
CS 4440 A
Emerging Database
Technologies

Lecture 3
01/17/24

Reading Materials
Database Systems: The Complete Book (2nd edition)
● Chapter 3: Design Theory for Relational Databases (3.1 –

3.5)

Supplementary materials
Fundamental of Database Systems (7th Edition)
● Chapter 14 - Basics of Functional Dependencies and

Normalization for Relational Databases

2
Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang.

Design theory for relational databases

● There are many ways to design a relational database schema
○ E.g., we just learned how to use an E/R diagram

● It is also common to improve the initial schema (esp. eliminating redundancy)
○ Often, the problem is combining too much into one relation

● Fortunately, there is a well-developed design theory for good schema design
○ Functional dependencies, normalization, multivalued dependencies
○ One of the reasons Databases are powerful and so widely used

3

Ideas High-Level
Design

Relational
Database
Schema

Relational
DBMS

Improve schemaLast lecture

Agenda

Functional dependency
“Anomalies” in relation schemas

● Redundancy
● Update anomaly
● Deletion anomaly

“Normalization” to remove anomalies
● BCNF
● 3NF

4

Functional dependency (FD)

● A common constraint on a relation that generalizes the idea of a key
● Definition: if two tuples of R agree on all the attributes A1, A2, …, An, they must

also agree on (or functionally determine) B1, B2, …, Bm

● Denoted as A1A2 … An → B1B2 ... Bm

● Called “functional” because FD takes A values and produces unique B values

5

t

u

A’s B’s

If t and u
agree
here,

they must
agree here

Functional dependency (FD)

● Consider the following relation, which tries to do “too much” and has
redundancies

● Q: What are the FDs?

6

title year length genre studioName starName
Ponyo 2008 103 anime Ghibli Yuria Nara
Ponyo 2008 103 anime Ghibli Hiroki Doi
Oldboy 2003 120 mystery Show East Choi Min-Sik

Functional dependency (FD)

● Consider the following relation, which tries to do “too much” and has
redundancies

● What are the FDs?

7

title year length genre studioName starName
Ponyo 2008 103 anime Ghibli Yuria Nara
Ponyo 2008 103 anime Ghibli Hiroki Doi
Oldboy 2003 120 mystery Show East Choi Min-Sik

title, year → length, genre, studioName ✔

Functional dependency (FD)

● Consider the following relation, which tries to do “too much” and has
redundancies

● What are the FDs?

8

title year length genre studioName starName
Ponyo 2008 103 anime Ghibli Yuria Nara
Ponyo 2008 103 anime Ghibli Hiroki Doi
Oldboy 2003 120 mystery Show East Choi Min-Sik

title, year → starName ❌

Functional dependency (FD)

● FD are for all possible instances of a relation
● FDs can be used to decompose relations and eliminate redundancy
● It is common for the right side of an FD to be a single attribute
● In fact, A1A2 … An → B1B2 … Bm is equivalent to the set of FD’s

9

A1A2...An → B1

A1A2...An → B2

…
A1A2...An → Bm

Key

● A set of attributes that functionally determine all other attributes
● And no proper subset does the same (i.e., a key is minimal)
● There can be multiple keys (there is no special role of the primary key here)

10

title year length genre studioName starName
Ponyo 2008 103 anime Ghibli Yuria Nara
Ponyo 2008 103 anime Ghibli Hiroki Doi
Oldboy 2003 120 mystery Show East Choi Min-Sik

{title, year, starName} is a key
{title, year} is not a key because title year → starName is not an FD
{year, starName} is not a key because year starName → title is not an FD
{title, starName} is not a key because title starName → year is not an FD

Superkey

● A set of attributes that contains a key
● Not necessarily minimal

11

title year length genre studioName starName
Ponyo 2008 103 anime Ghibli Yuria Nara
Ponyo 2008 103 anime Ghibli Hiroki Doi
Oldboy 2003 120 mystery Show East Choi Min-Sik

{title, year, starName} is a key or superkey
{title, year, length, starName} is a superkey

Reasoning about FDs

● Suppose we are told of a set of FDs that a relation satisfies
● Often we can deduce that relation must satisfy certain other FDs

○ Example: if a relation R(A, B, C) satisfies the FD’s A → B and B → C, R also satisfies A → C
○ Proof: given two tuples (a, b1, c1), (a, b2, c2), we know that b1 = b2 and, therefore, c1 = c2 as well

● This ability to discover additional FDs is helpful for good relation schema design

