CS 4440 A

Emerging Database Technologies

Lecture 7 01/31/24

Recap

• B+ tree

Ο

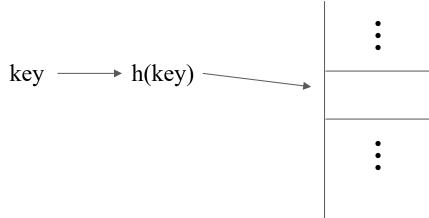
Ο

 \bigcirc

17 Lookup, insertion, deletion Handling duplicate keys I/O efficiency 7 37 43 -13 17 23 23 23 23 37 41 2 3 5 7 13 43 47 * ¥ ★. * ¥.

Hash table

- A hash function h takes a key and returns a block number from 0 to B 1
- Blocks contain records and are stored in secondary storage
- Complexity:
 - O(1) operation complexity
 - O(n) storage complexity



Hash table: Design Decisions

- Hash Function
 - How to map a large key space into a smaller domain of array offsets
 - Trade-off between fast execution vs. collision rate
- Hashing Scheme
 - How to handle key collisions after hashing
 - Trade-off between allocating a large hash table vs. extra steps to location/insert keys

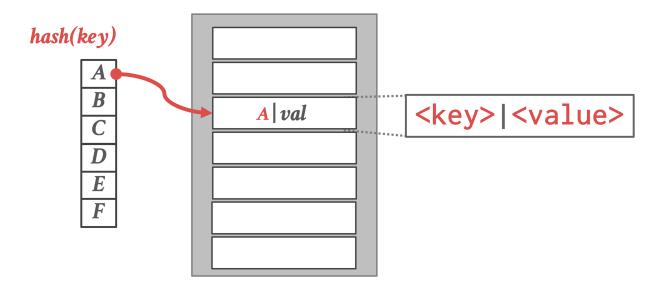
Hash function

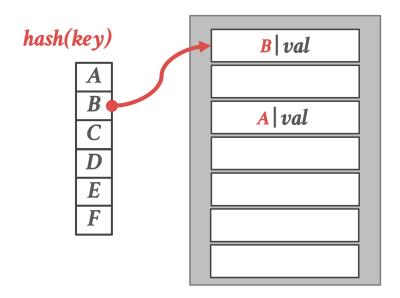
- For any input key, return an integer representation of that key.
 - Output is deterministic
- Example:
 - Given a key that is a string, return the sum of the characters x_i modulo B (*i.e.*, $\Sigma x_i \% B$)
 - This function is not idea since there might be many collisions
- We do NOT want to use a cryptographic hash function (e.g., SHA-256) for DBMS hash tables
- In general, we only care about the hash function's speed and collision rate.
- Current SOTA: <u>xxHash</u>

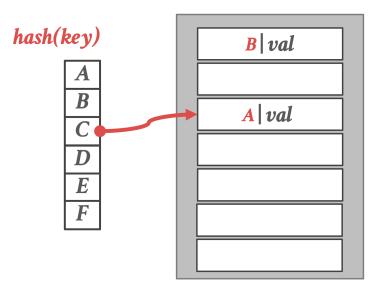
Static hash table

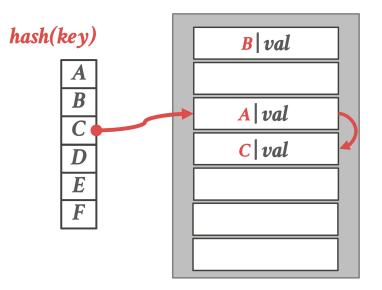
- The number of buckets is fixed
- Often used during query execution because they are faster than dynamic hashing schemes.
- If the DBMS runs out of storage space in the hash table, it has to rebuild a larger hash table (usually 2x) from scratch, which is very expensive!
- Examples
 - Linear Probing Hashing
 - Robinhood Hashing (not covered)
 - Cuckoo Hashing

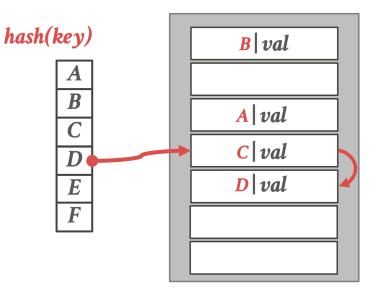
- Single giant table of slots
- Resolve collisions by linearly searching for the next free slot in the table.
 - To determine whether an element is present, hash to a location in the index and scan for it.
 - Has to store the key in the index to know when to stop scanning
 - Insertions and deletions are generalizations of lookups
- Example: Google's <u>absl::flat_hash_map</u>

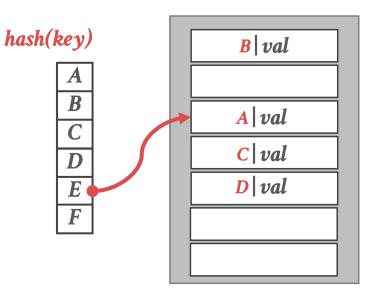




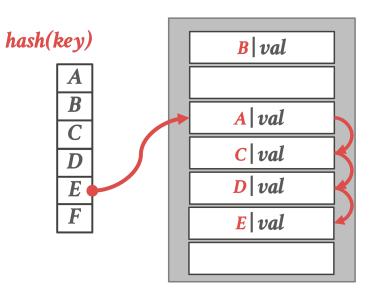


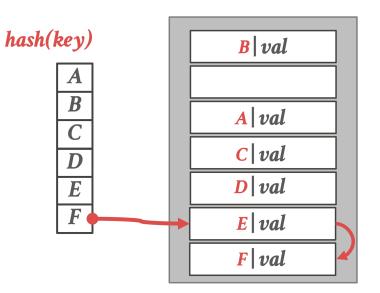






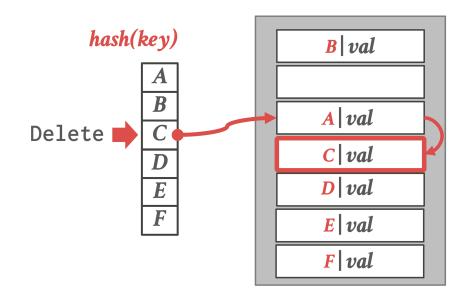
Q: What would happen in this case?



