2008 AND studioName = ‘Ghibli’

Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

17

πstarName

⋈

StarsIn Movies

(Index scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

In general, there can
be many possible
physical plans

σyear = 2008 AND studioName = ‘Ghibli’

Select physical query plan

18

Logical Query Plan

P1 P2 Pn...

C1 C2 Cn...

Pick best!

Query execution

● The best physical plan is translated to actual machine code

19

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

Machine code
(e.g., C)

Overview summary

● Logical plan
○ An SQL query is parsed into a logical plan
○ The logical plan can be rewritten to multiple equivalent ones
○ See textbook 16.2 for laws for transforming logical plans

● Physical plan
○ A logical query plan with physical implementation details
○ Each logical plan can have multiple possible physical plans

● Query optimization
○ Find the optimal logical and physical plans

20

Focus of this lecture

Estimating the cost of a physical query plan

● Estimate the size of results
● Projection
● Selection
● Joins

● Estimate the # of disk I/O’s

21

Size parameters

● B(R): # blocks to hold tuples in R
● T(R): # tuples in R
● V(R, a): # distinct values of attribute a in R

22

Size parameters

● Example

23

A B C
cat 1 2000
cat 1 2001
dog 1 2002

A: 10 byte string
B: 4 byte integer
C: 8 byte date

T(R) = 3
V(R, A) = 2
V(R, B) = 1
V(R, C) = 3
B(R) = 1 (if 3 tuples fit in one block)

R

Estimating size of projection

● Example

24

A B C
cat 1 2000
cat 1 2001
dog 1 2002
...

A: 10 byte string
B: 4 byte integer
C: 8 byte date

Suppose each block is 100 bytes
Then a block fits 4 tuples
If T(R) = 1000
Then B(R) = 1000 / 4 = 250

R

Estimating size of projection

● Example

25

A B C
cat 1 2000
cat 1 2001
dog 1 2002
...

A: 10 byte string
B: 4 byte integer
C: 8 byte date

Suppose each block is 100 bytes
Then a block fits 4 tuples
If T(R) = 1000
Then B(R) = 1000 / 4 = 250

For πA(R), each block fits 10 tuples, so
B(R) = 1000 / 10 = 100

R

Estimating size of projection

● Example

26

A B C
cat 1 2000
cat 1 2001
dog 1 2002
...

A: 10 byte string
B: 4 byte integer
C: 8 byte date

Suppose each block is 100 bytes
Then a block fits 4 tuples
If T(R) = 1000
Then B(R) = 1000 / 4 = 250

For πA(R), each block fits 10 tuples, so
B(R) = 1000 / 10 = 100

For πA,B,C,B/100→X(R), each block fits 3
tuples

R

Estimating size of selection

● A selection generally reduces the number of tuples

27

Selection Estimated result size
(without any more information)

Assumption: values in A = c are uniformly distributed over possible V(R, A) values

Estimating size of selection

● A selection generally reduces the number of tuples

28

Selection

Assumption: queries involving inequalities tend to retrieve a small fraction of possible tuples

Estimated result size
(without any more information)

Example: postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres/blob/REL_14_STABLE/src/include/utils/selfuncs.h

Estimating size of selection

● If selection condition is AND of conditions, multiply all selectivity factors

29

Estimating size of selection

● If selection condition is an OR of conditions, can assume independence of conditions

30

Estimating size of join

● We study
● Two simplifying assumptions

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R⋈ S, X) = V(R, X)

31

Estimating size of join

● We study
● Two simplifying assumptions

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

● Case 1: V(R, Y) ≥ V(S, Y)

32

For each pair (r, s), we know that the Y-value of s is
one of the Y-values of R by containment of value sets,
so the probability of r having the same Y-value is
1/V(R,Y)

Estimating size of join

● We study
● Two simplifying assumptions

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

● Case 1: V(R, Y) ≥ V(S, Y)

● Case 2: V(R, Y) < V(S, Y)

