CS 4440 A

Emerging Database Technologies

Lecture 2 01/10/24

Announcements

- OH starts next week
 - Instructor: Thursday 3:30-4:30PM, KACB 3322
 - Catherine: Monday 2:00-3:00PM, outside KACB 3319
 - Hantian: Friday 1:00-2:00PM, outside KACB 3319
- Assignment 1 (due Jan 29, individual assignment, 10% grade)
 - Survey 3 technologies of your interest (must cover at least two categories)
 - Business Application Related
 - Core DBMS
 - Emerging Technology
 - Find and reference research papers properly (guidelines)
 - Fill out the <u>Technology Survey</u>

Data Model

E/R diagram

- Entity, entity set, attribute, relationship, relationship set
- Multiway relationship
- Subclass

Design principles for ER Diagram From E/R diagram to relational design

Data model

- A notation for describing data or information
- Consists of:
 - Structure of the data
 - Operations on the data
 - Constraints on the data

Data models

Relational Most DBMS's Key/Value Graph No SQL Document (Semi-structured) Column-family Array/Matrix Machine Learning Hierarchical **Obsolete** Network

The relational model

- Structure
 - Based on tables (relations)
 - Looks like an array of structs in C, but this is just one possible implementation
 - In database systems, tables are not stored as main-memory structures and must take into account the need to access relations on disk

title	year	length	genre
Oldboy	2003	120	mystery
Ponyo	2008	103	anime
Frozen	2013	102	anime

The relational model

- Operations
 - Relational algebra
 - E.g., all the rows where genre is "anime"
- Constraints
 - E.g., Genre must be one of a fixed list of values, no two movies can have the same title

title	year	length	genre
Oldboy	2003	120	mystery
Ponyo	2008	103	anime
Frozen	2013	102	anime

The semi-structured model

- Structure
 - Resembles trees or graphs, rather than tables or arrays
 - Represent data by hierarchically nested tagged elements
- Operations
 - Involve following path from element to subelements
- Constraints
 - Involve types of values associated with tags
 - E.g., <Length> tag values are integers,
 each <Movie> element must have a <Length>

```
<Movies>
```

<Movie title="Oldboy"> <Year>2003</Year> <Length>120</Length> <Genre>mystery</Genre> </Movie> <Movie title="Ponyo"> <Year>2008</Year>

</Movies>

The key-value model

• Structure

- (key, value) pairs
- Key is a string or integer
- Value can be any blob of data

• Operations

- get (key), put(key, value)
- \circ Operations on values not supported

Constraints

• E.g., key is unique, value is not NULL

key	value
1000	(oldboy, 2003)
1001	(ponyo, 2008)
1002	(frozen, 2013)

Comparison of modeling approaches

Relational model

- Simple and limited, but reasonably versatile
- Limited, but useful operations
- Efficient access to large data
- A few lines of SQL can do the work of 1000's of lines of C code
- Preferred in DBMS's

Semi-structured model

- More flexible, but slower to query
- Key-value model
 - Even more flexible, but cannot query

Basics of the relational model

- Relation: two-dimensional table containing data
- Schema: relation name and set of attributes
 - Movies(title, year, length, genre)
- Database schema: set of schemas for the relations of a database co
- A tuple has one component for each attribute

Ο

Equivalent representations of a relation

- A relation is a set of tuples (not a list)
- A schema is a set of attributes (not a list)
- Hence, the order of tuples or attributes of a relation is immaterial

title	year	length	genre
Oldboy	2003	120	mystery
Ponyo	2008	103	anime
Frozen	2013	102	anime

year	genre	title	length
2013	anime	Frozen	102
2003	mystery	Oldboy	120
2008	anime	Ponyo	103

Skipping ahead

- In CS4400, we learned about SQL and relational algebra (for logical query plans)
- Before going into the details of query processing, let's discuss database design

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 4: High-Level Database Models (4.1-4.6)

Supplementary materials

Fundamental of Database Systems (7th Edition)

 Chapter 3 - Data Modeling Using the Entity–Relationship (ER) Model

Designing a database

• It is easier to start with a higher-level model and convert to a relational model

- The relational model has only one concept (the relation)
- This is good for efficient implementation, but not for designing

Several possible notations

- We will use the classic entity-relationship (E/R) diagram
 - Proposed in 1976 by Peter Chen to model databases
 - Most suitable for describing relations
- Unified modeling language (UML)
 - Subsumes E/R diagrams, but also very general (used to visualize the design of a system)

Entity: an object (no associated methods)

Entity set: a collection of similar entities

Attribute: a property of an entity in an entity set.