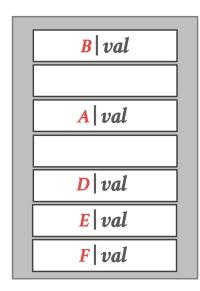


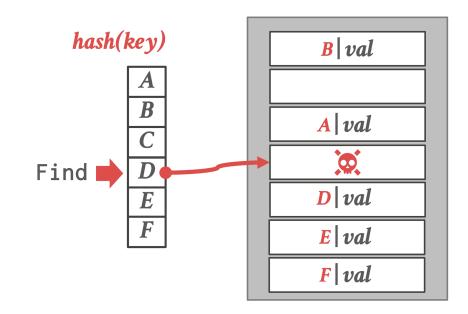
Linear Probing Hashing - Delete

- It is not sufficient to simply delete the key
- This would affect searches for keys that have a hash value earlier than the emptied cell, but are stored in a position later than the emptied cell.
- Two solutions:
 - Tombstone
 - Movement (less common)

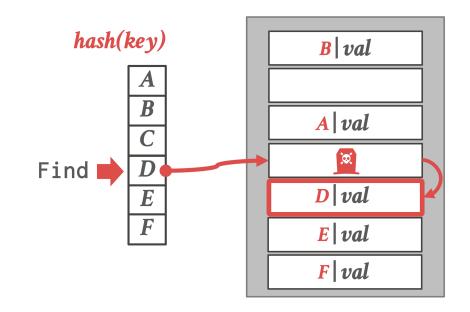


hash(key)

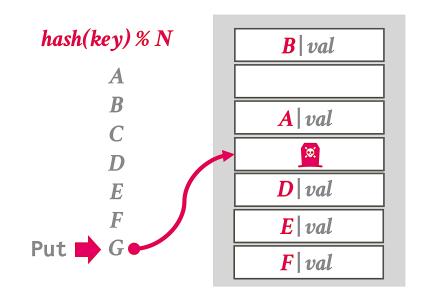




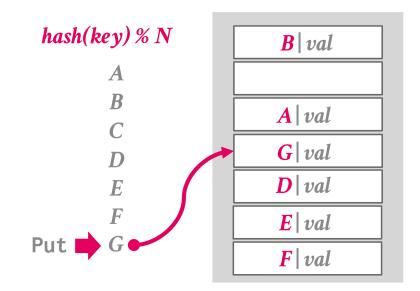
• Set a marker to indicate that the entry in the slot is logically deleted.



• Set a marker to indicate that the entry in the slot is logically deleted.

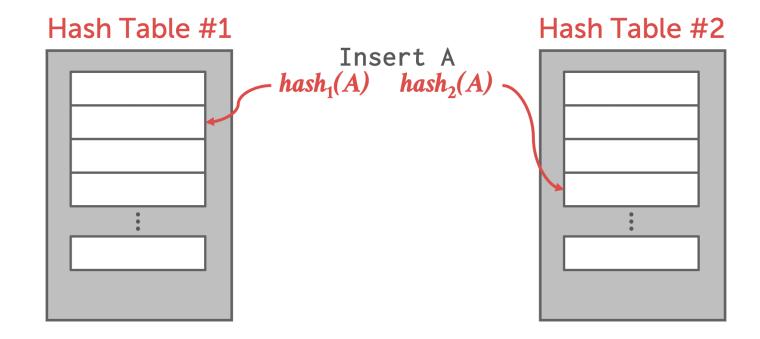


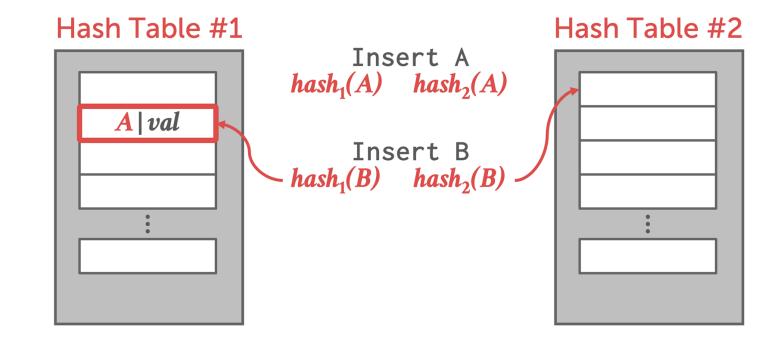
- Set a marker to indicate that the entry in the slot is logically deleted.
- Reuse the slot for new keys

