CS 4440 A

Emerging Database Technologies

Lecture 3 01/17/24

Reading Materials

Database Systems: The Complete Book (2nd edition)

Chapter 3: Design Theory for Relational Databases (3.1 – 3.5)

Supplementary materials

Fundamental of Database Systems (7th Edition)

 Chapter 14 - Basics of Functional Dependencies and Normalization for Relational Databases

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) taught by Steven Whang.

Design theory for relational databases

- There are many ways to design a relational database schema
 - E.g., we just learned how to use an E/R diagram
- It is also common to improve the initial schema (esp. eliminating redundancy)
 - Often, the problem is combining too much into one relation
- Fortunately, there is a well-developed design theory for good schema design
 - Functional dependencies, normalization, multivalued dependencies
 - One of the reasons Databases are powerful and so widely used

Agenda

Functional dependency "Anomalies" in relation schemas

- Redundancy
- Update anomaly
- Deletion anomaly

"Normalization" to remove anomalies

- BCNF
- 3NF

- A common constraint on a relation that generalizes the idea of a key
- Definition: if two tuples of R agree on all the attributes A₁, A₂, ..., A_n, they must also agree on (or functionally determine) B₁, B₂, ..., B_m
- Denoted as $A_1A_2 \dots A_n \rightarrow B_1B_2 \dots B_m$
- Called "functional" because FD takes A values and produces unique B values

- Consider the following relation, which tries to do "too much" and has redundancies
- Q: What are the FDs?

title	year	length	genre	studioName	starName
Ponyo	2008	103	anime	Ghibli	Yuria Nara
Ponyo	2008	103	anime	Ghibli	Hiroki Doi
Oldboy	2003	120	mystery	Show East	Choi Min-Sik

- Consider the following relation, which tries to do "too much" and has redundancies
- What are the FDs?

title, year \rightarrow length, genre, studioName

title	year	length	genre	studioName	starName
Ponyo	2008	103	anime	Ghibli	Yuria Nara
Ponyo	2008	103	anime	Ghibli	Hiroki Doi
Oldboy	2003	120	mystery	Show East	Choi Min-Sik

- Consider the following relation, which tries to do "too much" and has redundancies
- What are the FDs?

title, year \rightarrow starName

		uuo,	y com coom			
title	year	length	genre	studioName	starName	
Ponyo	2008	103	anime	Ghibli	Yuria Nar	ra
Ponyo	2008	103	anime	Ghibli	Hiroki Do	Di
Oldboy	2003	120	mystery	Show East	Choi Min-	-Sik

- FD are for all possible instances of a relation
- FDs can be used to decompose relations and eliminate redundancy
- It is common for the right side of an FD to be a single attribute
- In fact, $A_1A_2 \dots A_n \rightarrow B_1B_2 \dots B_m$ is equivalent to the set of FD's

$$\begin{array}{c} A_1 A_2 \dots A_n \rightarrow B_1 \\ A_1 A_2 \dots A_n \rightarrow B_2 \\ \dots \\ A_1 A_2 \dots A_n \rightarrow B_m \end{array}$$

Key

- A set of attributes that functionally determine all other attributes
- And no proper subset does the same (i.e., a key is minimal)
- There can be multiple keys (there is no special role of the primary key here)

{title, year, starName} is a key {title, year} is not a key because title year \rightarrow starName is not an FD {year, starName} is not a key because year starName \rightarrow title is not an FD {title, starName} is not a key because title starName \rightarrow year is not an FD

title	year	length	genre	studioName	starName
Ponyo	2008	103	anime	Ghibli	Yuria Nara
Ponyo	2008	103	anime	Ghibli	Hiroki Doi
Oldboy	2003	120	mystery	Show East	Choi Min-Sik

Superkey

- A set of attributes that contains a key
- Not necessarily minimal

{title, year, starName} is a key or superkey {title, year, length, starName} is a superkey

title	year	length	genre	studioName	starName
Ponyo	2008	103	anime	Ghibli	Yuria Nara
Ponyo	2008	103	anime	Ghibli	Hiroki Doi
Oldboy	2003	120	mystery	Show East	Choi Min-Sik

Reasoning about FDs

- Suppose we are told of a set of FDs that a relation satisfies
- Often we can deduce that relation must satisfy certain other FDs
 - Example: if a relation R(A, B, C) satisfies the FD's A \rightarrow B and B \rightarrow C, R also satisfies A \rightarrow C
 - Proof: given two tuples (a, b_1 , c_1), (a, b_2 , c_2), we know that $b_1 = b_2$ and, therefore, $c_1 = c_2$ as well
- This ability to discover additional FDs is helpful for good relation schema design

Splitting/combining rule

• Splitting/combining can be applied to the right sides of FD's

Splitting/combining rule

• For example,

title year \rightarrow length genre studioName

title year \rightarrow length title year \rightarrow genre title year \rightarrow studioName

