
CS 4440 A
Emerging Database
Technologies

Lecture 5
01/24/24

Next Part: Database System Implementation

● Hardware and file system structure
● Indexing and hashing
● Query optimization
● Transactions
● Crash recovery
● Concurrency control

2

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

Schema design

Reading Materials
Database Systems: The Complete Book (2nd edition)

● Chapter 13: Secondary Storage Management

3
Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang.

Data storage

● Database systems always involve secondary storage, e.g., disk
● We will study how a typical computer system manages storage

○ Memory hierarchy
○ Speed of data access
○ Data representation

4

DBMS

Data Storage

Typical computer system (Von Neumann architecture)

5

CPU

Main
Memory Controller ...

Memory - I/O Bus

Secondary Storage

Why not store everything in main memory?

● Memory is expensive
○ Memory is ~$10/GB
○ Solid state disk (SSD) is ~$0.1/GB
○ Magnetic disk is ~$0.05/GB
○ Large databases can be 10-100 TB

● Memory is volatile
● Some specialized systems do store the entire database in memory

6

Storage hierarchy

● Main memory stores current data
● Secondary storage stores main database
● Tertiary storage archives older versions of data

7

Registers

Cache

Main memory
(RAM)

Secondary storage
(e.g., disk, SSD)

Tertiary storage
(e.g., tape)

Smaller
& faster

Numbers everyone should know by Jeff Dean

8

Google AI boss

Jim Gray’s storage latency analogy: how far is the data?

9

1

2

10

100

106

109

Disk

Memory

Registers

On chip cache

On board cache

Tape

2 years

1 min

10 min

1.5 hours

2,000 years

My head
This room

This building

Columbus, GA

Pluto

Andromeda

Turing Award, 1998

Secondary storage

● Storage that is not directly accessible by the CPU
● Retains data even when the computer is powered off

● Unlike RAM, which is temporary and volatile

● Examples:
● hard drives

● SSDs
● USB flash drives

10

Disks (HDDs)

● We will focus on the typical
magnetic disk

● One or more circular platters
rotate around a spindle

● Tracks of the same radius form
a cylinder

11
Image source: https://en.wikipedia.org/wiki/Cylinder-head-sector

Top view of disk surface

12

Track

Sector

Gap

● The disk is organized into tracks
● Tracks are organized into sectors, which are indivisible units
● Blocks (unit of transfer to memory) consist of one or more sectors
● Gaps are used to identify the beginnings of sectors

Disk access time

● Latency = seek time + rotational delay
+ transfer time + other

○ Seek time: position disk head on a cylinder
containing the track to read

○ Rotational latency: time until the first sector
of the block moves under the head

○ Transfer time: time to read/write data in

sectors

13
Image source: https://theithollow.com/2013/11/18/disk-latency-concepts/

Seek time

● The seek time depends on the distance the head has to travel to the desired cylinder

14

N1

Cylinders traveled

Time

x

3x-20x

Arm movement

Rotational delay

● The time can range from 0 to the time to rotate the disk once

15

Head here

Block I want

Relative times

● Seek time
○ Disk: 1~15ms

○ Solid-state drive (SSD): 0.08~0.16ms

● Rotational delay
○ Disk: 0~10ms (on average, 1/2 rotation)
○ SSD: 0ms

● Transfer time
○ Disk: < 1ms for 4KB block

○ SSD: several times faster than disk

● Other delays
○ CPU time, contention for controller/bus/memory
○ Typically 0

16

I/O model of computation

● Algorithm time ≈ Number of disk I/Os
● Time to read a block from disk >> time to search a record within that block

17

Memory

Disk ...

t1
t2

t3
t4

t5t1
t2

Exercise #1

● Consider a 500GB hard disk with the following performance characteristics
○ 5000 revolution-per-minute (RPM) rotation rate

○ 200 cylinders
○ Takes 1 + (t / 20) milliseconds to move heads t cylinders
○ 100MB/s transfer rate

● What is the average time to read a 1MB block from the hard disk?
● Assumes that the head travels 100 cylinders on average
● On average the disk rotates half a circle

18

Speeding up disk access

● The previous analysis was on random accesses
● There are several techniques for decreasing average disk access time

19

Organize data by cylinder

● Store relation in one or more adjacent cylinders
● Saves seek time and rotational latency

20

Use multiple disks

● Stripe the blocks of a relation across multiple disks
● Reduces disk access time

21

...
R1 R2R3 R4... ...

Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time

22

Disk: A B C D

Memory:

Prefetching

A

Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time

23

Disk: B C D

Memory:

Processing Prefetching

A B

Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time

24

Disk: C D

Memory:

Prefetching Processing

C B

Exercise #2

● Suppose
○ P = processing time / block
○ R = I/O time / block
○ N = number of blocks

● If P ≥ R, what is the processing time of
○ Single buffering
○ Double buffering

25

File system structure

● Now let’s look at how disks are used to store databases
● A tuple is represented by a record,

which consists of consecutive bytes in a disk block
● Records can be fixed-length or variable-length

26

Data items

Records

Blocks

Files

Memory

Fixed-length records

● Each record consists of a header and fixed-length region of record’s information
● It is common for field addresses to be multiples of 4 or 8 to align data for efficient

reading/writing of main memory (a CPU accesses memory one word at a time)

27

CREATE TABLE MovieStar (
name CHAR(30),
address CHAR(255),
gender CHAR(1),
birthdate DATE

);

name address

gender

birthdate

header

0

pointer to schema for finding
fields of the record

length

timestamp when
record was modified

12 44 300 304 316

● Records are stored in blocks, which are moved into main memory
● A block header contains:

○ Links to other blocks
○ Relation the tuples belong to

○ A directory of record offsets in block
○ Timestamp of the block’s last modification or access

Packing fixed-length records into blocks

28

header record 1 record 2 record n...

Records that do not fit in a block

● Use spanned records to store values larger than blocks (e.g., videos)
● Each record fragment header contains information whether it is a fragment, whether it

is the first or last fragment, and pointers to next/previous fragments

29

record 1 record 2-a record 2-b record 3

block header

record header

Variable-length records

● Some records may not have a fixed schema with a list of fixed-length fields
● e.g., VARCHAR
● other data models (e.g., semi-structured)

30

Records with variable-length fields

● Put all fixed-length fields ahead of the variable-length fields

31

birthdate address

gender

name

header

other header info

record length

pointer to address

fixed-length fields variable-length fields

CREATE TABLE MovieStar (
name VARCHAR(30),
address VARCHAR(100),
gender CHAR(1),
birthdate DATE

);

Variable-format records

● Records may not have a fixed schema (e.g., JSON)
● Use tagged fields to make record self describing

32

2 A NI S JOHN20 4

N
um

be
r o

f f
ie

ld
s

Co
de

 fo
r a

ge
In

te
ge

r t
yp

e

Co
de

 fo
r n

am
e

St
rin

g
ty

pe
St

rin
g

le
ng

th

Summary

● Many ways to store data on disk!

33

Flexibility

Complexity

Space Utilization

Performance

Index

● A data structure that takes field values and quickly finds records containing them
● Can find tuples of a relation without scanning the entire database

34

value index
Blocks
holding
records

Matching
records

Reading Materials
Database Systems: The Complete Book (2nd edition)

● Chapter 14: Index Structures

Supplementary materials

Fundamental of Database Systems (7th Edition)

● Chapter 17 - Indexing Structures for Files and Physical

Database Design

35
Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang.

Using Indexes in SQL

● An index is used to efficiently find tuples with certain values of attributes
● An index may speed up lookups and joins
● However, every built index makes insertions, deletions, and updates to relation

more complex and time-consuming

36

CREATE INDEX KeyIndex ON Movies(title, year);

DROP INDEX KeyIndex;

Simple cost model

● Multiple tuples are stored in blocks on disk
● Every block needed is always retrieved from disk
● Disk I/Os are expensive

37

Memory

Disk ...

t1
t2

t3
t4

t5t1
t2

Index on a key

● An index on a key is often useful
● Retrieve at most one block to memory for tuple

○ Possibly other blocks for the index itself

38

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ and year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Memory

Disk ...t3
t4

t5t1
t2

KeyIndex

(Ponyo, 2008)

Index on a key

● An index on a key is often useful
● Retrieve at most one block to memory for tuple

○ Possibly other pages for the index itself

39

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ and year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Memory

Disk ...t3
t4

t5t1
t2

KeyIndex

(Ponyo, 2008)

Index on a key

● An index on a key is often useful
● Retrieve at most one block to memory for tuple

○ Possibly other pages for the index itself

40

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ and year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Memory

Disk ...

t3
t4

t3
t4

t5t1
t2

KeyIndex

(Ponyo, 2008)

Indexes can be used in joins
● With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

41

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ and year = 2008

and producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Memory

Disk ...m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

Indexes can be used in joins

● With the right indexes, the join below only requires 2 page reads for the tuples
○ And possibly a small number of other pages for accessing the indexes

42

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ and year = 2008

and producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Memory

Disk ...m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

Indexes can be used in joins
● With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

43

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ and year = 2008

and producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

Indexes can be used in joins

● With the right indexes, the join below only requires 2 page reads for the tuples
○ And possibly a small number of other pages for accessing the indexes

44

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ and year = 2008

and producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

Cert # 101

Indexes can be used in joins

● With the right indexes, the join below only requires 2 page reads for the tuples
○ And possibly a small number of other pages for accessing the indexes

45

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ and year = 2008

and producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

e3

Cert # 101

So, how are indexes implemented in DBMS?

46

● Index-structure basics
○ Dense index, sparse index, secondary index

● B-Tree
○ For range lookups

● Hashing
○ For point lookups

