
CS 4440 A
Emerging Database
Technologies

Lecture 7
01/31/24

Recap

● B+ tree
○ Lookup, insertion, deletion
○ Handling duplicate keys
○ I/O efficiency

2

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Hash table

● A hash function h takes a key and returns a block number from 0 to B - 1
● Blocks contain records and are stored in secondary storage
● Complexity:

● O(1) operation complexity
● O(n) storage complexity

3

key h(key)
...

...

Hash table: Design Decisions

● Hash Function
● How to map a large key space into a smaller domain of array offsets
● Trade-off between fast execution vs. collision rate

● Hashing Scheme
● How to handle key collisions after hashing
● Trade-off between allocating a large hash table vs. extra steps to location/insert keys

4
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash function

● For any input key, return an integer representation of that key.
● Output is deterministic

● Example:
● Given a key that is a string, return the sum of the characters xi modulo B (i.e., Σxi% B)
○ This function is not idea since there might be many collisions

● We do NOT want to use a cryptographic hash function (e.g., SHA-256) for DBMS
hash tables

● In general, we only care about the hash function’s speed and collision rate.
● Current SOTA: xxHash

5
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://xxhash.com/

Static hash table

● The number of buckets is fixed
● Often used during query execution because they are faster than dynamic

hashing schemes.
● If the DBMS runs out of storage space in the hash table, it has to rebuild a

larger hash table (usually 2x) from scratch, which is very expensive!
● Examples

● Linear Probing Hashing
● Robinhood Hashing (not covered)
● Cuckoo Hashing

6
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

● Single giant table of slots

● Resolve collisions by linearly searching for the next free slot in the table.
● To determine whether an element is present, hash to a location in the index and scan for it.
● Has to store the key in the index to know when to stop scanning
● Insertions and deletions are generalizations of lookups

● Example: Google's absl::flat_hash_map

7
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://abseil.io/tips/136

Linear Probing Hashing

8
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

9
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

10
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

11
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

12
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

13
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Q: What would happen in this case?

Linear Probing Hashing

14
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

15
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing - Delete

16
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

● It is not sufficient to simply delete the key
● This would affect searches for keys that have a hash value earlier than the

emptied cell, but are stored in a position later than the emptied cell.
● Two solutions:

● Tombstone
● Movement (less common)

Linear Probing Hashing

17
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

18
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

19
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate
that the entry in the slot is
logically deleted.

Linear Probing Hashing

20
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate
that the entry in the slot is
logically deleted.

Linear Probing Hashing

21
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate
that the entry in the slot is
logically deleted.

• Reuse the slot for new
keys

Linear Probing Hashing

22
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate
that the entry in the slot is
logically deleted.

• Reuse the slot for new
keys

Cuckoo Hashing

● Power of 2 choices: Use multiple hash tables with different seeds
● On insert, check every table and pick one with a free slot
● If no table has a free slot, evict the element from one of then and then re-hash it to find a new location
● In rare cases, we may end up in a cycle. If this happens, we can rebuild using larger hash tables

23
Image source: https://theconversation.com/egg-colours-make-cuckoos-masters-of-disguise-34217

● Look-ups and deletions are ~O(1)
because only one location per hash
table is checked.

Cuckoo Hashing

24
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

25
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

26
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

27
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

28
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

29
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Dynamic hash table

● The previous hash tables require the DBMS to know the number of
elements it wants to store.
● Otherwise it needs to rebuild the table to resize

● Dynamic hash tables incrementally resize the hash table on demand without
needing to rebuild the entire table.

● Examples
● Chained Hashing
● Extensible Hashing
● Linear Hashing

30
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Chained Hashing

● Maintain a linked list of buckets for each slot in the hash table.

● Resolve collisions by placing all elements with the same hash key into
the same bucket.
● To determine whether an element is present, hash to its bucket and scan for it.
● Insertions and deletions are generalizations of lookups.

31

0

1

2

3

d

e
c

a

Chained Hashing

● Add g where h(g) = 1

32

0

1

2

3

d

e
c

a

g

Chained Hashing

● Remove c where h(c) = 1

33

0

1

2

3

d

e
c

a

g

Chained Hashing

● Remove c where h(c) = 1

34

0

1

2

3

d

e
g

a

Extendible Hashing

● Chained-hashing approach that splits buckets incrementally instead of letting
the linked list grow forever.
● Long chains of blocks -> many disk I/Os

● Multiple slot locations can point to the same bucket chain.
● Reshuffle bucket entries on split and increase the number of bits to examine.

● Data movement is localized to just the split chain.

35

Extensible hash table

● Use first i bits of hash value to locate block
○ i grows over time

36

h(key): 00101100

i = 3

Extensible hash table

● Use level of indirection where buckets are pointers to blocks

37

1001
1100

0001 1

1

0
1

Buckets Data blocks

i = 1Global depth
Local depth

Extensible hash table

● Add 0010

38

1001
1100

0001 1

1

0
1

Buckets Data blocks

i = 1

Extensible hash table

● Add 0010

39

1001
1100

0001 1

1

0
1

Buckets Data blocks

i = 1 0010

Extensible hash table

● Add 1010

40

0001 1

0010
0
1

i = 1

Buckets Data blocks

1001
1100

1

Extensible hash table

● Add 1010

41

1001

0001 1

2

1100 2

0010
0
1

i = 1

Buckets Data blocks

May need to repeat splitting
until there is space

Extensible hash table

● Add 1010

42

1001
1010

0001 1

2

1100 2

0010
0
1

i = 1

Buckets Data blocks

Extensible hash table

● Add 1010

43

1001
1010

0001 1

2

1100 2

0010

Buckets Data blocks

00
01

i = 2

10
11

Extensible hash table

● Add 1000

44

1001
1010

0001 1

2

1100 2

0010

Buckets Data blocks

00
01

i = 2

10
11

Q: What will happen in this case?