Splitting rule

• Splitting rule does not apply to the left sides of FD's

title year \rightarrow length

Trivial functional dependencies

- A constraint is trivial if it holds for every possible instance of the relation
- A trivial FD $A_1A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$ is where $\{B_1, B_2, \dots B_m\} \subseteq \{A_1, A_2, \dots, A_n\}$
 - \circ E.g., title year \rightarrow title
 - \circ E.g., title \rightarrow title
- Trivial dependency rule: $A_1A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$ is equivalent to $A_1A_2 \dots A_n \rightarrow C_1 C_2 \dots C_k$ where the C's are the B's that are not also A's
 - \circ E.g., title year \rightarrow title length is equivalent to title year \rightarrow length

- The closure of {A₁, A₂, ..., A_n} under the FD's in S is the set of attributes X where $A_1A_2 \dots A_n \rightarrow X$ follows from the FD's of S
- Denoted as $\{A_1, A_2, ..., A_n\}+$

- The closure of {A₁, A₂, ..., A_n} under the FD's in S is the set of attributes X where $A_1A_2 \dots A_n \rightarrow X$ follows from the FD's of S
- Denoted as $\{A_1, A_2, ..., A_n\}+$

- The closure of {A₁, A₂, ..., A_n} under the FD's in S is the set of attributes X where $A_1A_2 \dots A_n \rightarrow X$ follows from the FD's of S
- Denoted as $\{A_1, A_2, ..., A_n\}+$

- The closure of {A₁, A₂, ..., A_n} under the FD's in S is the set of attributes X where $A_1A_2 \dots A_n \rightarrow X$ follows from the FD's of S
- Denoted as $\{A_1, A_2, ..., A_n\}+$

- The closure of {A₁, A₂, ..., A_n} under the FD's in S is the set of attributes X where $A_1A_2 \dots A_n \rightarrow X$ follows from the FD's of S
- Denoted as $\{A_1, A_2, ..., A_n\}$ +

Cannot be expanded further, so this is a closure

Closure algorithm

- Input: $\{A_1, A_2, \dots, A_n\}$ and a set of FD's S
- Output: the closure $\{A_1, A_2, ..., A_n\}$ +
- 1. If necessary, split the FD's of S so each FD has a single attribute on the right
- 2. Initialize $X = \{A_1, A_2, ..., A_n\}$
- 3. Repeatedly search an FD $B_1B_2 \dots B_m \rightarrow C$ where the B's are in X, but C is not, and add C to X
- 4. Return X

Proof of correctness in textbook

Why computing closure?

- Test if FD $A_1A_2 \dots A_n \rightarrow B$ follows from a set of FDs S
 - Compute $\{A_1, A_2, ..., A_n\}$ + and checking if it contains B
 - In the previous closure example, AB → D follows from the FD's because {A, B}+ = {A, B, C, D, E}

Closures and keys

A₁, A₂, ..., A_n is a superkey if and only if {A₁, A₂, ..., A_n}+ is the set of all attributes

You can derive any FDs that follows from a given set using these axioms:

- 1. Reflexivity: If $\{B_1, B_2, \dots, B_m\} \subseteq \{A_1, A_2, \dots, A_n\}$ then $A_1 A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$
- Augmentation: If A₁ A₂ ... A_n → B₁ B₂ ... B_m then A₁ A₂ ... A_n C₁ C₂ ... C_k → B₁ B₂ ... B_m C₁ C₂ ... C_k (remove any duplicates on left and right hand sides)
 Transitivity: If A₁ A₂ ... A_n → B₁ B₂ ... B_m and B₁ B₂ ... B_m → C₁ C₂ ... C_k then A₁ A₂ ... A_n → C₁ C₂ ... C_k

These three inference rules are sound and complete

- Sound: only produces FDs in the closure
- Complete: produces all the FDs in the closure

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

1.
$$AB \rightarrow C$$
 (given)
2. $BC \rightarrow AD$ (given)

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. AB \rightarrow BC (Augmentation on 1)

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. AB \rightarrow BC (Augmentation on 1)
- 4. AB \rightarrow AD (Transitivity on 2,3)

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. AB \rightarrow BC (Augmentation on 1)
- 4. AB \rightarrow AD (Transitivity on 2,3)
- 5. $AD \rightarrow D$ (Reflexivity)

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. AB \rightarrow BC (Augmentation on 1)
- 4. AB \rightarrow AD (Transitivity on 2,3)
- 5. $AD \rightarrow D$ (Reflexivity)
- 6. $AB \rightarrow D$ (Transitivity on 4,5)

Exercise #1

- Given R(A, B, C, D) and FD's AB \rightarrow C, C \rightarrow D, D \rightarrow A
 - Can you show that AB is a key of R?
 - Can you show that BD is a key of R?