12

Splitting/combining rule

● Splitting/combining can be applied to the right sides of FD’s

13

A1A2 … An → B1B2 … Bm

A1A2 … An → B1, A1A2 … An → B2, …, A1A2 … An → Bm

Splitting rule Combining rule

Splitting/combining rule

● For example,

14

title year → length genre studioName

title year → length
title year → genre
title year → studioName

Splitting rule

● Splitting rule does not apply to the left sides of FD’s

15

title year → length

title → length
year → length

Trivial functional dependencies

● A constraint is trivial if it holds for every possible instance of the relation
● A trivial FD A1A2 … An → B1 B2 … Bm is where {B1, B2, … Bm} ⊆ {A1,A2, … ,An}

○ E.g., title year → title

○ E.g., title → title

● Trivial dependency rule: A1A2 … An → B1 B2 … Bm is equivalent to
A1A2 … An → C1 C2 … Ck where the C’s are the B’s that are not also A’s
○ E.g., title year → title length is equivalent to title year → length

16

● The closure of {A1, A2, …, An} under the FD’s in S is the set of attributes X where
A1A2 … An → X follows from the FD’s of S

● Denoted as {A1, A2, …, An}+

Closure of attributes

17

AB → C
BC → AD
D → E

{A, B}+

A, B

CF → B

● The closure of {A1, A2, …, An} under the FD’s in S is the set of attributes X where
A1A2 … An → X follows from the FD’s of S

● Denoted as {A1, A2, …, An}+

Closure of attributes

18

AB → C
BC → AD
D → E

{A, B}+

A, B, C

CF → B

● The closure of {A1, A2, …, An} under the FD’s in S is the set of attributes X where
A1A2 … An → X follows from the FD’s of S

● Denoted as {A1, A2, …, An}+

Closure of attributes

19

AB → C
BC → AD
D → E

{A, B}+

A, B, C, D

CF → B

● The closure of {A1, A2, …, An} under the FD’s in S is the set of attributes X where
A1A2 … An → X follows from the FD’s of S

● Denoted as {A1, A2, …, An}+

Closure of attributes

20

AB → C
BC → AD
D → E

{A, B}+

A, B, C, D, E

CF → B

● The closure of {A1, A2, …, An} under the FD’s in S is the set of attributes X where
A1A2 … An → X follows from the FD’s of S

● Denoted as {A1, A2, …, An}+

Closure of attributes

21

AB → C
BC → AD
D → E

{A, B}+

A, B, C, D, E

CF → B

Cannot be expanded
further, so this is a closure

Closure algorithm

● Input: {A1, A2, …, An} and a set of FD’s S
● Output: the closure {A1, A2, …, An}+

1. If necessary, split the FD’s of S so each FD has a single attribute on the right
2. Initialize X = {A1, A2, …, An}
3. Repeatedly search an FD B1B2 … Bm → C

where the B’s are in X, but C is not, and add C to X
4. Return X

Proof of correctness in textbook

22

Initial set of
attributes

Closure

Why computing closure?

● Test if FD A1A2 … An → B follows from a set of FDs S
● Compute {A1, A2, …, An}+ and checking if it contains B
○ In the previous closure example, AB → D follows from the FD’s because {A, B}+ = {A,

B, C, D, E}

23

Closures and keys

● A1, A2, …, An is a superkey if and only if {A1, A2, …, An}+ is the set of all
attributes

24

Armstrong’s axioms

You can derive any FDs that follows from a given set using these axioms:
1. Reflexivity: If {B1 ,B2 ,…, Bm} ⊆ {A1, A2, …, An}

then A1 A2 … An → B1 B2 … Bm

2. Augmentation: If A1 A2 … An → B1 B2 … Bm

then A1 A2 … An C1 C2 … Ck → B1 B2 … Bm C1 C2 … Ck

(remove any duplicates on left and right hand sides)
3. Transitivity: If A1 A2 … An → B1 B2 … Bm and B1 B2 … Bm → C1 C2 … Ck

then A1 A2 … An → C1 C2 … Ck

25

These three inference rules are sound and complete
○ Sound: only produces FDs in the closure

○ Complete: produces all the FDs in the closure

● Does AB → D follow from the FDs below?

Armstrong’s axioms

26

AB → C
BC → AD
D → E
CF → B

1. AB → C (given)
2. BC → AD (given)

● Does AB → D follow from the FDs below?

Armstrong’s axioms

27

AB → C
BC → AD
D → E
CF → B

1. AB → C (given)
2. BC → AD (given)
3. AB → BC (Augmentation on 1)

● Does AB → D follow from the FDs below?

Armstrong’s axioms

28

AB → C
BC → AD
D → E
CF → B

1. AB → C (given)
2. BC → AD (given)
3. AB → BC (Augmentation on 1)
4. AB → AD (Transitivity on 2,3)

● Does AB → D follow from the FDs below?

