Emerging Database
Technologies

| ecture 5
01/24/24

Next Part: Database System Implementation

e Hardware and file system structure .
. . [Schema design]
e Indexing and hashing
e (Query optimizatton SQL il_t_l??] _______________
e Transactions [Parse Query]
e Crash recovery -
e Concurrency control [pocg! logicai Sy e]
[Select physical plan]
v

[Query execution]

Reading Materials

Database Systems: The Complete Book (2nd edition)
e Chapter 13: Secondary Storage Management

COMPLETE
BOOK

Data storage

e Database systems always involve secondary storage, e.g., disk
e We will study how a typical computer system manages storage
o Memory hierarchy

o Speed of data access

o Data representation [DBMS]

A

\ 4

[Data Storage }

Typical computer system (Von Neumann architecture)

CPU

Memory - I/O Bus

Main
Memory

Controller coo

Ei @ Secondary Storage

Why not store everything in main memory?

e Memory is expensive
o Memory is ~$10/GB
Solid state disk (SSD) is ~$0.1/GB
Magnetic disk is ~$0.05/GB
Large databases can be 10-100 TB

e Memory is volatile

(@)

(@)

(@)

e Some specialized systems do store the entire database in memory

Storage hierarchy

e Main memory stores current data
e Secondary storage stores main database
e Tertiary storage archives older versions of data

Registers
A

A 4

Cache

!

Main memory
(RAM)

A

A 4

Secondary storage
(e.g., disk, SSD)

A

A 4

Tertiary storage
(e.g., tape)

Smaller
& faster

Numbers everyone should know by Jeff Dean

"Numbers Everyone Should Know" from Jeff Dean. Slides #1, Slides #2

L1 cache reference 0.5 ns

Branch mispredict 5ns

L2 cache reference 7 ns
_Mutex lock/unlock _________________________100ns _________ ,
' Main memory reference 100 ns i
‘Compress 1K bytes with Zippy 10,000 ns 0.01 ms Google Al boss

Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms

Read 1 MB sequentially from memory 250,000 ns 0.25 ms
_Round trip within same datacenter 200,000 ns__ 0.5 ms_
' Disk seek 10,000,000 ns 10 ms |
"Read 1"MB sequentially from network ~ 10,000,000 ns 10 ms _

Read 1 MB sequentially from disk 30,000,000 ns 30 ms

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms
Where

e 1ns = 10" seconds
e 1 ms = 103 seconds

Jim Gray’s storage latency analogy: how far 1s the data?

10°

10¢

100
10

Tape

Disk

Memory

On board cache
On chip cache
Registers

Andromeda

Pluto

Columbus, GA

This building

_————— This room

? My head

2,000 years

2 years

Turing Award, 1998

1.5 hours

10 min

1 min

Secondary storage

e Storage that is not directly accessible by the CPU

e Retains data even when the computer is powered off
® Unlike RAM, which is temporary and volatile

e Examples:
® hard drives
® SSDs
® USB flash drives

10

Disks (HDDs)

e We will focus on the typical

magnetic disk o
e One or more circular platters ot
rotate around a spindle
e Tracks of the same radius form

a cylinder

cylinder

Image source: https://en.wikipedia.org/wiki/Cylinder-head-sector

_disk read-and-write
heads

Top view of disk surface

The disk is organized into tracks

Tracks are organized into sectors, which are indivisible units
Blocks (unit of transfer to memory) consist of one or more sectors
Gaps are used to identify the beginnings of sectors

Track
A
\g <) ’
Sector \\\‘é 5’,’, l’

7

12

Disk access time

e [Latency = seek time + rotational delay

+ transfer time + other resaye
o Seek time: position disk head on a cylinder 4 ' v
containing the track to read SeckTime D L " ~ . .
o Rotational latency: time until the first sector NS
of the block moves under the head @%D Y >
o Transfer time: time to read/write data in o s ' .
sectors « N

Platters Spin

Image source: https://theithollow.com/2013/11/18/disk-latency-concepts/

Seek time

e The seek time depends on the distance the head has to travel to the desired cylinder