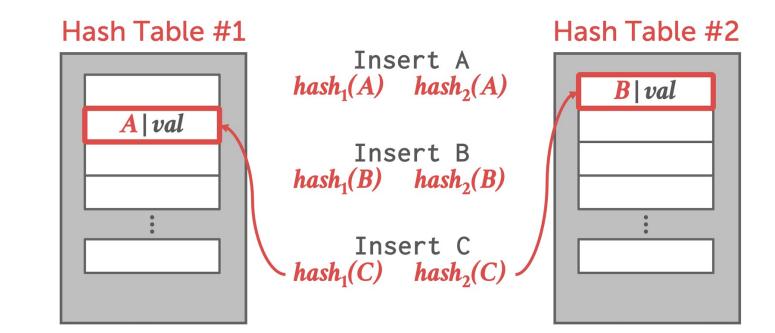


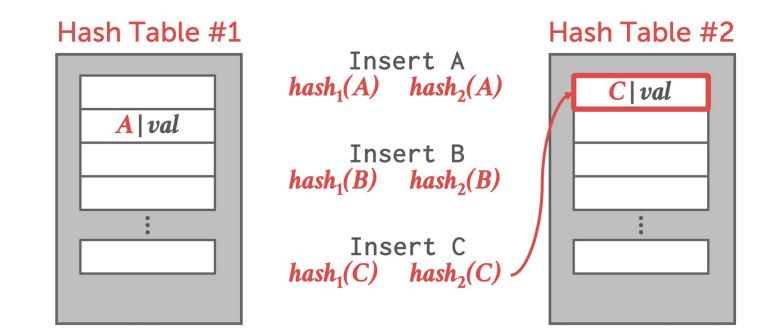
- Set a marker to indicate that the entry in the slot is logically deleted.
- Reuse the slot for new keys

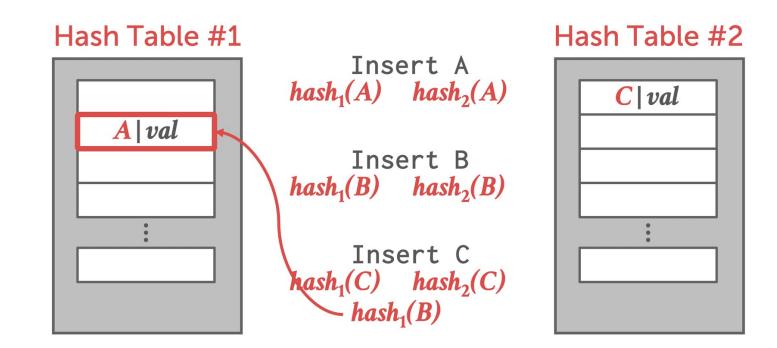
- Power of 2 choices: Use multiple hash tables with different seeds
 - On insert, check every table and pick one with a free slot
 - If no table has a free slot, evict the element from one of then and then re-hash it to find a new location
 - In rare cases, we may end up in a cycle. If this happens, we can rebuild using larger hash tables
- Look-ups and deletions are ~O(1) because only one location per hash table is checked.









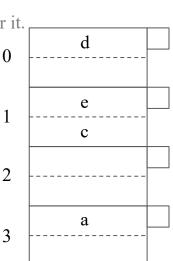




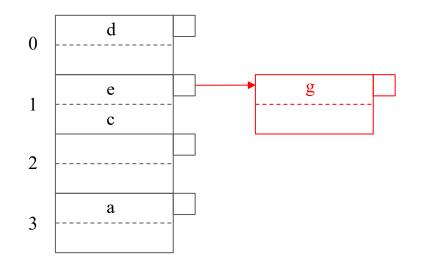
Dynamic hash table

- The previous hash tables require the DBMS to know the number of elements it wants to store.
 - Otherwise it needs to rebuild the table to resize
- Dynamic hash tables incrementally resize the hash table on demand without needing to rebuild the entire table.
- Examples
 - Chained Hashing
 - Extensible Hashing
 - Linear Hashing

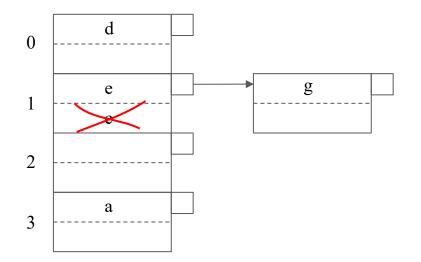
- Maintain a linked list of buckets for each slot in the hash table.
- Resolve collisions by placing all elements with the same hash key into the same bucket.
 - To determine whether an element is present, hash to its bucket and scan for it.
 - Insertions and deletions are generalizations of lookups.



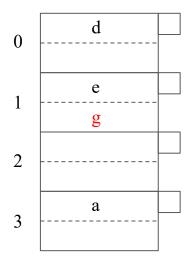
• Add g where h(g) = 1



• Remove c where h(c) = 1



• Remove c where h(c) = 1



Extendible Hashing

- Chained-hashing approach that splits buckets incrementally instead of letting the linked list grow forever.
 - Long chains of blocks -> many disk I/Os
- Multiple slot locations can point to the same bucket chain.
- Reshuffle bucket entries on split and increase the number of bits to examine.
 - Data movement is localized to just the split chain.

