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Next Part: Database System Implementation

● Hardware and file system structure
● Indexing and hashing
● Query optimization
● Transactions
● Crash recovery
● Concurrency control
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Reading Materials
Database Systems: The Complete Book (2nd edition)

● Chapter 13: Secondary Storage Management
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 
taught by Steven Whang.



Data storage

● Database systems always involve secondary storage, e.g., disk
● We will study how a typical computer system manages storage

○ Memory hierarchy
○ Speed of data access
○ Data representation
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Typical computer system (Von Neumann architecture)
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Why not store everything in main memory?

● Memory is expensive
○ Memory is ~$10/GB
○ Solid state disk (SSD) is ~$0.1/GB
○ Magnetic disk is ~$0.05/GB
○ Large databases can be 10-100 TB

● Memory is volatile
● Some specialized systems do store the entire database in memory

6



Storage hierarchy

● Main memory stores current data
● Secondary storage stores main database
● Tertiary storage archives older versions of data
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Numbers everyone should know by Jeff Dean
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Jim Gray’s storage latency analogy: how far is the data?
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Secondary storage

● Storage that is not directly accessible by the CPU
● Retains data even when the computer is powered off 

● Unlike RAM, which is temporary and volatile 

● Examples: 
● hard drives

● SSDs
● USB flash drives 
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Disks (HDDs)

● We will focus on the typical 
magnetic disk

● One or more circular platters 
rotate around a spindle

● Tracks of the same radius form 
a cylinder
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Image source: https://en.wikipedia.org/wiki/Cylinder-head-sector



Top view of disk surface
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Track

Sector

Gap

● The disk is organized into tracks
● Tracks are organized into sectors, which are indivisible units
● Blocks (unit of transfer to memory) consist of one or more sectors
● Gaps are used to identify the beginnings of sectors



Disk access time

● Latency = seek time + rotational delay 
+ transfer time + other

○ Seek time: position disk head on a cylinder 
containing the track to read

○ Rotational latency: time until the first sector 
of the block moves under the head

○ Transfer time: time to read/write data in 

sectors
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Image source: https://theithollow.com/2013/11/18/disk-latency-concepts/



Seek time

● The seek time depends on the distance the head has to travel to the desired cylinder
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Rotational delay

● The time can range from 0 to the time to rotate the disk once
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Relative times

● Seek time
○ Disk: 1~15ms

○ Solid-state drive (SSD): 0.08~0.16ms

● Rotational delay
○ Disk: 0~10ms (on average, 1/2 rotation)
○ SSD: 0ms

● Transfer time
○ Disk: < 1ms for 4KB block

○ SSD: several times faster than disk

● Other delays
○ CPU time, contention for controller/bus/memory
○ Typically 0
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I/O model of computation

● Algorithm time ≈ Number of disk I/Os
● Time to read a block from disk >> time to search a record within that block
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Exercise #1

● Consider a 500GB hard disk with the following performance characteristics
○ 5000 revolution-per-minute (RPM) rotation rate

○ 200 cylinders
○ Takes 1 + (t / 20) milliseconds to move heads t cylinders
○ 100MB/s transfer rate

● What is the average time to read a 1MB block from the hard disk?
● Assumes that the head travels 100 cylinders on average
● On average the disk rotates half a circle 
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Speeding up disk access

● The previous analysis was on random accesses
● There are several techniques for decreasing average disk access time
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Organize data by cylinder

● Store relation in one or more adjacent cylinders
● Saves seek time and rotational latency
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Use multiple disks

● Stripe the blocks of a relation across multiple disks
● Reduces disk access time
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Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time
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Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time

23

Disk: B C D

Memory:

Processing Prefetching

A B



Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time
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Exercise #2

● Suppose
○ P = processing time / block
○ R = I/O time / block
○ N = number of blocks

● If P ≥ R, what is the processing time of
○ Single buffering
○ Double buffering
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File system structure

