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Announcements

● Technology presentation group and schedule announced 
○ Presentation schedule on course website 
○ 7~8min per person (25 min for teams of 3, 35min for teams of 4, 40min for teams of 5)
○ Detailed instructions in Assignment 4, 5 

● Assignment 2 (proposal draft) due this Wednesday 



Recap

● Static hash table
● Linear probing hashing
● Cuckoo hashing 

● Dynamic hash table
● Chained hashing
○ Extensible hashing
○ Linear hashing
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Reading Materials

● Query execution (Chapters 15.1 - 15.6)
○ Physical operators
○ Implementing operators and estimating costs

● Query optimization (Chapters 16.1 - 16.5)
○ Parsing
○ Algebraic laws
○ Parse tree -> logical query plan
○ Estimating result sizes
○ Cost-based optimization
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 
taught by Steven Whang.



Query processor

● Group of components of a DBMS that turns user queries and data-modification 
commands into a sequence of database operations and executes them
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Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

Query 
optimization

query 
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Parse query

● SQL to relational algebra expression tree (= logical query plan)
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SELECT starName

FROM StarsIn X, Movies Y

WHERE X.title = Y.title

AND studioName = ‘Ghibli’

AND year = 2008;

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)



Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute
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πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Q: How could we rewrite this query to make it run faster?



Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute

8

πstarName

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push selections 
down so it 
occurs earlier

σyear = 2008 AND studioName = ‘Ghibli’



Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute
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πstarName

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push selections 
down so it 
occurs earlier

σstudioName = ‘Ghibli’σyear = 2008 



Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute
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πstarName

⋈

StarsIn Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push projection 
down so it 
occurs earlier

σstudioName = ‘Ghibli’σyear = 2008 



Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute
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πstarName

⋈

StarsIn
Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

Push projection 
down so it 
occurs earlier

σstudioName = ‘Ghibli’

σyear = 2008 

πstarName, title



Select logical query plan

● Rewrite to equivalent expression that is expected to require less time to execute
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πstarName

⋈

StarsIn
Movies

StarsIn(title, year, starName)

Movies(title, length, genre, studioName, producer#)

σstudioName = ‘Ghibli’

σyear = 2008 

πstarName, title
There can be 
many possible 
logical plans



Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies



Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

Physical query plan 1 σyear = 2008 AND studioName = ‘Ghibli’



Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

Physical query plan 2 σyear = 2008 AND studioName = ‘Ghibli’



Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

⋈

StarsIn Movies

(Index scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

Physical query plan 3 σyear = 2008 AND studioName = ‘Ghibli’



Select physical query plan

● A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

⋈

StarsIn Movies

(Index scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

In general, there can 
be many possible 
physical plans

σyear = 2008 AND studioName = ‘Ghibli’



Select physical query plan
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Logical Query Plan

P1 P2 Pn...

C1 C2 Cn...

Pick best!



Query execution

● The best physical plan is translated to actual machine code
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πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

Machine code 
(e.g., C)



Overview summary

● Logical plan
○ An SQL query is parsed into a logical plan
○ The logical plan can be rewritten to multiple equivalent ones
○ See textbook 16.2 for laws for transforming logical plans

● Physical plan
○ A logical query plan with physical implementation details
○ Each logical plan can have multiple possible physical plans

● Query optimization
○ Find the optimal logical and physical plans
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Focus of this lecture



Estimating the cost of a physical query plan

● Estimate the size of results
● Projection
● Selection
● Joins

● Estimate the # of disk I/O’s
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Size parameters

● B(R): # blocks to hold tuples in R
● T(R): # tuples in R
● V(R, a): # distinct values of attribute a in R
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Size parameters

● Example
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A B C
cat 1 2000
cat 1 2001
dog 1 2002

A: 10 byte string
B: 4 byte integer
C: 8 byte date

T(R) = 3
V(R, A) = 2
V(R, B) = 1
V(R, C) = 3
B(R) = 1 (if 3 tuples fit in one block)

R



Estimating size of projection

● Example
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A B C
cat 1 2000
cat 1 2001
dog 1 2002
...

A: 10 byte string
B: 4 byte integer
C: 8 byte date

Suppose each block is 100 bytes
Then a block fits 4 tuples
If T(R) = 1000
Then B(R) = 1000 /  4 = 250

R



Estimating size of projection

● Example
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A B C
cat 1 2000
cat 1 2001
dog 1 2002
...

A: 10 byte string
B: 4 byte integer
C: 8 byte date

Suppose each block is 100 bytes
Then a block fits 4 tuples
If T(R) = 1000
Then B(R) = 1000 /  4 = 250

For πA(R), each block fits 10 tuples, so
B(R) = 1000 /  10 = 100

R



Estimating size of projection

● Example
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A B C
cat 1 2000
cat 1 2001
dog 1 2002
...