33

For each pair (r, s), we know that the Y-value of s is
one of the Y-values of R by containment of value sets,
so the probability of r having the same Y-value is
1/V(R,Y)

Estimating size of join

● We study
● Two simplifying assumptions

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

● Case 1: V(R, Y) ≥ V(S, Y)

● Case 2: V(R, Y) < V(S, Y)

● So in general,

34

For each pair (r, s), we know that the Y-value of s is
one of the Y-values of R by containment of value sets,
so the probability of r having the same Y-value is
1/V(R,Y)

Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T

35

R(A, B) S(B, C)

T(R) = 1000
V(R, B) = 20

T(S) = 2000
V(S, B) = 50
V(S, C) = 100

T(C, D)

T(T) = 5000
V(T, C) = 500
V(T, D) = 200

Q: What is T(R ⋈ S) and V(R ⋈ S, C)?

Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T

36

T(C, D)

T(T) = 5000
V(T, C) = 500
V(T, D) = 200

R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100

Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T

37

(R ⋈ S) ⋈ T

T((R ⋈ S) ⋈ T) = 40000 x 5000 / max{100, 500}
= 400000

Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T

38

R ⋈ (S ⋈ T)

T(R ⋈ (S ⋈ T)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
= 400000

Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T

● Assuming containment and preservation of value sets, the estimated result size is the
same regardless of how we group and order the terms in a natural join of relations

39

R ⋈ (S ⋈ T)

T(R ⋈ (S ⋈ T)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
= 400000

Natural joins with multiple join attributes

● Same as R ⋈ S with single join attribute, but divide by max{V(R, A), V(S, A)} for
each joining attribute A

40

R(A, B, C) S(B, C, D)

T(R) = 1000
V(R, B) = 20
V(R, C) = 100

T(S) = 2000
V(S, B) = 50
V(S, C) = 50

R ⋈ S

T(R ⋈ S) = 1000 x 2000
/ max{20, 50}
/ max {100, 50}

= 400

Using similar ideas, can estimate sizes of

● Union, intersect, difference, duplicate elimination, grouping [16.4.7]

41

Obtaining estimates for size parameters

● Scan entire relation R to obtain T(R), V(R, A), and B(R)
● A DBMS may also compute histograms per attribute for more accurate estimations

○ e.g., equal-width histogram

42

10 20 30 40 50

Computation of statistics

● Computed periodically or by request
● Sampling used to compute approximate statistics quickly

Example:
● ANALYZE command in Postgres
● See also: https://www.postgresql.org/docs/current/planner-stats.html

43

Comparing logical query plan cost

● Cost estimates (sum of intermediate results) can be used to compare costs before and
after transformations

44

δ

σa = 10

⋈

R

S

500

1000

2000
100

5000

vs. δ

σa = 10

⋈

R

S

250

1000

2000
100

5000

δ50

Estimating the cost of a physical query plan

● Estimate the size of results
● Estimate the # of disk I/O’s

○ Scanning-based methods
○ Hash-based methods
○ Index-based methods

45

Table scan

● Read entire contents of relation R
○ If table is clustered, requires B(R) I/O’s
○ If table is distributed among tuples among other relations, may require T(R) I/O’s

46

R

Tuple-based Nested-loop Join

47

For each tuple t1 in R
 For each tuple t2 in S
 If t1.a == t2.a
 Join(t1, t2)

● T(R) = 10,000, T(S) = 5,000
● Suppose relations are not clustered
● Required memory M ≥ 2

For each tuple in R, read all S blocks and join:

Outer Loop Read all S tuples (inner loop)

Total cost of R ⋈ S: 10000 x (1+ 5000) = 50,010,000 I/O’s

I/O: T(R) + T(R)T(S)
Memory Usage: 2 blocks

Block-based Nested-loop Join

48

For each block b1 in R
 For each block b2 in S
 For each tuple t1 in b1
 For each tuple t2 in b2:
 If t1.a == t2.a
 Join(t1, t2)

