
CS 4440 A
Emerging Database
Technologies

Lecture 6
01/29/24

Announcements

● Assignment 1 due today @ 11:59PM

○ Technology presentation group will be announced by next Monday

● Please sign up on Canvas if you have finalized your project group

2

Recap

● Hardware
○ Storage hierarchy
○ Secondary storage
○ Disk access time
○ Speeding up disk access

● File System Structure
○ Fixed-length records
○ Variable-length records

3

Index

● A data structure that takes field values and quickly finds records containing them
● Can find tuples of a relation without scanning the entire database

4

value index
Blocks
holding
records

Matching
records

Using Indexes in SQL

● An index is used to efficiently find tuples with certain values of attributes
● An index may speed up lookups and joins
● However, every built index makes insertions, deletions, and updates to relation

more complex and time-consuming

5

CREATE INDEX KeyIndex ON Movies(title, year);

DROP INDEX KeyIndex;

Sequential file

● A file containing tuples of a relation sorted by their primary key

6

10
20

30
40

50
60

70
80

90
100

Sequential file

Dense index

● A sequence of blocks holding keys of records and pointers to the records

7

10
20

30
40

50
60

70
80

90
100

10
20
30
40

50
60
70
80

90
100
110
120

Index file Sequential file

Dense index

● Given key K, search index blocks for K, then follow associated pointer
● Why is this efficient?

○ Number of index blocks usually smaller than number of data blocks

○ Keys are sorted, so we can use binary search
○ The index may be small enough to fit in memory

8

Sparse index

● Has one key-pointer pair per block of the data file
● Uses less space than dense index, but needs more time to find a record

9

10
20

30
40

50
60

70
80

90
100

10
30
50
70

90
110
130
150

170
190
210
230

Index file Sequential file

Exercise #1

● Suppose a block holds 3 records or 10 key-pointer pairs
● If there are n records in a data file, how many blocks are needed to hold

○ The data file and a dense index

○ The data file and a sparse index

10

Multiple levels of index
● If the index file is still large, add another level of indexing
● Later: B-tree structure does this better

11

10
20

30
40

50
60

70
80

90
100

10
30
50
70

90
110
130
150

170
190
210
230

10
90

170
250

330
410
490
570

Q: Should the blocks of additional levels be dense or sparse?

Secondary index

● Unlike a primary index, does not determine the placement of records

12

20
40

10
20

50
30

10
50

60
20

Secondary index

● Using a sparse index doesn’t make sense

13

20
40

10
20

50
30

10
50

60
20

20
10
50
10

60
...

Secondary index

● As a result, secondary indexes are always dense

14

20
40

10
20

50
30

10
50

60
20

10
10
20
20

20
30
40
50

50
60

Secondary index

● To remove redundant keys in secondary index file, use level of indirection

15

20
40

10
20

50
30

10
50

60
20

10
20
30
40

50
60

Buckets

When is indirection and secondary index useful?

● When a key is larger than a pointer and each key appears twice on average
● Another advantage: use bucket pointers without looking at most of the records

16

SELECT title
FROM Movies
WHERE studioName = ‘Ghibli’
AND year = 2008;

Studio
index file

Year
index file

Ghibli 2008

Studio
buckets

Year
buckets

Movie
tuples

Inverted index

● Previous idea is used in text information retrieval
● Search for documents containing “cat” or “dog” (or both)

17

Inverted
index

cat

dog

Buckets

Documents

… raining
cats and dogs
...

...the cat is
fat...

…the dog
is eating ...

Store more information in inverted index

● Can answer more complex queries like:
○ Find documents where “dog” and “cat” are within 10 words
○ Find documents about dogs that refer to other documents about cats

18

cat

dog

title 5

anchor 3
doc 1

Type Position

title 11

text 20

doc 2

doc 3
text 50

B-tree

● More general index structure that is commonly used in commercial DBMS’s
○ Automatically maintains arbitrary number of levels
○ Manages the space on blocks so that each block is at least half full
○ We will study the most popular variant called the B+ tree

19

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

B+-tree

● Parameter: n = 3 (n search keys and n + 1 pointers per block)
● The keys in leaf nodes are record keys sorted from left to right
● Assume all keys are distinct for now

20

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Typical leaf

● n = 3

21

13 17 19
To next leaf in sequence

To record
with key 13

To record
with key 17

To record
with key 19

Full

13 17
Counts even if null

To record
with key 13

To record
with key 17

Minimal
At least half of the keys must be used

Typical interior node

● n = 3

22

23 31 43

To keys
K < 23

To keys
23 ≤ K < 31

To keys
31 ≤ K < 43

To keys
43 ≤ K

Full

Minimal

23

To keys
K < 23

To keys
23 ≤ K < ?