A: 10 byte string
B: 4 byte integer
C: 8 byte date

Suppose each block is 100 bytes
Then a block fits 4 tuples
If T(R) = 1000
Then B(R) = 1000 /  4 = 250

For πA(R), each block fits 10 tuples, so
B(R) = 1000 /  10 = 100

For πA,B,C,B/100→X(R), each block fits 3 
tuples

R



Estimating size of selection

● A selection generally reduces the number of tuples
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Selection Estimated result size
(without any more information)

Assumption: values in A = c are uniformly distributed over possible V(R, A) values



Estimating size of selection

● A selection generally reduces the number of tuples
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Selection

Assumption: queries involving inequalities tend to retrieve a small fraction of possible tuples

Estimated result size
(without any more information)

Example: postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres/blob/REL_14_STABLE/src/include/utils/selfuncs.h


Estimating size of selection

● If selection condition is AND of conditions, multiply all selectivity factors  
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Estimating size of selection

● If selection condition is an OR of conditions, can assume independence of conditions  
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Estimating size of join

● We study
● Two simplifying assumptions 

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R⋈ S, X) = V(R, X)

31



Estimating size of join

● We study
● Two simplifying assumptions 

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

● Case 1: V(R, Y) ≥ V(S, Y)

32

For each pair (r, s), we know that the Y-value of s is 
one of the Y-values of R by containment of value sets, 
so the probability of r having the same Y-value is 
1/V(R,Y)



Estimating size of join

● We study
● Two simplifying assumptions 

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

● Case 1: V(R, Y) ≥ V(S, Y)

● Case 2: V(R, Y) < V(S, Y)
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For each pair (r, s), we know that the Y-value of s is 
one of the Y-values of R by containment of value sets, 
so the probability of r having the same Y-value is 
1/V(R,Y)



Estimating size of join

● We study
● Two simplifying assumptions 

○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

● Case 1: V(R, Y) ≥ V(S, Y)

● Case 2: V(R, Y) < V(S, Y)

● So in general, 
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For each pair (r, s), we know that the Y-value of s is 
one of the Y-values of R by containment of value sets, 
so the probability of r having the same Y-value is 
1/V(R,Y)



Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T
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R(A, B) S(B, C)

T(R) = 1000
V(R, B) = 20

T(S) = 2000
V(S, B) = 50
V(S, C) = 100

T(C, D)

T(T) = 5000
V(T, C) = 500
V(T, D) = 200

Q: What is T(R ⋈ S) and V(R ⋈ S, C)?



Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T
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T(C, D)

T(T) = 5000
V(T, C) = 500
V(T, D) = 200

R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100



Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T
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(R ⋈ S) ⋈ T 

T((R ⋈ S) ⋈ T) = 40000 x 5000 / max{100, 500}
= 400000



Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T
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R ⋈ (S ⋈ T)

T(R ⋈ (S ⋈ T)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
= 400000



Joins of many relations

● Compute intermediate T, V results
● Example: consider R ⋈ S ⋈ T

● Assuming containment and preservation of value sets, the estimated result size is the 
same regardless of how we group and order the terms in a natural join of relations
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R ⋈ (S ⋈ T)

T(R ⋈ (S ⋈ T)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
= 400000



Natural joins with multiple join attributes

● Same as R ⋈ S with single join attribute, but divide by max{V(R, A), V(S, A)} for 
each joining attribute A
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R(A, B, C) S(B, C, D)

T(R) = 1000
V(R, B) = 20
V(R, C) = 100

T(S) = 2000
V(S, B) = 50
V(S, C) = 50

R ⋈ S 

T(R ⋈ S) = 1000 x 2000
/ max{20, 50}
/ max {100, 50}

= 400



Using similar ideas, can estimate sizes of

● Union, intersect, difference, duplicate elimination, grouping [16.4.7]
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Obtaining estimates for size parameters

● Scan entire relation R to obtain T(R), V(R, A), and B(R)
● A DBMS may also compute histograms per attribute for more accurate estimations

○ e.g., equal-width histogram

42

10 20 30 40 50



Computation of statistics

● Computed periodically or by request
● Sampling used to compute approximate statistics quickly

Example:
● ANALYZE command in Postgres 
● See also: https://www.postgresql.org/docs/current/planner-stats.html
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Comparing logical query plan cost

● Cost estimates (sum of intermediate results) can be used to compare costs before and 
after transformations
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δ

σa = 10

⋈

R

S

500

1000

2000
100

5000

vs. δ

σa = 10

⋈

R

S

250

1000

2000
100

5000

δ50



Estimating the cost of a physical query plan

● Estimate the size of results
● Estimate the # of disk I/O’s

○ Scanning-based methods
○ Hash-based methods
○ Index-based methods
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Table scan

