Emerging Database
Technologies

| ecture 6
01/29/24

Announcements

e Assignment 1 due today @ 11:59PM

o Technology presentation group will be announced by next Monday

e Please sign up on Canvas if you have finalized your project group

Recap @

e Hardware

o Storage hierarchy @

o Secondary storage
o Disk access time
O

Il

Speeding up disk access
other header info
record length
e File System Structure

. ointer to address
o Fixed-length records P

gender

sw/

. birthdate | name | address
)

header fixed-length fields variable-length fields

o Variable-length records

VT

Index

e A data structure that takes field values and quickly finds records containing them
e Can find tuples of a relation without scanning the entire database

Matching

value —*|index holding —>
records

records

Using Indexes in SQL

An index 1s used to efficiently find tuples with certain values of attributes
An index may speed up lookups and joins
e However, every built index makes insertions, deletions, and updates to relation

more complex and time-consuming

CREATE INDEX KeyIndex ON Movies(title, year);

DROP INDEX KeyIndex;

Sequential file

e A file containing tuples of a relation sorted by their primary key

10
20

30
40

50
60

70
80

90
100

Sequential file

Dense index

e A sequence of blocks holding keys of records and pointers to the records

10 » 10
20 > 20
30 -
50 -
60 —s 50
70 ~ 60
80 \§

70
90 . 80
100 \\
110 —\ 90
120 ~§: 100

Index file Sequential file

Dense index

e (iven key K, search index blocks for K, then follow associated pointer

e Why is this efficient?
o Number of index blocks usually smaller than number of data blocks
o Keys are sorted, so we can use binary search
o The index may be small enough to fit in memory

Sparse index

e Has one key-pointer pair per block of the data file
e Uses less space than dense index, but needs more time to find a record

10 10

30 | — 20
50 \\4
70 ~ 30
40
90 N
110 | 50
130 ~\ 60
150 \s:
70
170 “\ 80
190 ~
201 L\ 90
230 \s: 100

Index file Sequential file

Exercise #1

e Suppose a block holds 3 records or 10 key-pointer pairs

e If there are n records in a data file, how many blocks are needed to hold
o The data file and a dense index
o The data file and a sparse index

10

Multiple levels of index

e [fthe index file 1s still large, add another level of indexing
e Later: B-tree structure does this better

10 10 > 10
90 — 30 | — 20
170 - 50 \\4
250 ~\ 70 N 30
40
330 - 90 N
410 \\ 110 ~ 50
490 ~\ 130 \\ 60
570 \s: 150 \s: .
170 \\ 80
190 ~
210 \\ 90
230 \s: 100

Q: Should the blocks of additional levels be dense or sparse?

Secondary index

e Unlike a primary index, does not determine the placement of records

20
40

10
20

50
30

10
50

60
20

12

Secondary index

e Using a sparse index doesn’t make sense

20

20

10

40

50

10

10

60

20

50

30

10

50

60

20

—) |

13

Secondary index

e As aresult, secondary indexes are always dense

10

20

10

40

20

20

10

20

20

30

50

40

30

50

50

10

60

50

60

20

14

Secondary index

e To remove redundant keys in secondary index file, use level of indirection

10

20

/

30

40

50

60

Al

Buckets

20

40

10

20

50

30

10

50

60

20

15

When 1s indirection and secondary index useful?

e When a key is larger than a pointer and each key appears twice on average
e Another advantage: use bucket pointers without looking at most of the records

SELECT title

FROM Movies

WHERE studioName =
AND year = 2008;

‘Ghibli’

Ghibli

Studio
index file

Studio
buckets

Movie Year
tuples buckets
2008 i
Year
index file 16

Inverted index

e Previous idea is used in text information retrieval
e Secarch for documents containing “cat” or “dog” (or both)

cat _/

...the cat is
fat...

... raining
cats and dogs

dog 0

S
index is eating ...

_//—b
Inverted Bucket\ ...the dog

Documents

17

Store more information in inverted index

e (an answer more complex queries like:

o Find documents where “dog” and “cat” are within 10 words
o Find documents about dogs that refer to other documents about cats

/

cat

Sy CD

doc 2

dog ——

Type Position
title 5
anchor 3
title 11
text 20 d
text 50 —]

18

B-tree

e More general index structure that is commonly used in commercial DBMS’s
o Automatically maintains arbitrary number of levels
o Manages the space on blocks so that each block is at least half full
o We will study the most popular variant called the B+ tree

13] |
\L\
7 | 23(3143
// //‘/\I\\g\k
2/3|5 7 11| 13[17[19] |23]29] 31(37|41| [43|47]
NN N AN NN N]|
vV vV vV vV vV vV

B+-tree

e Parameter: n = 3 (n search keys and n + 1 pointers per block)
e The keys in leaf nodes are record keys sorted from left to right
e Assume all keys are distinct for now

13] |
\L\
7 | 23(3143
// ////\I\\Q\k
2/3|5 7 11| 13[17[19] |23]29] 31(37|41| [43|47]
NN N AN NN N]|
vV vV vV vV vV vV

Typical leaf

Full

Minimal

13[17]19
// N \|\<;FO next leaf in sequence
To record To record To record

with key 13 with key 17 with key 19

13[17 |

/ / | \x | | —|— Counts even if null

At least half of the keys must be used

To record To record
with key 13 with key 17

21

Typical interior node

233143

Full /

/v/ | \|\\4\A
To keys To keys
K<23 23 <K <31

23| |

ann

Minimal / /

To keys To keys
K<23 23<K<?