At least half of the pointers must be used

Nodes must be “full enough”

23

Node type Min. # pointers Max. # pointers Min. # keys Max. # keys

Interior ⌈(n + 1) / 2⌉ n + 1 ⌈(n + 1) / 2⌉ - 1 n

Leaf ⌊(n + 1) / 2⌋ ** n + 1 ⌊(n + 1) / 2⌋ n

Root 2 * n + 1 1 n

* Exception: If there is only one record in the B-tree, there is one pointer in the root
** Not including the next leaf pointer

Lookup

● Search for key K recursively

24

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

Lookup

● For range query [a, b], search for key a then scan leaves to right until we pass b

25

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup 41 ≤ K ≤ 43

Insertion

● Find place for new key in a leaf
● If there is space, put key in leaf

26

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17

Insertion

● Find place for new key in a leaf
● If there is space, put key in leaf

27

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 17

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

28

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

29

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

30

13

23 31 43

13 17 19 23 29 31 37 43 47

Insert K = 40

40 41

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

31

13

23 31

13 17 19 23 29 31 37 43 47

Insert K = 40

40 41

43

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

32

13 40

23 31

13 17 19 23 29 31 37 43 47

Insert K = 40

40 41

43

Deletion

● Delete the key pointer from a leaf
● If the node contains too few pointers, take a pointer from or merge with adjacent sibling

33

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K = 7

Deletion

● Delete the key pointer from a leaf
● If the node contains too few pointers, take a pointer from or merge with adjacent sibling

34

13

7 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K = 7

Deletion

● Delete the key pointer from a leaf
● If the node contains too few pointers, take a pointer from or merge with adjacent sibling

35

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K = 7

Deletion

● Delete the key pointer from a leaf
● If the node contains too few pointers, take a pointer from or merge with adjacent sibling

36

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K = 11

Deletion

● Delete the key pointer from a leaf
● If the node contains too few pointers, take a pointer from or merge with adjacent sibling

37

13

5 23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K = 11

Deletion

● Delete the key pointer from a leaf
● If the node contains too few pointers, take a pointer from or merge with adjacent sibling

38

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K = 11

Deletion

● Delete the key pointer from a leaf
● If the node contains too few pointers, take a pointer from or merge with adjacent sibling

39

23

13 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K = 11

Exercise #2

● Delete K = 31

40

23

13 31 43

2 3 13 17 23 29 31 37 43 47

B-tree deletions in practice

● Coalescing is sometimes not implemented because
○ It is hard to implement and
○ The B-tree will probably grow again

41

Allowing duplicate keys

● If an interior node has keys K1, K2, …, Kn, then Ki is the smallest new key that appears
in the part of subtree accessible from the (i + 1)st pointer

42

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Allowing duplicate keys

● If an interior node has keys K1, K2, …, Kn, then Ki is the smallest new key that appears
in the part of subtree accessible from the (i + 1)st pointer

43

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

17 instead of 13 because 17 is the new key

Allowing duplicate keys

● If an interior node has keys K1, K2, …, Kn, then Ki is the smallest new key that appears
in the part of subtree accessible from the (i + 1)st pointer

44

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

NULL instead of 23 because there is no new key

Allowing duplicate keys

● Searching for K = 13 can be done correctly

45

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Allowing duplicate keys

● Q: How can we search for K = 24?

46

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Efficiency

● B-tree reorganizations is negligible in practice if n is reasonably large
○ If a typical block has 100 pointers, a 3-level B-tree has 10,000 leaves and 1 million pointers to records

● The number of disk I/Os needed ≈
○ The number of tree levels (3 is a reasonable number) +
○ One (lookup) or two (insert/delete) for the record manipulation

● We can also keep the root block (and maybe the second-level nodes) permanently
buffered in memory to save I/Os

47

Recap

● B+ tree
○ Lookup, insertion, deletion
○ Handling duplicate keys
○ I/O efficiency

48

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Hash table

● A hash function h takes a key and returns a block number from 0 to B - 1
● Blocks contain records and are stored in secondary storage
● Complexity:

● O(1) operation complexity
● O(n) storage complexity

49

key h(key)

...
...

Hash table: Design Decisions

● Hash Function
● How to map a large key space into a smaller domain of array offsets
● Trade-off between fast execution vs. collision rate

● Hashing Scheme
● How to handle key collisions after hashing
● Trade-off between allocating a large hash table vs. extra steps to location/insert keys

50
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash function

● For any input key, return an integer representation of that key.
● Output is deterministic

● Example:
● Given a key that is a string, return the sum of the characters xi modulo B (i.e., Σxi% B)
○ This function is not idea since there might be many collisions

● We do NOT want to use a cryptographic hash function (e.g., SHA-256) for DBMS
hash tables

● In general, we only care about the hash function’s speed and collision rate.

● Current SOTA: xxHash

51
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://xxhash.com/