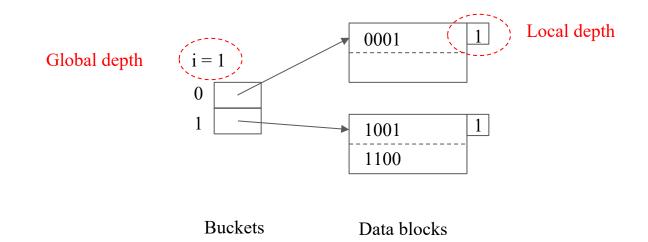
Extensible hash table

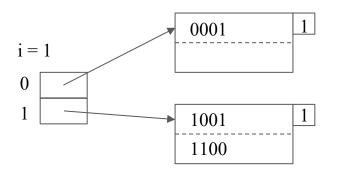
- Use first *i* bits of hash value to locate block
 - \circ *i* grows over time

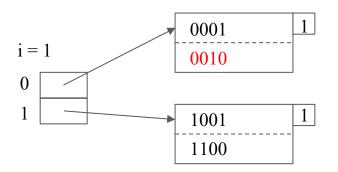
$$i = 3$$

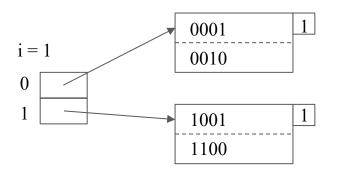
h(key): 00101100

• Use level of indirection where buckets are pointers to blocks

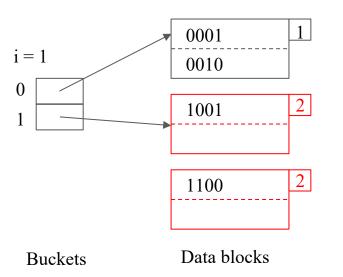




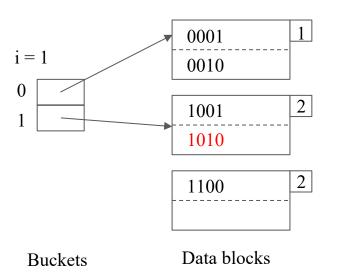


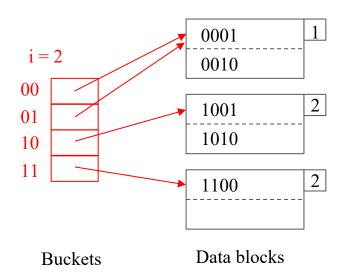


• Add 1010

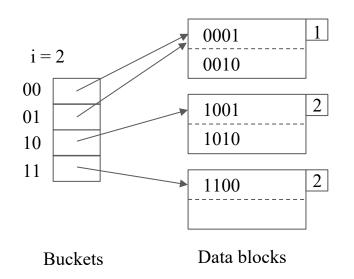


May need to repeat splitting until there is space



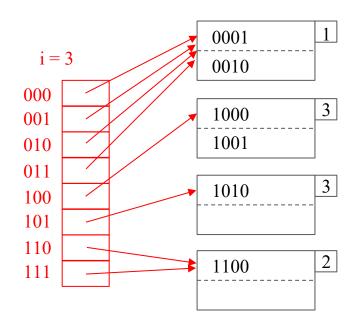


• Add 1000



Q: What will happen in this case?





- Deletion: the "reverse" of insertion
 - However, merging blocks and reducing the buckets is optional

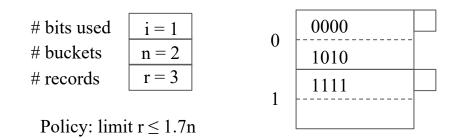
Extensible hashing summary

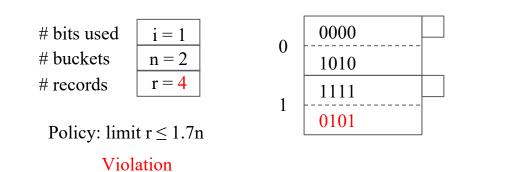
- If bucket array fits in memory, lookup is always 1 disk I/O
- Can grow table with little wasted space and avoiding full reorganizations
- However, doubling the bucket array is expensive
 - Splitting can occur frequently if the number of records per block is small
 - At some point, the bucket array may not fit in memory
- Linear hashing (covered next) grows the number of buckets more slowly

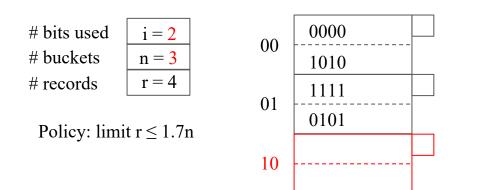
Linear hashing

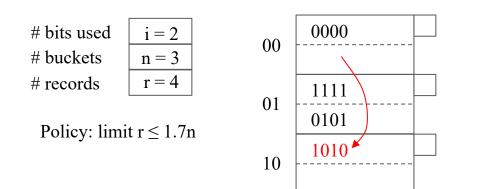
- The hash table maintains a pointer that tracks the next bucket to split.
 - When any bucket overflows, split the bucket at the pointer location.
- Use multiple hashes to find the right bucket for a given key.
- Can use different overflow criterion:
 - Space Utilization
 - Average Length of Overflow Chains