31<K<43

To keys
43 <K

At least half of the pointers must be used

Nodes must be “full enough”

Node type Min. # pointers Max. # pointers Min. # keys Max. # keys
Interior [(n+1)/2] n+1 [(n+1)/2]-1 n
Leaf |(n+1)/2] ** n+1 |(n+1)/2] n
Root 2% n+1 1 n

* Exception: If there is only one record in the B-tree, there is one pointer in the root

** Not including the next leaf pointer

23

Lookup

e Secarch for key K recursively

13| | Lookup K =41
\L\
7 | 23(3143
// ////\I\\A\k
2|35 7 | 11] 1317 (19| |23]29] 31/37]41| [43]47]
NN NN NN NN NNE NN
vV vy vV vy VoYV v v

Lookup

e Forrange query [a, b], search for key a then scan leaves to right until we pass b

13| | Lookup 41 <K <43
\L\
7| | 23(31/43
// ////\I\\A\k
2/3|5 7 11| 13[17[19] |23]29] 31(37|41| [43|47]
INNE N NN NN NN N
vV vV vV vV vV v

25

Insertion

e Find place for new key in a leaf
e [f there is space, put key in leaf

3] Insert K =17
\L\
7 | 23(3143
// ////\I\\g\k
2/3]5 7 | 11] 13]19 | 23 (29| 31/37]41| [43]47]
INNE NN NN N NE NN
vV vy vy vy voYov v v

Insertion

e Find place for new key in a leaf
e [f there is space, put key in leaf

3] Insert K =17
\L\
7 | 23(3143
// ////\I\\g\k
2/3]5 7 | 11] 1317 (19| |23]29] 31/37]41| [43]47]
INNE N NN NN NN N
vV vy vy vy voYov v v

Insertion

e [fleafis full, split into two and insert new pointer at a higher level recursively

3] Insert K =40
\L\
7 | 23(3143
// ////\I\\g\k
2/3]5 7 | 11] 1317 (19| |23]29] 31/37]41| [43]47]
INNE N NN NN NN N
vV vy vV vy voYov v v

Insertion

e [fleafis full, split into two and insert new pointer at a higher level recursively

3] Insert K =40
\L\
7 | 23(3143
// ////\I\\A\k
2/3]5 7 | 11] 1317 (19| |23]29] 31/37]41| [43]47]
INNE N NN NN NN N
vV vy vV vy voYov v v

Insertion

e [fleafis full, split into two and insert new pointer at a higher level recursively

3] Insert K =40
/ \L\
23(31/43
MR-
1317 (19| |23]29] 31/37] 40|41 4347 |
— L L= D T] JNN JINE
vV vy vy vy v v

Insertion

e [fleafis full, split into two and insert new pointer at a higher level recursively

3] Insert K =40
/ \L\
23[31]| 43| |
///\I\ \
1317 (19| |23]29] 3137/ 40 (41| 4347 |
s il EslINEE AN sl]|]|
vV vy v vy v v

Insertion

e [fleafis full, split into two and insert new pointer at a higher level recursively

13]0] Insert K =40
/ {\
23[31]| 43| |
///\I\ \I\[\‘\A
1317 (19| |23]29] 3137/ 40 (41| 4347 |
s il EslINEE AN sl]|]|
vV vy v vy vy

Deletion

e Declete the key pointer from a leaf
e [fthe node contains too few pointers, take a pointer from or merge with adjacent sibling

3] Delete K =7
\L\
7 | 23(3143
// ////\I\\Q\k
2/3]5 7 | 11] 1317 (19| |23]29] 31/37]41| [43]47]
INNE N NN NN NN N
vV vy vV vy voYov vy

33

Deletion

e Declete the key pointer from a leaf
e [fthe node contains too few pointers, take a pointer from or merge with adjacent sibling

3] Delete K =7
/\L\
7 | 23(3143
// ////\I\\Q\k
2/3]5 11| 1317 (19| |23]29] 31/37]41| [43]47]
NN AN NN NN N NE NN
vV v vV vy voYov vy

34

Deletion

e Declete the key pointer from a leaf
e [fthe node contains too few pointers, take a pointer from or merge with adjacent sibling

3] Delete K =7
\L\
5| | 23(3143
// ////\I\\Q\k
2| 3] 5 11| 1317 (19| |23]29] 31/37]41| [43]47]
NN NN NN N NE N
vy vV vV vy voYov vy

35

Deletion

e Declete the key pointer from a leaf
e [fthe node contains too few pointers, take a pointer from or merge with adjacent sibling

13 | Delete K=11
\L\
5| | 23(3143
// ////\I\\Q\k
2| 3] 5 11| 1317 (19| |23]29] 31/37]41| [43]47]
NN NN NN NN N
vy vy vV vy voYov vy

