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Recap

● B+ tree
○ Lookup, insertion, deletion
○ Handling duplicate keys
○ I/O efficiency
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Hash table

● A hash function h takes a key and returns a block number from 0 to B - 1
● Blocks contain records and are stored in secondary storage
● Complexity:

● O(1) operation complexity 
● O(n) storage complexity 
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key h(key)
...

...



Hash table: Design Decisions

● Hash Function 
● How to map a large key space into a smaller domain of array offsets
● Trade-off between fast execution vs. collision rate 

● Hashing Scheme 
● How to handle key collisions after hashing 
● Trade-off between allocating a large hash table vs. extra steps to location/insert keys
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Hash function

● For any input key, return an integer representation of that key.
● Output is deterministic

● Example: 
● Given a key that is a string, return the sum of the characters xi modulo B (i.e., Σxi% B)
○ This function is not idea since there might be many collisions

● We do NOT want to use a cryptographic hash function (e.g., SHA-256) for DBMS 
hash tables

● In general, we only care about the hash function’s speed and collision rate.
● Current SOTA: xxHash
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https://xxhash.com/


Static hash table

● The number of buckets is fixed
● Often used during query execution because they are faster than dynamic 

hashing schemes.
● If the DBMS runs out of storage space in the hash table, it has to rebuild a 

larger hash table (usually 2x) from scratch, which is very expensive!
● Examples

● Linear Probing Hashing
● Robinhood Hashing (not covered)
● Cuckoo Hashing 
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Linear Probing Hashing

● Single giant table of slots 

● Resolve collisions by linearly searching for the next free slot in the table.
● To determine whether an element is present, hash to a location in the index and scan for it.
● Has to store the key in the index to know when to stop scanning
● Insertions and deletions are generalizations of lookups 

● Example: Google's absl::flat_hash_map
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https://abseil.io/tips/136


Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Q: What would happen in this case?



Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing - Delete
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● It is not sufficient to simply delete the key
● This would affect searches for keys that have a hash value earlier than the 

emptied cell, but are stored in a position later than the emptied cell.
● Two solutions:

● Tombstone
● Movement (less common)



Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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• Set a marker to indicate 
that the entry in the slot is 
logically deleted.



Linear Probing Hashing
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• Set a marker to indicate 
that the entry in the slot is 
logically deleted.



Linear Probing Hashing
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• Set a marker to indicate 
that the entry in the slot is 
logically deleted.

• Reuse the slot for new 
keys



Linear Probing Hashing
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• Set a marker to indicate 
that the entry in the slot is 
logically deleted.

• Reuse the slot for new 
keys



Cuckoo Hashing

● Power of 2 choices: Use multiple hash tables with different seeds 
● On insert, check every table and pick one with a free slot 
● If no table has a free slot, evict the element from one of then and then re-hash it to find a new location
● In rare cases, we may end up in a cycle. If this happens, we can rebuild using larger hash tables
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● Look-ups and deletions are ~O(1) 
because only one location per hash 
table is checked.



Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing

26
Slides adapted from CMU CS 15-445/645 by Andy Pavlo 



Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Dynamic hash table

● The previous hash tables require the DBMS to know the number of 
elements it wants to store.
● Otherwise it needs to rebuild the table to resize 

● Dynamic hash tables incrementally resize the hash table on demand without 
needing to rebuild the entire table. 

● Examples
● Chained Hashing
● Extensible Hashing
● Linear Hashing
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Chained Hashing

● Maintain a linked list of buckets for each slot in the hash table.

● Resolve collisions by placing all elements with the same hash key into 
the same bucket.
● To determine whether an element is present, hash to its bucket and scan for it.
● Insertions and deletions are generalizations of lookups.
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Chained Hashing

● Add g where h(g) = 1
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Chained Hashing

● Remove c where h(c) = 1
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Chained Hashing

● Remove c where h(c) = 1
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Extendible Hashing

● Chained-hashing approach that splits buckets incrementally instead of letting 
the linked list grow forever. 
● Long chains of blocks -> many disk I/Os

● Multiple slot locations can point to the same bucket chain. 
● Reshuffle bucket entries on split and increase the number of bits to examine. 