A

ﬂ
— =
3X_20X B | SN
4 —>
Time Arm movement

1 N
Cylinders traveled

v

14

Rotational delay

e The time can range from O to the time to rotate the disk once

" Yy
) ‘\

‘ ' 7 Block I want
e

15

Relative times

e Seck time

o Disk: 1~15ms

o Solid-state drive (SSD): 0.08~0.16ms
e Rotational delay

o Disk: 0~10ms (on average, 1/2 rotation)
o SSD: Oms

e Transfer time
o Disk: < 1ms for 4KB block
o SSD: several times faster than disk

e Other delays

o CPU time, contention for controller/bus/memory
o Typically 0

16

I/0O model of computation

e Algorithm time = Number of disk I/Os
e Time to read a block from disk >> time to search a record within that block

tl

Memory 0

Disk tl t3 t5
t2 t4

Exercise #1

e (Consider a 500GB hard disk with the following performance characteristics
o 5000 revolution-per-minute (RPM) rotation rate
200 cylinders

Takes 1 + (¢/20) milliseconds to move heads ¢ cylinders
100MB/s transfer rate

o O O

e What is the average time to read a 1MB block from the hard disk?

® Assumes that the head travels 100 cylinders on average
® On average the disk rotates half a circle

18

Speeding up disk access

e The previous analysis was on random accesses
e There are several techniques for decreasing average disk access time

19

Organize data by cylinder

e Store relation in one or more adjacent cylinders
e Saves seek time and rotational latency

20

Use multiple disks

e Stripe the blocks of a relation across multiple disks
e Reduces disk access time

21

Prefetching/Double buffering

e Predict block request order and load into memory before needed
e Reduces average block access time

Prefetching

Memory: || A

|

Disk: Al B|C]|D

Prefetching/Double buffering

e Predict block request order and load into memory before needed
e Reduces average block access time

Processing Prefetching

Memory: || A H
Disk: . B|C|D

Prefetching/Double buffering

e Predict block request order and load into memory before needed
e Reduces average block access time

Prefetching Processing

B

Memory:

C|D

Exercise #2

® Suppose
o P =processing time / block
o R =1/0 time / block
o N =number of blocks
e [fP >R, what is the processing time of
o Single buffering
o Double buffering

25

File system structure

e Now let’s look at how disks are used to store databases
A tuple is represented by a record,
which consists of consecutive bytes in a disk block

e Records can be fixed-length or variable-length

Data items

A 4

Records

\ 4

Blocks

y

Files

v

Memory

26

Fixed-length records

e FEach record consists of a header and fixed-length region of record’s information
e [t is common for field addresses to be multiples of 4 or 8 to align data for efficient
reading/writing of main memory (a CPU accesses memory one word at a time)

pointer to schema for finding

CREATE TABLE MovieStar (fields of the record
name CHAR(30), length
address CHAR(255), .)
gender CHAR(1), tlmes(tiampw e;f 4 gender
birthdate DATE record was modiliie
)5
Ay | 3
1 | name | address birthdate
0 12 44 300304 316
—>

header 27

Packing fixed-length records into blocks

e Records are stored in blocks, which are moved into main memory

e A block header contains:

o O O O

Links to other blocks

Relation the tuples belong to

A directory of record offsets in block

Timestamp of the block’s last modification or access

header record 1 | record 2 coe

record n

28

Records that do not fit in a block

e Use spanned records to store values larger than blocks (e.g., videos)
e FEach record fragment header contains information whether it 1s a fragment, whether it
is the first or last fragment, and pointers to next/previous fragments

block header

‘ record header

record 1 record 2-a record 2-b record 3
1 1 A 1

Variable-length records

e Some records may not have a fixed schema with a list of fixed-length fields
® c.g., VARCHAR
® other data models (e.g., semi-structured)

30

Records with variable-length fields

e Put all fixed-length fields ahead of the variable-length fields

other header info
record length

CREATE TABLE MovieStar (
name VARCHAR(30),
address VARCHAR(100),
gender CHAR(1),
birthdate DATE

)

pointer to address

gender
i

birthdate name address

g |

1

!
A »d »d »
< L] L | »

header fixed-length fields variable-length fields

31

Variable-format records

e Records may not have a fixed schema (e.g., JSON)
e Use tagged fields to make record self describing

¥
¢ o § s
S g}ff I & QQVB
S & X S & g
g NS S8 %
§ F & SR
%0 S X S 5 %»6

32

Summary

e Many ways to store data on disk!