● Read entire contents of relation R
○ If table is clustered, requires B(R) I/O’s
○ If table is distributed among tuples among other relations, may require T(R) I/O’s
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R



Tuple-based Nested-loop Join
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For each tuple t1 in R
    For each tuple t2 in S
        If t1.a == t2.a
            Join(t1, t2)

● T(R) = 10,000, T(S) = 5,000
● Suppose relations are not clustered
● Required memory M ≥ 2

For each tuple in R, read all S blocks and join:

      

          
Outer Loop Read all S tuples (inner loop)

Total cost of R ⋈ S: 10000 x (1+ 5000) = 50,010,000 I/O’s

I/O: T(R) + T(R)T(S)
Memory Usage: 2 blocks



Block-based Nested-loop Join
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For each block b1 in R
    For each block b2 in S
 For each tuple t1 in b1
     For each tuple t2 in b2:
        If t1.a == t2.a
              Join(t1, t2)

● T(R) = 10,000, T(S) = 5,000
● Required memory M ≥ 2
● Suppose 10 records fit in one block: 

● B(R) = 1000, B(S) = 500

      

          Total cost of R ⋈ S: 1000 x (1+ 500) = 501,000 I/O’s

I/O: B(R) + B(R)B(S)
Memory Usage: 2 blocks

Outer Loop Read all S tuples (inner loop)



Block-based Nested-loop Join

49

● T(R) = 10,000, T(S) = 5,000
● Suppose 10 records fit in one block: 

● B(R) = 1000, B(S) = 500
● Reverse join order

      

          

For each blocks s in S
    For each block r in R
 For each tuple t1 in s
     For each tuple t2 in r:
        If t1.a == t2.a
              Join(t1, t2)

Total cost of R ⋈ S: 500 x (1+ 1000) = 500,500 I/O’s

I/O: B(S) + B(S)B(R)
Memory Usage: 2 blocks

Outer Loop Read all R tuples (inner loop)



Block-based Nested-loop Join
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For each M-1 blocks s in S
    For each block r in R
 For each tuple t1 in s
     For each tuple t2 in r:
        If t1.a == t2.a
              Join(t1, t2)

● T(R) = 10,000, T(S) = 5,000
● Suppose 10 records fit in one block: 

● B(R) = 1000, B(S) = 500
● Reverse join order
● Extra memory M=101: read 100 blocks of S at a time

      

          Total cost of S ⋈ R: 500/100 x (100+1000) = 5500 I/O’s

Read all R tuples

I/O: B(S) + B(S)B(R) / (M-1)
Memory Usage: M blocks

Outer Loop



Hash join

● Scan the smaller table, S, and build a hash table in memory. The hash table maps each 
distinct value of the join attribute to a list of tuples that have that attribute value.

● Scan R sequentially. For each tuple s in R, check the hash table to see if S has any 
tuples which have the same value of the join attribute. 

● Join each tuple in S with any tuples in R which have the same join attribute.  
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Memory

...

...
R



Hash join

● B(R) = 1000, B(S) = 500
● Total cost of S ⋈ R: 500 + 1000 = 1,500 I/O’s
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● Analysis of Hash join
○ Required memory:  "($), assuming S is the smaller relation
○ Two pass algorithms require  "($)
○ # Disk I/Os: B(R) + B(S)

Read all of S (step 1) Read all of T (step 2)



Index join

● Suppose S has an index on the join attribute Y
○ The index is “clustering” if tuples with the same Y value are clustered

● If R is clustered, read B(R) blocks to get all R tuples
● For each tuple of R,

○ If S’s index is not clustering, read T(S) / V(S, Y) blocks on average
○ If clustered, read B(S) / V(S, Y) blocks

● Total join cost: B(R) + T(R)T(S) / V(S,Y) or
B(R) + T(R)(max(1, B(S) / V(S,Y)))
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Query Optimization Overview
Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)

o Without executing the plan!
o Choose plan with lowest cost
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The Three Parts of an Optimizer
● Cost estimation 

○ Estimate size of results
○ Also consider whether output is sorted/intermediate results written to disk etc.

● Search space 
○ Algebraic laws, restricted types of join trees

● Search algorithm
○ Example: Selinger algorithm
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Search Space
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Query: !1 ⋈ !2 ⋈ !3 ⋈ !4

Logical plan space: 
○ Several possible structures of the trees
○ Each tree can have n! permutations of relations on leaves 

Physical plan space: 
○ Different implementation (e.g., join algorithm) and scanning of 

intermediate operators for each logical plan



Heuristic for pruning plan space
● Apply predicates as early as possible 
● Avoid plans with cartesian products

● (# $, & ⋈ '((, ))) ⋈ S(&, () 
● Consider only left-deep join trees

● Studied extensively in traditional query optimization literature 
● Works well with existing join algorithms such as nested-loop and hash join

● e.g., might not need to write tuples to disk if enough memory
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