Extensible hash table

● Add 1000

45

0001 1

1000
1001

3

0010

1010 3

1100 2

Buckets Data blocks

00
01

i = 2

10
11

Extensible hash table

● Add 1000

46

0001 1

1000
1001

3

0010
000

i = 3

001
010
011
100
101
110
111

1010 3

1100 2

Buckets Data blocks

Extensible hash table

● Deletion: the “reverse” of insertion
○ However, merging blocks and reducing the buckets is optional

47

Extensible hashing summary

● If bucket array fits in memory, lookup is always 1 disk I/O
● Can grow table with little wasted space and avoiding full reorganizations
● However, doubling the bucket array is expensive

○ Splitting can occur frequently if the number of records per block is small
○ At some point, the bucket array may not fit in memory

● Linear hashing (covered next) grows the number of buckets more slowly

48

Linear hashing

● The hash table maintains a pointer that tracks the next bucket to split.
● When any bucket overflows, split the bucket at the pointer location.

● Use multiple hashes to find the right bucket for a given key.
● Can use different overflow criterion:

○ Space Utilization
○ Average Length of Overflow Chains

49

Linear hash tables

● Use last i bits of hash value to locate block
● Hash table grows linearly

50

1111

0000i = 1
n = 2
r = 3

1010
0

1
Policy: limit r ≤ 1.7n

buckets
bits used

records

Linear hash tables

● Add 0101

51

1111

0000

1010
0

1

i = 1
n = 2
r = 4

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101

Violation

Linear hash tables

● Add 0101

52

1111

0000

1010
00

01

i = 2
n = 3
r = 4

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101

10

Linear hash tables

● Add 0101

53

1111

0000
00

01

i = 2
n = 3
r = 4

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101
1010

10

Linear hash tables

● Add 0101

54

1111

0000
00

01

i = 2
n = 3
r = 4

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101
1010

10

1111 stays here because
there is no 11 bucket yet

Linear hash tables

● Add 0001

55

1111

0000
00

01

i = 2
n = 3
r = 4

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101
1010

10

Linear hash tables

● Add 0001

56

1111

0000
00

01

i = 2
n = 3
r = 5

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101
1010

10

0001

Use overflow block

Linear hash tables

● Add 0001

57

1111

0000
00

01

i = 2
n = 3
r = 5

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101
1010

10No violation

0001

Use overflow block

Exercise #1

● Continuing with example, add 0111

58

1111

0000
00

01

i = 2
n = 3
r = 5

Policy: limit r ≤ 1.7n

buckets
bits used

records

0101
1010

10

0001

Linear hashing summary

● Can grow table with little wasted space and avoiding full reorganizations
● Compared to extensible hashing, there is no array of buckets
● However, there can be a long chain of overflow blocks

59

Mostly
empty

...Mostly
full

Indexing vs hashing

● Indexing (including B trees) is good for range lookups
● Hashing is good for equality-based point lookups

60

SELECT *
FROM Movies
WHERE title = ‘Ponyo’;

SELECT *
FROM Movies
WHERE year >= 2000;

Multidimensional Indexes (14.4)

All the index structures discussed so far are
one dimensional

○ Assume a single search key, and they retrieve
records that match a given search key value.

○ The key can contain multiple attributes
Examples:

○ Kd-tree, r-tree

* We will discuss this more in the nearest neighbor
search lecture

61

A brief intro to learned index
structures

Slides adapted from SIGMOD19
Tutorial Learned Data Structures
and Algorithms (part 2) by Tim

Kraska
62

63
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

64
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

65
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

66
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

67
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

68
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

Key Insight
● Traditional data structures (typically) make no

assumptions about the data

● But knowing the data distribution might allow for
significant performance gains and might even
change the complexity of data structures

 (e.g., O(log n)→O(1) for lookups)

69
Image source: https://www.careerist.com/insights/a-guide-to-white-box-black-box-and-gray-box-testing

Does it work? A first attempt

● 200M web-server log records by timestamp-sorted
● 2 layer NN, 32 width, ReLU activated
● Prediction task: timestamp → position within sorted array

70

71
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

72
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

Reasons

73
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

Tensorflow are not designed for
nan—second execution

B-Trees are great for overfitting

B-Trees are cache-efficient Search does not take
advantage of the prediction

74
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

75
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

76
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

77
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

78
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

79
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

Taking advantage of the prediction quality

80
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

81
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

82
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

83
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

84
Slides adapted from SIGMOD19 Tutorial Learned Data Structures and Algorithms (part 2) by Tim Kraska

Readings

● Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis.The Case for
Learned Index Structures [SIGMOD’18]

● Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang, Badrish
Chandramouli, Johannes Gehrke, Donald Kossmann, David B. Lomet. ALEX: An
Updatable Adaptive Learned Index [SIGMOD’20]

85

https://arxiv.org/abs/1712.01208
https://arxiv.org/abs/1712.01208
https://arxiv.org/abs/1905.08898
https://arxiv.org/abs/1905.08898