Minimal basis

- Sometimes we want to choose which FD's represent the full set of FD's of a relation
 - E.g., when computing keys
- Given a set of FD's S, any set of FD's equivalent to S is a basis for S
- A minimal basis of S is a basis M such that
 - All the FD's in M have singleton right sides
 - If any FD is removed, M is no longer a basis
 - If for any FD in M we remove one or more attributes from the left side, M is no longer a basis
- Suppose $S = \{A \rightarrow AB, AB \rightarrow C\}$
 - Then the minimal basis is $\{A \rightarrow B, A \rightarrow C\}$
 - In general, there can be multiple minimal bases

Minimal basis generation

Input: $S = \{A \rightarrow AB, AB \rightarrow C\}$

- 1. Split FD's so that they have singleton right sides $M = \{A \rightarrow B, A \rightarrow A, AB \rightarrow C\}$
- 2. Remove trivial FDs

 $\mathsf{M} = \{\mathsf{A} \to \mathsf{B}, \, \mathsf{A}\mathsf{B} \to \mathsf{C}\}$

3. Minimize the left sides of each FD

 $\mathsf{M} = \{\mathsf{A} \to \mathsf{B}, \, \mathsf{A} \to \mathsf{C}\}$

4. Remove redundant FDs

 $\mathsf{M} = \{\mathsf{A} \to \mathsf{B}, \, \mathsf{A} \to \mathsf{C}\}$

Projection of functional dependencies

- When designing a schema, sometimes need to answer the following question: Given a relation R with a set of FD's S, what FD's hold for $R_1 = \pi_L(R)$?
- Compute all the FD's that
 - follow from S and
 - involve only attributes in R₁
- Example
 - Suppose R(A, B, C, D) has FD's A \rightarrow B, B \rightarrow C, C \rightarrow D
 - Then the FD's for $R_1(A, C, D)$ are $A \rightarrow C, C \rightarrow D$

Recap

• Design theory

- Functional dependency (FD)
- Trivial FDs
- Splitting/combining rule
- Closure of attributes
- Armstrong's axioms
- Minimal basis
- Projection of FDs

title	year	length	genre	studioName	starName
Ponyo	2008	103	anime	Ghibli	Yuria Nara
Ponyo	2008	103	anime	Ghibli	Hiroki Doi
Oldboy	2003	120	mystery	Show East	Choi Min-Sik

title, year \rightarrow length, genre, studioName

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

1. 2. 3. 4. 5.	$\begin{array}{l} AB \to C \text{ (given)} \\ BC \to AD \text{ (given)} \\ AB \to BC \text{ (Augmentation on 1)} \\ AB \to AD \text{ (Transitivity on 2,3)} \\ AD \to D \text{ (Reflexivity)} \end{array}$
----------------------------	--

Design of relational database schemas

- Careless schema selection may lead to redundancies and anomalies
- We will discuss
 - Redundancy and related anomalies
 - Relation decomposition
 - Boyce-Codd normal form (BCNF)
 - 3NF

Anomalies

- Occurs when we try to cram too much information into a single relation
 - 1. Redundancy: information is repeated unnecessarily
 - 2. Update anomaly: only updating the first tuple may leave the second tuple incorrect

Movies1	title	year	length	genre	studioName	starName
	Ponyo	2008	103	anime	Ghibli	Yuria Nara
	Ponyo	2008	103	anime	Ghibli	Hiroki Doi
	Oldboy	2003	120	mystery	Show East	Choi Min-Sik

Anomalies

• Occurs when we try to cram too much information into a single relation

Movies1

title	year	length	genre	studioName	starName
Ponyo	2008	103	anime	Ghibli	Yuria Nara
Ponyo	2008	103	anime	Ghibli	Hiroki Doi
Oldboy	2003	120	mystery	Show East	Choi Min-Sik

3. Deletion anomaly: removing the movie star Choi Min-Sik will also remove the movie information of Oldboy

Decomposing relations

• The accepted way to eliminate anomalies is to decompose relations

Movies2 No redundancy or update anomalies

title	year	length	genre	studioName
Ponyo	2008	103	anime	Ghibli
Oldboy	2003	120	mystery	Show East

Movies3

No deletion anomalies

title	year	starName
Ponyo	2008	Yuria Nara
Ponyo	2008	Hiroki Doi
Oldboy	2003	Choi Min-Sik

Decomposing relations

• The accepted way to eliminate anomalies is to decompose relations

Movies2

title	year	length	genre	studioName
Ponyo	2008	103	anime	Ghibli
Oldboy	2003	120	mystery	Show East

	title	year	starName
	Ponyo	2008	Yuria Nara
	Ponyo	2008	Hiroki Doi
	Oldboy	2003	Choi Min-Sik

Movies3

This is OK because title and year form a key of a movie and cannot be more succinct; if one of the year changes, the movie is a different one