- Use last *i* bits of hash value to locate block
- Hash table grows linearly

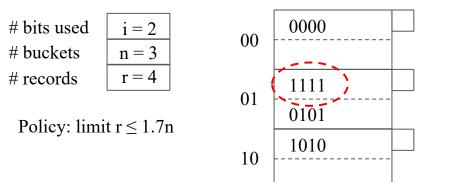




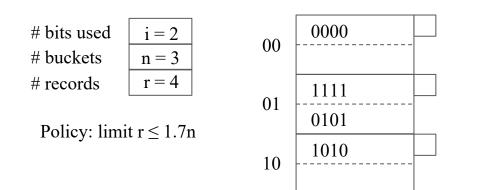


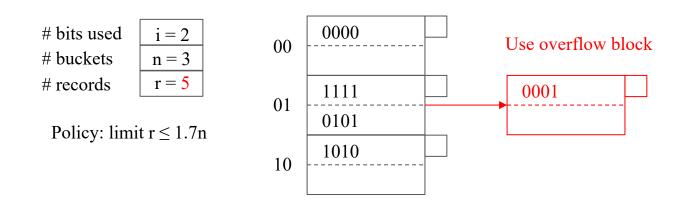


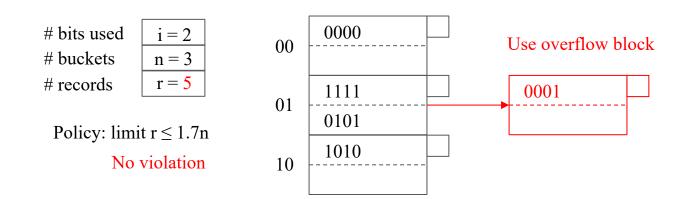
• Add 0101



1111 stays here because there is no 11 bucket yet

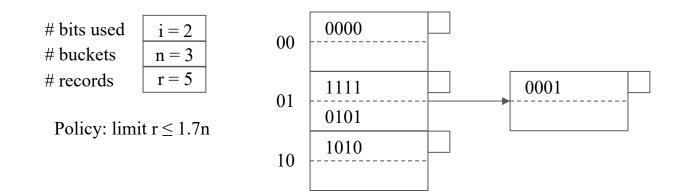






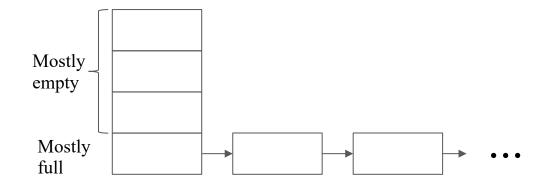
Exercise #1

• Continuing with example, add 0111



Linear hashing summary

- Can grow table with little wasted space and avoiding full reorganizations
- Compared to extensible hashing, there is no array of buckets
- However, there can be a long chain of overflow blocks



Indexing vs hashing

- Indexing (including B trees) is good for range lookups
- Hashing is good for equality-based point lookups

SELECT * FROM Movies WHERE year >= 2000;

SELECT *

FROM Movies

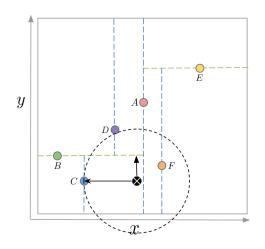
WHERE title = 'Ponyo';

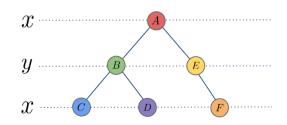
Multidimensional Indexes (14.4)

All the index structures discussed so far are one dimensional

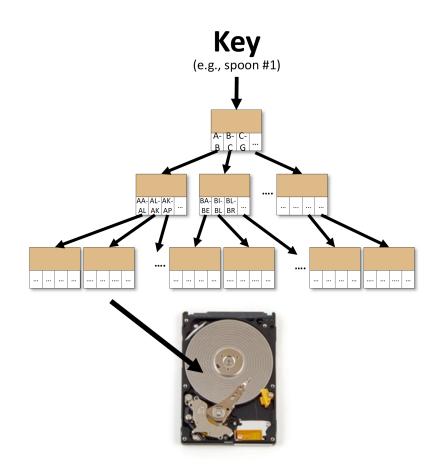
- Assume a single search key, and they retrieve records that match a given search key value.
- The key can contain multiple attributes
- Examples:
 - Kd-tree, r-tree

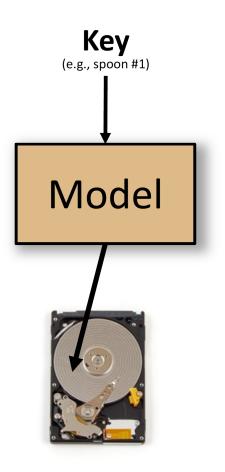
* We will discuss this more in the nearest neighbor search lecture





A brief intro to learned index structures

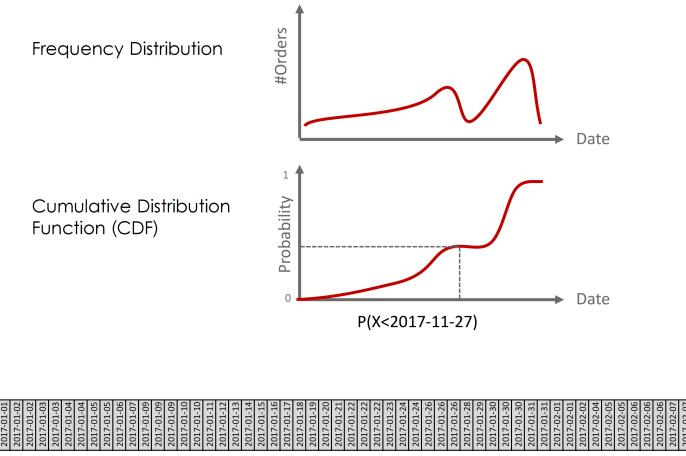




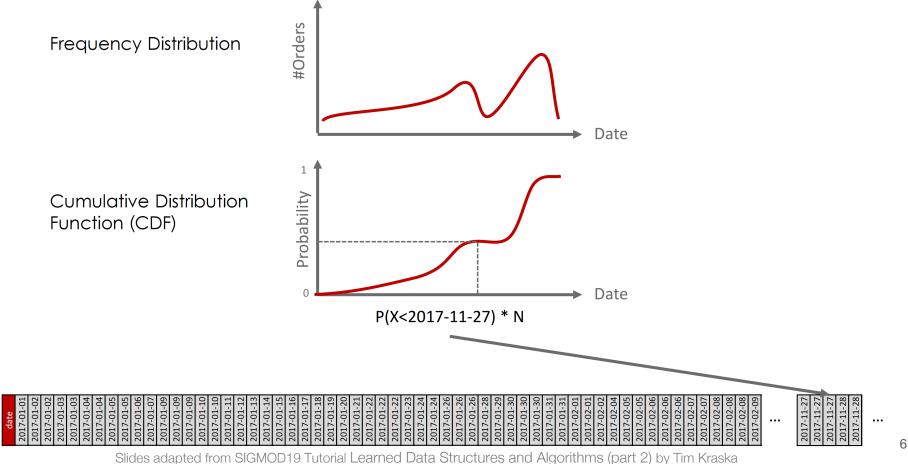
How To Build Models To Predict the Location