● Now let’s look at how disks are used to store databases
● A tuple is represented by a record, 

which consists of consecutive bytes in a disk block
● Records can be fixed-length or variable-length
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Fixed-length records

● Each record consists of a header and fixed-length region of record’s information
● It is common for field addresses to be multiples of 4 or 8 to align data for efficient 

reading/writing of main memory (a CPU accesses memory one word at a time)
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CREATE TABLE MovieStar (
name CHAR(30),
address CHAR(255),
gender CHAR(1),
birthdate DATE

);

name address

gender

birthdate

header

0

pointer to schema for finding 
fields of the record

length

timestamp when 
record was modified

12 44 300 304 316



● Records are stored in blocks, which are moved into main memory
● A block header contains:

○ Links to other blocks
○ Relation the tuples belong to

○ A directory of record offsets in block
○ Timestamp of the block’s last modification or access

Packing fixed-length records into blocks
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Records that do not fit in a block

● Use spanned records to store values larger than blocks (e.g., videos)
● Each record fragment header contains information whether it is a fragment, whether it 

is the first or last fragment, and pointers to next/previous fragments
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Variable-length records

● Some records may not have a fixed schema with a list of fixed-length fields
● e.g., VARCHAR
● other data models (e.g., semi-structured)
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Records with variable-length fields

● Put all fixed-length fields ahead of the variable-length fields
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CREATE TABLE MovieStar (
name VARCHAR(30),
address VARCHAR(100),
gender CHAR(1),
birthdate DATE

);



Variable-format records

● Records may not have a fixed schema (e.g., JSON)
● Use tagged fields to make record self describing
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Summary

● Many ways to store data on disk!
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Index

● A data structure that takes field values and quickly finds records containing them
● Can find tuples of a relation without scanning the entire database
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Reading Materials
Database Systems: The Complete Book (2nd edition)

● Chapter 14: Index Structures

Supplementary materials

Fundamental of Database Systems (7th Edition)

● Chapter 17 - Indexing Structures for Files and Physical 

Database Design
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 
taught by Steven Whang.



Using Indexes in SQL

● An index is used to efficiently find tuples with certain values of attributes
● An index may speed up lookups and joins
● However, every built index makes insertions, deletions, and updates to relation 

more complex and time-consuming
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CREATE INDEX KeyIndex ON Movies(title, year);

DROP INDEX KeyIndex;



Simple cost model

● Multiple tuples are stored in blocks on disk
● Every block needed is always retrieved from disk
● Disk I/Os are expensive
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Index on a key

● An index on a key is often useful
● Retrieve at most one block to memory for tuple

○ Possibly other blocks for the index itself
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SELECT *
FROM Movies
WHERE title = ‘Ponyo’ and year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);
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Index on a key

● An index on a key is often useful
● Retrieve at most one block to memory for tuple

○ Possibly other pages for the index itself
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Index on a key

● An index on a key is often useful
● Retrieve at most one block to memory for tuple

○ Possibly other pages for the index itself
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SELECT *
FROM Movies
WHERE title = ‘Ponyo’ and year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);
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Indexes can be used in joins
● With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

41

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ and year = 2008

and producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);
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Indexes can be used in joins

● With the right indexes, the join below only requires 2 page reads for the tuples
○ And possibly a small number of other pages for accessing the indexes
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Indexes can be used in joins
● With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes
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Indexes can be used in joins

● With the right indexes, the join below only requires 2 page reads for the tuples
○ And possibly a small number of other pages for accessing the indexes
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Indexes can be used in joins

● With the right indexes, the join below only requires 2 page reads for the tuples
○ And possibly a small number of other pages for accessing the indexes
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SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ and year = 2008

and producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);
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So, how are indexes implemented in DBMS?
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● Index-structure basics
○ Dense index, sparse index, secondary index 

● B-Tree
○ For range lookups

● Hashing
○ For point lookups