Armstrong’s axioms

29

AB → C
BC → AD
D → E
CF → B

1. AB → C (given)
2. BC → AD (given)
3. AB → BC (Augmentation on 1)
4. AB → AD (Transitivity on 2,3)
5. AD → D (Reflexivity)

● Does AB → D follow from the FDs below?

Armstrong’s axioms

30

AB → C
BC → AD
D → E
CF → B

1. AB → C (given)
2. BC → AD (given)
3. AB → BC (Augmentation on 1)
4. AB → AD (Transitivity on 2,3)
5. AD → D (Reflexivity)
6. AB → D (Transitivity on 4,5)

Exercise #1

● Given R(A, B, C, D) and FD’s AB → C, C → D, D → A
○ Can you show that AB is a key of R?
○ Can you show that BD is a key of R?

31

Minimal basis

● Sometimes we want to choose which FD’s represent the full set of FD’s of a
relation
○ E.g., when computing keys

● Given a set of FD’s S, any set of FD’s equivalent to S is a basis for S
● A minimal basis of S is a basis M such that

○ All the FD’s in M have singleton right sides
○ If any FD is removed, M is no longer a basis
○ If for any FD in M we remove one or more attributes from the left side, M is no longer a basis

● Suppose S = {A → AB, AB → C}
○ Then the minimal basis is {A → B, A → C}
○ In general, there can be multiple minimal bases

32

Minimal basis generation

Input: S = {A → AB, AB → C}

1. Split FD’s so that they have singleton right sides
M = {A → B, A → A, AB → C}

2. Remove trivial FDs
M = {A → B, AB → C}

3. Minimize the left sides of each FD
M = {A → B, A → C}

4. Remove redundant FDs
M = {A → B, A → C}

33

Projection of functional dependencies

● When designing a schema, sometimes need to answer the following question:
Given a relation R with a set of FD’s S, what FD’s hold for R1 = πL(R) ?

● Compute all the FD’s that
○ follow from S and

○ involve only attributes in R1

● Example
○ Suppose R(A, B, C, D) has FD’s A → B, B → C, C → D

○ Then the FD’s for R1(A, C, D) are A → C, C → D

34

Recap

● Design theory
○ Functional dependency (FD)
○ Trivial FDs
○ Splitting/combining rule
○ Closure of attributes
○ Armstrong's axioms
○ Minimal basis
○ Projection of FDs

35

title year length genre studioName starName

Ponyo 2008 103 anime Ghibli Yuria Nara

Ponyo 2008 103 anime Ghibli Hiroki Doi

Oldboy 2003 120 mystery Show East Choi Min-Sik

title, year → length, genre, studioName

AB → C
BC → AD
D → E
CF → B

1. AB → C (given)
2. BC → AD (given)
3. AB → BC (Augmentation on 1)
4. AB → AD (Transitivity on 2,3)
5. AD → D (Reflexivity)

Design of relational database schemas

● Careless schema selection may lead to redundancies and anomalies

● We will discuss
○ Redundancy and related anomalies
○ Relation decomposition
○ Boyce-Codd normal form (BCNF)
○ 3NF

36

Anomalies

● Occurs when we try to cram too much information into a single relation

37

title year length genre studioName starName
Ponyo 2008 103 anime Ghibli Yuria Nara
Ponyo 2008 103 anime Ghibli Hiroki Doi
Oldboy 2003 120 mystery Show East Choi Min-Sik

1. Redundancy: information is repeated unnecessarily
2. Update anomaly: only updating the first tuple may

leave the second tuple incorrect

Movies1

Anomalies

● Occurs when we try to cram too much information into a single relation

38

title year length genre studioName starName
Ponyo 2008 103 anime Ghibli Yuria Nara
Ponyo 2008 103 anime Ghibli Hiroki Doi
Oldboy 2003 120 mystery Show East Choi Min-Sik

3. Deletion anomaly: removing the movie star Choi Min-Sik will
also remove the movie information of Oldboy

Movies1

Decomposing relations

● The accepted way to eliminate anomalies is to decompose relations

39

title year length genre studioName
Ponyo 2008 103 anime Ghibli
Oldboy 2003 120 mystery Show East

title year starName
Ponyo 2008 Yuria Nara
Ponyo 2008 Hiroki Doi
Oldboy 2003 Choi Min-Sik

No redundancy or update anomalies No deletion anomaliesMovies2 Movies3

Decomposing relations

● The accepted way to eliminate anomalies is to decompose relations

40

title year length genre studioName
Ponyo 2008 103 anime Ghibli
Oldboy 2003 120 mystery Show East

title year starName
Ponyo 2008 Yuria Nara
Ponyo 2008 Hiroki Doi
Oldboy 2003 Choi Min-Sik

This is OK because title and year form a key of a movie and cannot
be more succinct; if one of the year changes, the movie is a
different one

Movies2 Movies3