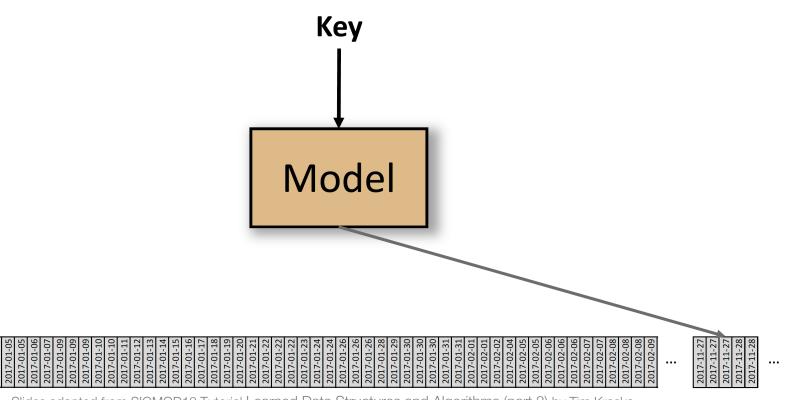
id	date	first_name							amount
1000	2017-01-01	Hobart	Spracklin	hspracklin0@dailymotion.com	20565 High Crossing Plaza	56372	Minnesota	4405-6975-7285-5160	\$611.00
1001	2017-01-02	Billye	Binnion	bbinnion1@123-reg.co.uk	3698 Upham Point	20260	District of Columbia		\$244.00
1002	2017-01-02	Johann	Brockley		23844 Artisan Place	98516	Washington	67597-1193-7985-5100	\$233.00
1003	2017-01-03	Artie	MacMenam		6276 Toban Trail	78759	Texas	3537-4829-6134-5000	\$210.00
1004	2017-01-03	Delilah	O'Currigan		86016 New Castle Avenue	72199	Arkansas	3555-2017-2226-5780	\$286.00
1005	2017-01-04	Gretta	Will		0 Dottie Circle	68524	Nebraska	503844-1984-2085-5000	\$870.00
1006	2017-01-04		Kirsopp	gkirsopp6@utexas.edu	64060 Scott Park	20370	District of Columbia	633332-1895-2414-5000	\$687.00
1007	2017-01-05	Bendick	Fagg	bfagg7@army.mil	94 Florence Hill	45440	Ohio	3528-9673-1815-8420	\$733.00
1008	2017-01-05	Dimitry	Boyet		35886 Golf Plaza	30066	Georgia	3576-6991-4041-3170	\$382.00
1009	2017-01-06	Ailsun	Beinke		1 Badeau Place	46295	Indiana	56022-2011-8072-1400	\$854.00
1010	2017-01-07	Lou	Hallows	lhallowsa@theguardian.com	1 Twin Pines Junction	91125	California	5602-2364-4079-0250	\$150.00
1011	2017-01-09	Tiffani	Mathew	tmathewb@seattletimes.com	0456 Meadow Vale Lane	75260	Texas	6387-6943-8910-4580	\$313.00
1012	2017-01-09	Perl	Bridie		07 Bluestem Junction	33124	Florida	3539-8662-2397-5880	\$558.00
1013	2017-01-09	Rosabelle	Blasik	rblasikd@delicious.com	7 Fairfield Pass	79699	Texas	5602-2297-6599-8560	\$941.00
1014	2017-01-10	Meggi	Belamy	mbelamye@ask.com	0995 Manufacturers Street	10170	New York	3557-5094-7405-8340	\$875.00
1015	2017-01-10	Tadio	Balderston	tbalderstonf@apache.org	80 Novick Road	75260	Texas	60485-3728-7119-9300	\$954.00
1016	2017-01-11	Gianina	Oxteby	goxtebyg@google.pl	72674 Fuller Avenue	89505	Nevada	4-0415-9268-2397	\$239.00
1017	2017-01-12	Brendan	Doody	bdoodyh@craigslist.org	87414 Golden Leaf Street	11480	New York	201-6348-4121-1314	\$308.00
1018	2017-01-13	Conway	Coombs		2810 Oakridge Park	32859	Florida	3529-1514-0357-9120	\$ 60.00
1019	2017-01-14	Germaine	Bere	gberej@bravesites.com	82802 Oakridge Park	20041	District of Columbia	670961-0240-4054-9000	\$ 95.00
1020	2017-01-15	Davide	Tolcharde	dtolchardek@redcross.org	89 Continental Avenue	79165	Texas	5018-7748-4325-9510	\$137.00
1021	2017-01-16	Nigel	Artharg	narthargl@gizmodo.com	31 Mcbride Point	22301	Virginia	560225-6965-2870-0000	\$496.00
1022	2017-01-17	Rickard	Trenholm	rtrenholmm@cbslocal.com	93 Hoepker Parkway	70593	Louisiana	3541-5241-5383-9970	\$760.00
1023	2017-01-18	Juditha	Dwane	jdwanen@vk.com	7914 Eliot Lane	14276	New York	5456-4410-0914-3180	\$474.00
1024	2017-01-19	Susan	Ilden		25204 Huxley Road	21684	Maryland	3574-8586-6367-9920	\$ 83.00
1025	2017-01-20	Abbey	Triggle	atrigglep@google.com.au	47 Debra Pass	74184	Oklahoma	3538-6047-6315-7710	\$513.00
1026	2017-01-21	Zsazsa	Dunster	zdunsterq@nature.com	7 Gerald Alley	40576	Kentucky		\$952.00
1027	2017-01-22	Grantham	Friatt	gfriattr@seattletimes.com	774 Prairieview Circle	29225	South Carolina	3571-1171-9476-8780	\$942.00
1028	2017-01-22	Ross			3102 Loeprich Trail	68197	Nebraska		\$572.00
1029	2017-01-22	Aluino		adrovert@dagondesign.com	2717 Northridge Avenue	72199	Arkansas	670999-3171-8848-0000	\$318.00
1030	2017-01-23	Shurlock		sbrakeru@huffingtonpost.com	30783 Jenna Alley	80945	Colorado	6331106-1894-9878-0000	\$166.00
1031	2017-01-24	Glenda	Goodbody	ggoodbodyv@economist.com	720 Pierstorff Way	7522	New Jersey	36-0593-2719-1684	\$412.00
1022	2017 01 24	Pollin	Paddia	roddiaw@tinunic.com	00 Gina Dark	65010	Miccouri	ACCE 0100 1334 1040	¢ 202 MM