Flexibility

Space Utilization

Complexity

Performance

33

Index

e A data structure that takes field values and quickly finds records containing them
e Can find tuples of a relation without scanning the entire database

Matching

value —*|index holding —>
records

records

34

Reading Materials

Database Systems: The Complete Book (2nd edition)
e Chapter 14: Index Structures

Supplementary materials
Fundamental of Database Systems (7th Edition)
e Chapter 17 - Indexing Structures for Files and Physical
Database Design

DATABASE

BOOK

35

Using Indexes in SQL

An index 1s used to efficiently find tuples with certain values of attributes
An index may speed up lookups and joins
e However, every built index makes insertions, deletions, and updates to relation

more complex and time-consuming

CREATE INDEX KeyIndex ON Movies(title, year);

DROP INDEX KeyIndex;

36

Simple cost model

e Multiple tuples are stored in blocks on disk

e Every block needed is always retrieved from disk

e Disk I/Os are expensive

Memory

Disk

tl
t2

tl
t2

t3
t4

t5

37

Index on a key

e An index on a key is often useful

e Retrieve at most one block to memory for tuple
o Possibly other blocks for the index itself

CREATE INDEX KeyIndex ON Movies(title, year);

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ and year = 2008;

Memory

(Ponyo, 2008)

Keylndex

Disk

tl
t2

t3
t4

t5

38

Index on a key

e An index on a key is often useful

e Retrieve at most one block to memory for tuple ~ Memory

o Possibly other pages for the index itself

(Ponyo, 2008)

CREATE INDEX KeyIndex ON Movies(title, year); Keylndex

SELECT *

FROM Movies

WHERE title = ‘Ponyo’ and year = 2008; Disk t1 3 t5
t2 t4

39

Index on a key

e An index on a key is often useful

e Retrieve at most one block to memory for tuple
o Possibly other pages for the index itself

CREATE INDEX KeyIndex ON Movies(title, year);

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ and year = 2008;

Memory

(Ponyo, 2008)

Keylndex

t3
t4

Disk

tl
t2

t3
t4

t5

40

Indexes can be used 1n joins

e With the right indexes, the join below only requires 2 page reads for the tuples

o And possibly a small number of other pages for accessing the indexes

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

SELECT name

FROM Movies, MovieExec

WHERE title = ‘Ponyo’ and year
and producerC# = cert#;

2008

Memory

(Ponyo, 2008)

MiIndex MEIndex
— T
\\/

Disk ml | m2 | m3

el e2 e3 cee
&/

41

Indexes can be used 1n joins

e With the right indexes, the join below only requires 2 page reads for the tuples

o And possibly a small number of other pages for accessing the indexes

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

SELECT name

FROM Movies, MovieExec

WHERE title = ‘Ponyo’ and year
and producerC# = cert#;

2008

Memory

(Ponyo, 2008)

DAIndei////z:?\\\\\ MEIndex

A

Disk ml | m2 | m3

el e2 e3 cee
_//

42

Indexes can be used 1n joins

e With the right indexes, the join below only requires 2 page reads for the tuples

o And possibly a small number of other pages for accessing the indexes

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

SELECT name

FROM Movies, MovieExec

WHERE title = ‘Ponyo’ and year = 2008
and producerC# = cert#;

Memory

ml

ﬂk

(Ponyo, 2008)

DAIndei////z:?\\\\\

MEIndex

A

Disk ml

m?2

m3

el

e2

e3

_//

43

Indexes can be used 1n joins

e With the right indexes, the join below only requires 2 page reads for the tuples

o And possibly a small number of other pages for accessing the indexes

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

SELECT name

FROM Movies, MovieExec

WHERE title = ‘Ponyo’ and year = 2008
and producerC# = cert#;

Memory

ml

I

(Ponyo, 2008)

DAIndei////z:?\\\\\

Cert # 101
MEIndex

N7 —

Disk ml

m?2

m

A 4

el

e2

e3

K/

44

Indexes can be used 1n joins

e With the right indexes, the join below only requires 2 page reads for the tuples

o And possibly a small number of other pages for accessing the indexes

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

SELECT name

FROM Movies, MovieExec

WHERE title = ‘Ponyo’ and year = 2008
and producerC# = cert#;

Memory

ml

e3

i

(Ponyo, 2008)

DAIndei////z:?\\\\\

Cert # 101
MEIndex

N7 —

Disk ml

m?2

m

A 4

el

e2

e3

-

45

_//

So, how are indexes implemented in DBMS?

e |ndex-structure basics
o Dense index, sparse index, secondary index

e B-Tree

o For range lookups

e Hashing

o For point lookups

46