Types can be a primitive type (strings, integers, reals), struct, or set of primitives/structs.

Relationship: connections among two or more entity sets.

Relationship: connections among two or more entity sets.

Multiplicity of binary relationships

- Relationships can be one-one, one-many, or many-many
- An arrow indicates "related to at most one entity"
 - Different than "exactly one"

Q: What type of relationship does the bottom diagram indicate between Presidents and Studios?

Exercise #1

• Draw an E/R diagram of Courses, Instructors, and Teaches

Multiway relationships

- Relationships may involve more than two entity sets (rare, but sometimes necessary)
- Below is a ternary or three-way relationship

For each (star, movie), there is at most one studio with which the star has contracted for that movie

Multiway relationships

- Relationships may involve more than two entity sets (rare, but sometimes necessary)
- Below is a ternary or three-way relationship

For each (star, movie), there is at most one studio with which the star has contracted for that movie

Q1: Can a studio contract with two stars for a movie? Q2: Can a star contract with one studio for two movies?

Roles in relationships

- One entity set can appear two or more times in a single relationship
- Label each edge with a role

A movie may have many sequels, but each sequel has at most one original movie

Multiway relationship and multiple roles

• A 4-way relationship

Q: Why no arrows to Stars or Movies?

Interpretation of arrow in multiway relationships

• A 4-way relationship

Arrow: if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E.

Interpretation of arrow in multiway relationships

• A 4-way relationship

Arrow: if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E.

Interpretation of arrow in multiway relationships

• A 4-way relationship

Arrow: if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E.

Limits on arrow notation in multiway relationship

- The below notation says studio is a function of star and movie
- In reality, studio may be a function of movie alone
- Solution: also use functional dependencies (covered later)

Attributes on relationships

- Attributes can be associated with relationships instead of entity sets
- The attribute value is determined by the entire tuple in the relationship set

Attributes on relationships

- Attributes can be associated with relationships instead of entity sets
- The attribute value is determined by the entire tuple in the relationship set
- Relationship attributes are not necessary and can be replaced with a new entity set

Converting multiway relationships to binary

Converting multiway relationships to binary

Subclass

- An entity set may have a subclass of entities that have special properties not associated with other entities of the set
- Use isa relationships (triangle notation), which are always one-one and form a tree

Recap so far

E/R diagram

- Entity, entity set, attribute, relationship, relationship set
- Multiway relationship
- Subclass

• #1: Faithfulness to reality

Doesn't apply to GT

• #2: Avoiding redundancy

• #3: Simplicity counts

• #4: Choose the right relationships

Unnecessary if contract implies stars in

- #5 Pick the right kind of element
 - Using attributes vs entity set/relationship combinations

Problem when replacing studios entity set to movie attributes:

Need to repeat the address of the same studio for each movie, which is a cause for "update anomalies"

- #5 Pick the right kind of element
 - Using attributes vs entity set/relationship combinations
 - Replace entity set E with attribute(s) if:
 - All relationships have arrows to E
 - E's attributes do not depend on each other
 - No relationship involves E more than once

Key constraints

- One or more attributes of an entity set can form a key
- Although there can be multiple keys, only the primary key attributes are <u>underlined</u>

Key constraints in the E/R Model

- If an entity set is involved in an isa-hierarchy, the root entity set must contain all the attributes needed for a key
- If an entity set is "weak", the key may belong to another entity set (explained later)

Referential integrity constraints

- Suppose R is a relationship from E to F
- A rounded arrow to F means
 - The relationship is many-one and
 - The entity of set F related to an entity of E must exist

Every movie must be owned by one studio, and this studio is present in the Studios entity set

Degree constraints

- Limit the number of entities connected to any one entity of the related entity set
 - Arrow is same as "<=1" constraint
 - Rounded arrow is same as "=1" constraint