● Data movement is localized to just the split chain.
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Extensible hash table

● Use first i bits of hash value to locate block
○ i grows over time
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h(key):    00101100

i = 3



Extensible hash table

● Use level of indirection where buckets are pointers to blocks
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Extensible hash table

● Add 0010
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Extensible hash table

● Add 0010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1000
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Extensible hash table

● Add 1000
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Extensible hash table

● Add 1000

46

0001 1

1000
1001

3

0010
000

i = 3

001
010
011
100
101
110
111

1010 3

1100 2

Buckets Data blocks



Extensible hash table

● Deletion: the “reverse” of insertion
○ However, merging blocks and reducing the buckets is optional
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Extensible hashing summary

● If bucket array fits in memory, lookup is always 1 disk I/O
● Can grow table with little wasted space and avoiding full reorganizations
● However, doubling the bucket array is expensive

○ Splitting can occur frequently if the number of records per block is small
○ At some point, the bucket array may not fit in memory

● Linear hashing (covered next) grows the number of buckets more slowly
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Linear hashing

● The hash table maintains a pointer that tracks the next bucket to split. 
● When any bucket overflows, split the bucket at the pointer location.

● Use multiple hashes to find the right bucket for a given key.
● Can use different overflow criterion:

○ Space Utilization 
○ Average Length of Overflow Chains

49



Linear hash tables

● Use last i bits of hash value to locate block
● Hash table grows linearly
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0001
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Linear hash tables

● Add 0001

56

1111

0000
00

01

i = 2
n = 3
r = 5

Policy: limit r ≤ 1.7n

# buckets
# bits used

# records

0101
1010

10

0001

Use overflow block



Linear hash tables

● Add 0001
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Exercise #1

● Continuing with example, add 0111
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Linear hashing summary

● Can grow table with little wasted space and avoiding full reorganizations
● Compared to extensible hashing, there is no array of buckets
● However, there can be a long chain of overflow blocks
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Indexing vs hashing

● Indexing (including B trees) is good for range lookups
● Hashing is good for equality-based point lookups
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SELECT *
FROM Movies
WHERE title = ‘Ponyo’;

SELECT *
FROM Movies
WHERE year >= 2000;



Multidimensional Indexes (14.4)

All the index structures discussed so far are 
one dimensional

○ Assume a single search key, and they retrieve 
records that match a given search key value.

○ The key can contain multiple attributes 
Examples:

○ Kd-tree, r-tree

* We will discuss this more in the nearest neighbor 
search lecture
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A brief intro to learned index 
structures

Slides adapted from SIGMOD19 
Tutorial Learned Data Structures 
and Algorithms (part 2) by Tim 

Kraska
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Key Insight 
● Traditional data structures (typically) make no 

assumptions about the data 

● But knowing the data distribution might allow for 
significant performance gains and might even 
change the complexity of data structures 

      (e.g., O(log n)→O(1) for lookups)
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Does it work? A first attempt

● 200M web-server log records by timestamp-sorted
● 2 layer NN, 32 width, ReLU activated 
● Prediction task: timestamp → position within sorted array 
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Reasons
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Tensorflow are not designed for 
nan—second execution 

B-Trees are great for overfitting

B-Trees are cache-efficient Search does not take 
advantage of the prediction 
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Taking advantage of the prediction quality
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Readings 

● Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis.The Case for 
Learned Index Structures [SIGMOD’18]

● Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang, Badrish 
Chandramouli, Johannes Gehrke, Donald Kossmann, David B. Lomet. ALEX: An 
Updatable Adaptive Learned Index [SIGMOD’20]
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