How To Build Models To Predict the Location



How To Build Models To Predict the Location





Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

017-01-(

68

Key Insight

• Traditional data structures (typically) make no assumptions about the data

But knowing the data distribution might allow for significant performance gains and might even change the complexity of data structures (e.g., O(log n)→O(1) for lookups)

Black box - we do not know anything

White box - we know everything

Does it work? A first attempt

TensorFlow

- 200M web-server log records by timestamp-sorted
- 2 layer NN, 32 width, ReLU activated
- Prediction task: timestamp \rightarrow position within sorted array

Does It Work? A First Attempt

State-Of-The-Art B-Tree

260ns

???

Does It Work? A First Attempt

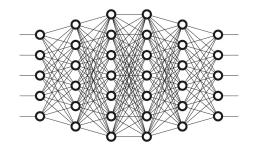
State-Of-The-Art B-Tree

260ns

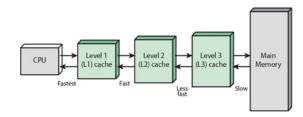
>80,000ns

Reasons

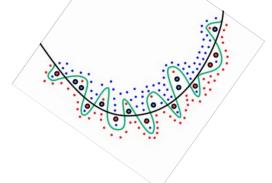
Tensorflow are not designed for nan-second execution



B-Trees are cache-efficient



B-Trees are great for overfitting

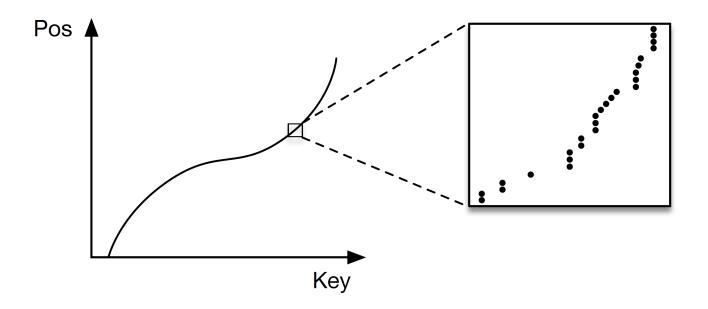


Search does not take advantage of the prediction

The Learning Index Framework (LIF)

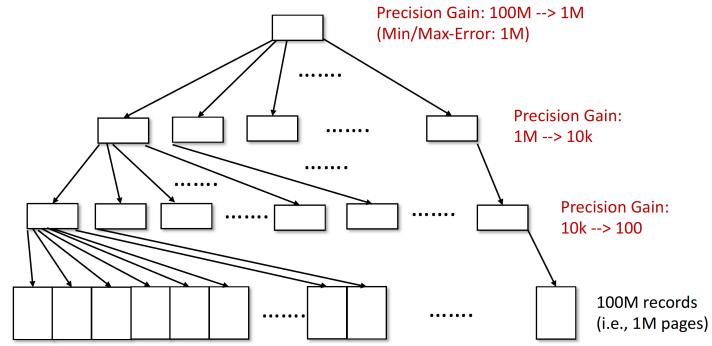
- An index synthesis system
- Given an index configuration generate the best possible code
- Uses ideas from Tupleware [VLDB15]
- Simple models are trained "on-the-fly", whereas for complex models we use Tensorflow and extract weights afterwards (i.e., no Tensorflow during inference time)
- Best index configuration is found using auto-tuning (e.g., see TuPAQ [SOCC15]