36

Deletion

e Declete the key pointer from a leaf
e [fthe node contains too few pointers, take a pointer from or merge with adjacent sibling

13 | Delete K=11
/\L\
5| | 23(3143
// ////\I\\Q\k
2|3 | 5| | 13[17[19] |23]29] 31(37|41| [43|47]
N AN NN N]|
vV vV vV vV vV

37

Deletion

e Declete the key pointer from a leaf
e [fthe node contains too few pointers, take a pointer from or merge with adjacent sibling

13 | Delete K=11
//\L\
| 23(31/43
,///,q\\
2 |3[5] [13][17]19]| |[23]29] 31/37]41| [43]47]
INNE NN NNEE NNNE NN
'R vV vy voYov vy

38

Deletion

e Declete the key pointer from a leaf
e [fthe node contains too few pointers, take a pointer from or merge with adjacent sibling

23] | Delete K=11
/ \L\
13| | 31|43
ANE NEW
235 [13[17]19 23|£9| 31(37|41| [43|47]
INNENNE AN NN]|
Vv vV vV vV vV

39

40

43|47 |
vV

'I|I| |

1INEN

3143

3137/
vV

»
g

>

|

23 |

23 (29 |
vV

'I|I| |

13 |
ANE

13[17 |
vy

»
g

31

e Declete K

Exercise #2

23]

vy

B-tree deletions 1n practice

e C(Coalescing 1s sometimes not implemented because
o It is hard to implement and
o The B-tree will probably grow again

41

Allowing duplicate keys

e [f an interior node has keys K;, K, ..., K,, then K; is the smallest new key that appears
in the part of subtree accessible from the (i + 1)st pointer

17] |
\L\
7| | - |37]43
// ////\I\\g\k
2/3|5 7 13| 13[17]23] |23]23]| 23(37|41| |43]47]
INNE N AN NN N]|
vV vV vV vV vV v v

Allowing duplicate keys

e [f an interior node has keys K;, K, ..., K,, then K; is the smallest new key that appears
in the part of subtree accessible from the (i + 1)st pointer

- ~

(17| \|| 17 instead of 13 because 17 is the new key
\\ /’
7+¢\
7] | - |37]43
// | ////\I\\g\k
2/3]5 7 |13] 13[17 (23| |23]23] 23(37/41| |43]47]
NN NN NN NN NN N
VoYY vy RE vy VoYY vy

43

Allowing duplicate keys

e [f an interior node has keys K;, K, ..., K,, then K; is the smallest new key that appears
in the part of subtree accessible from the (i + 1)st pointer

17| |
| |
7| | ‘\ - |37|43 NULL instead of 23 because there is no new key
2/3]5 7 |13] 13[17 (23| |23]23] 23(37/41| |43]47]
1NN sl | NN SnN SN sl
VoYV v vVoVYoy vV vV v v

44

Allowing duplicate keys

e Searching for K = 13 can be done correctly

17| |
ARu

N

7| | - |37]43

22N ANNE

TN~

= 7 |13] 13[17 (23| |23]23] 233741
|

\ 4

A 4

A

1NN INEE NN
vV vy R

Allowing duplicate keys

e Q: How can we search for K = 24?

7] |
|

N

7| | - |37]43

22N ANNE

TN~

= 7 |13] 13[17 (23| |23]23] 233741
|

\ 4

A 4

A

1NN INEE NN
vV vy R

Efficiency

e B-tree reorganizations is negligible in practice if n is reasonably large
o Ifatypical block has 100 pointers, a 3-level B-tree has 10,000 leaves and 1 million pointers to records

® The number of disk I/Os needed =

o The number of tree levels (3 is a reasonable number) +
o One (lookup) or two (insert/delete) for the record manipulation

e We can also keep the root block (and maybe the second-level nodes) permanently
buffered in memory to save I/0Os

47

Recap

e B+ tree
o Lookup, insertion, deletion 17| | \L | |
o Handling duplicate keys
o /O efficiency / \
7] | " [37]43

| 5 7 [13] 13[1723| |23]23] 23/37|41| |43]47]
|

> »
gEEE L "L >

| »

2
N
vy e v

48

Hash table

e A hash function /4 takes a key and returns a block number from 0 to B - 1
e Blocks contain records and are stored in secondary storage
e Complexity:

® (1) operation complexity

® (O(n) storage complexity

key — h(key) ——

49

Hash table: Design Decisions

e Hash Function

® How to map a large key space into a smaller domain of array offsets
® Trade-off between fast execution vs. collision rate

e Hashing Scheme

® How to handle key collisions after hashing
® Trade-off between allocating a large hash table vs. extra steps to location/insert keys

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

50

Hash function

e For any input key, return an integer representation of that key.
® QOutput is deterministic

e Example:
® (Given a key that is a string, return the sum of the characters x; modulo B (i.e., £x;% B)
o This function is not idea since there might be many collisions

e We do NOT want to use a cryptographic hash function (e.g., SHA-256) for DBMS
hash tables

e In general, we only care about the hash function’s speed and collision rate.
e Current SOTA: xxHash

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

51

https://xxhash.com/