● T(R) = 10,000, T(S) = 5,000
● Required memory M ≥ 2
● Suppose 10 records fit in one block:

● B(R) = 1000, B(S) = 500

 Total cost of R ⋈ S: 1000 x (1+ 500) = 501,000 I/O’s

I/O: B(R) + B(R)B(S)
Memory Usage: 2 blocks

Outer Loop Read all S tuples (inner loop)

Block-based Nested-loop Join

49

● T(R) = 10,000, T(S) = 5,000
● Suppose 10 records fit in one block:

● B(R) = 1000, B(S) = 500
● Reverse join order

For each blocks s in S
 For each block r in R
 For each tuple t1 in s
 For each tuple t2 in r:
 If t1.a == t2.a
 Join(t1, t2)

Total cost of R ⋈ S: 500 x (1+ 1000) = 500,500 I/O’s

I/O: B(S) + B(S)B(R)
Memory Usage: 2 blocks

Outer Loop Read all R tuples (inner loop)

Block-based Nested-loop Join

50

For each M-1 blocks s in S
 For each block r in R
 For each tuple t1 in s
 For each tuple t2 in r:
 If t1.a == t2.a
 Join(t1, t2)

● T(R) = 10,000, T(S) = 5,000
● Suppose 10 records fit in one block:

● B(R) = 1000, B(S) = 500
● Reverse join order
● Extra memory M=101: read 100 blocks of S at a time

 Total cost of S ⋈ R: 500/100 x (100+1000) = 5500 I/O’s

Read all R tuples

I/O: B(S) + B(S)B(R) / (M-1)
Memory Usage: M blocks

Outer Loop

Hash join

● Scan the smaller table, S, and build a hash table in memory. The hash table maps each
distinct value of the join attribute to a list of tuples that have that attribute value.

● Scan R sequentially. For each tuple s in R, check the hash table to see if S has any
tuples which have the same value of the join attribute.

● Join each tuple in S with any tuples in R which have the same join attribute.

51

Memory

...

...
R

Hash join

● B(R) = 1000, B(S) = 500
● Total cost of S ⋈ R: 500 + 1000 = 1,500 I/O’s

52

● Analysis of Hash join
○ Required memory: "($), assuming S is the smaller relation
○ Two pass algorithms require "($)
○ # Disk I/Os: B(R) + B(S)

Read all of S (step 1) Read all of T (step 2)

Index join

● Suppose S has an index on the join attribute Y
○ The index is “clustering” if tuples with the same Y value are clustered

● If R is clustered, read B(R) blocks to get all R tuples
● For each tuple of R,

○ If S’s index is not clustering, read T(S) / V(S, Y) blocks on average
○ If clustered, read B(S) / V(S, Y) blocks

● Total join cost: B(R) + T(R)T(S) / V(S,Y) or
B(R) + T(R)(max(1, B(S) / V(S,Y)))

53

Query Optimization Overview
Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)

o Without executing the plan!
o Choose plan with lowest cost

54

The Three Parts of an Optimizer
● Cost estimation

○ Estimate size of results
○ Also consider whether output is sorted/intermediate results written to disk etc.

● Search space
○ Algebraic laws, restricted types of join trees

● Search algorithm
○ Example: Selinger algorithm

55

Search Space

56

Query: !1 ⋈ !2 ⋈ !3 ⋈ !4

Logical plan space:
○ Several possible structures of the trees
○ Each tree can have n! permutations of relations on leaves

Physical plan space:
○ Different implementation (e.g., join algorithm) and scanning of

intermediate operators for each logical plan

Heuristic for pruning plan space
● Apply predicates as early as possible
● Avoid plans with cartesian products

● (# $, & ⋈ '((,))) ⋈ S(&, ()
● Consider only left-deep join trees

● Studied extensively in traditional query optimization literature
● Works well with existing join algorithms such as nested-loop and hash join

● e.g., might not need to write tuples to disk if enough memory

57