Overfitting is a Good Thing The Last Mile Problem

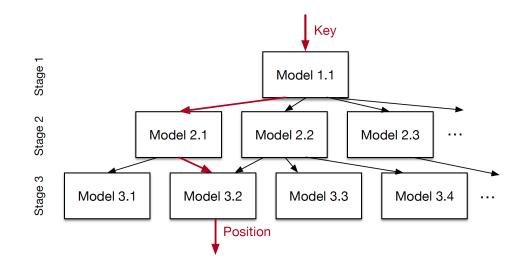


Overfitting is a Good Thing

Index over 100M records. Page-size: 100

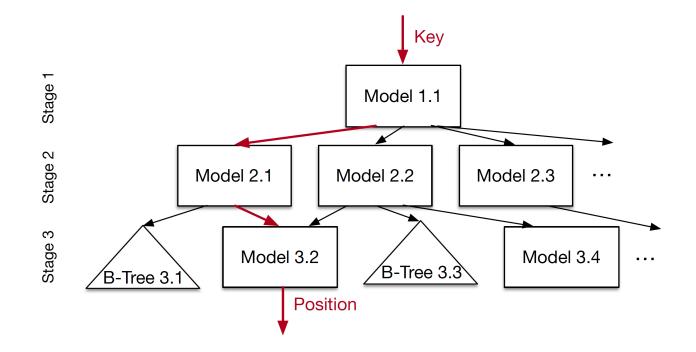


Recursive-Model Index (RMI)



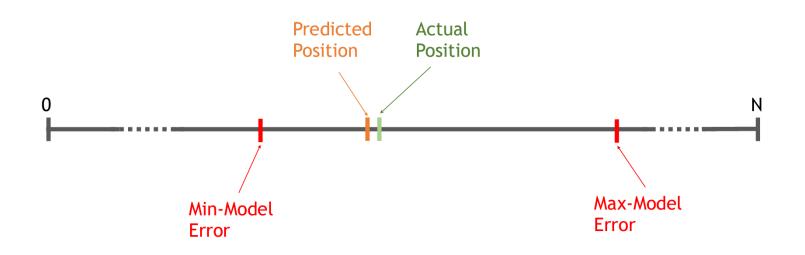
2-Stage RMI with Linear Model $pos_0 = a_0 + b_0 * key$ $pos_1 = m_1[pos_0] \cdot a + m_1[pos_0] \cdot b * key$ record = local-search(key, pos_1)

Hybrid RMI

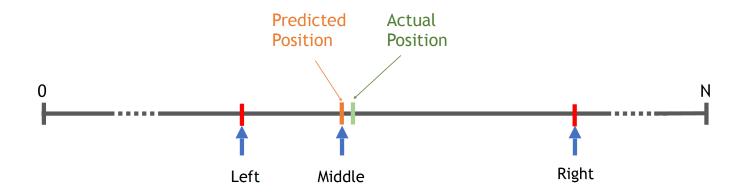


Worst-Case Performance is the one of a B-Tree

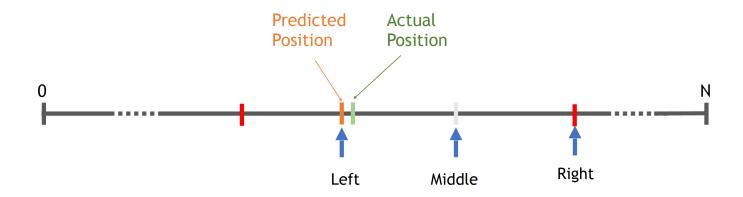
Taking advantage of the prediction quality



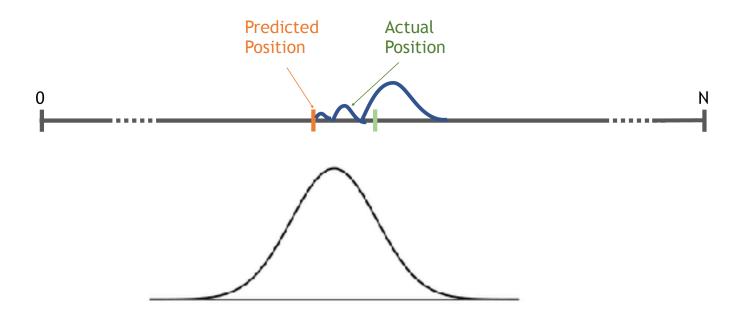
Binary Search



Binary Search



Exponential Search



Initial Results

TensorFlow

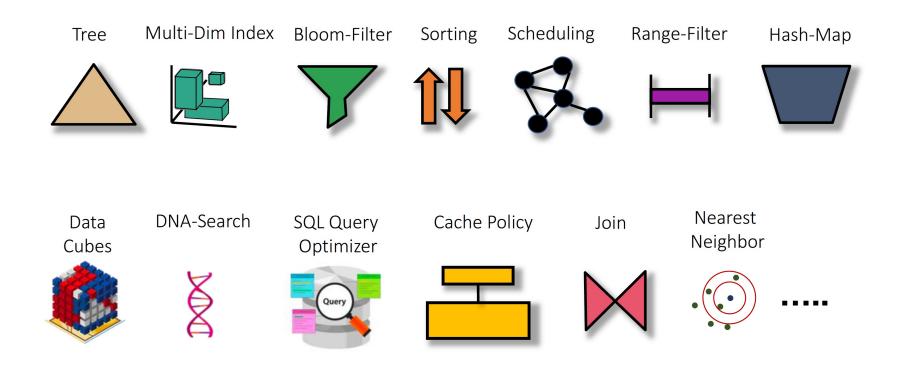
State-Of-The-Art B-Tree

Learned Index

>80,000ns

265ns 13MB 85ns 0.7MB

Fundamental Algorithms & Data Structures



Readings

- Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis.<u>The Case for</u> <u>Learned Index Structures</u> [SIGMOD'18]
- Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David B. Lomet. <u>ALEX: An</u> <u>Updatable Adaptive Learned Index</u> [SIGMOD'20]