Every movie can be connected to at most 10 stars

Weak entity set

- An entity set where some of its attributes belong to another entity set
- A weak entity set may occur if
 - The entities of set E are subunits of entities in set F (\neq is relation)

Weak entity set

- An entity set where some of its attributes belong to another entity set
- A weak entity set may occur if
 - The entities of set E are subunits of entities in set F (\neq isa relation)
 - A connecting entity is introduced to eliminate a multiway relationship

Weak entity set notation

- A weak entity set is shown as a rectangle with a double border
- Supporting many-one relationships are diamonds with a double border
- Any attributes that form a key are underlined

Requirements for weak entity set

- Key: zero or more of its own attributes + key attributes of supporting entity sets through supporting relationships
- Supporting relationship must be binary, be many-one, and have referential integrity

Requirements for weak entity set

• The supporting entity set may itself be weak where some of its key attributes are supplied by other supporting entity sets, possibly recursively

Requirements for weak entity set

• There may be several different supporting relationships to the same entity set

Exercise #2

 Represent students and grades they get in courses using the entity sets: Students, Courses, and Enrollment (connects students and courses and represents grades)

From E/R diagram to relational design

- Once we have an E/R design, we can convert it to a relational database schema
- Common conversions
 - Entity set -> relation with same set of attributes
 - Relationship -> relation whose attributes are from connected entity sets

• Special cases

- Weak entity sets
- Isa relationships
- Sometimes better to combine relations

Entity set to relation

• For each non-weak entity set, create a relation with the same name and attributes

Movies(title, year, length, genre)

Relationship to relation

- For each relationship, create a relation with the following attributes
 - For each entity set involved, take its key attribute(s)
 - The relationship's attributes, if there are any
 - Avoid duplicate attribute names using renaming

Relationship to relation

- For each relationship, create a relation with the following attributes
 - For each entity set involved, take its key attribute(s)
 - The relationship's attributes, if there are any
 - Avoid duplicate attribute names using renaming

Combining relations

- If E is connected to F through a many-one relationship R, combine E and R
 - Attributes of E and R, and the key attributes of F
- Advantage: querying one relation is faster than querying several relations

Combining relations

- Why only consider many-one relationships?
 - Otherwise, the combined relation is not good design and may contain anomalies
 - This topic will be covered more formally in the Design Theory lectures

Weak entity set to relation

- Construct a relation whose schema has
 - All attributes of the weak entity set
 - All attributes of the supporting relationships
 - The key attributes of the supporting entity sets
- Rename attributes to avoid name conflicts
- No relations for supporting relationships

Converting subclass structures to relations

- Isa-hierarchy assumptions
 - There is a root entity set
 - This entity set has a key that identifies every entity represented by the hierarchy
 - A given entity may have components of entity sets of any subtree of the hierarchy

Option 1: E/R style conversion

- For each entity set E, create a relation that includes the key attributes from the root and any attributes of E
- Since an isa relationship connects components of a single entity instead of distinct entities, we do not create a relation for it

```
Movies(title, year, length, genre)
Anime(title, year)
MurderMysteries(title, year, weapon)
Voices(title, year, starName)
```

Option 2: Object-oriented approach

- For each possible subtrees of the hierarchy, create a corresponding relation
- Rationale: entities are objects that belong to one and only one class

```
Movies(title, year, length, genre)
MoviesAnime(title, year, length, genre)
MoviesMystery(title, year, length, genre, weapon)
MoviesAnimeMystery(title, year, length, genre, weapon)
Voices(title, year, starName)
```

Unless Anime has a separate attribute, the relations with the same attributes can be combined

Option 3: Use NULL values to combine relations

- Create a single relation with all the attributes in the hierarchy
- A tuple has a NULL value for each attribute not defined for the corresponding entity

```
Movies(title, year, length, genre, weapon)
Voices(title, year, starName)
```

Comparison of approaches

• NULLs

- One relation (answering query does not involve multiple relations)
- However, tuples may be long with many NULL values
- Object oriented
 - One tuple per entity (space efficient)
 - However, there may be an exponential number of relations

• E/R style

- One relation per entity set in the hierarchy
- Several tuples per entity, but only the key attributes are repeated

Exercise #3

- Between object oriented and E/R style, which is better for answering following queries?
 - Q1: which movies are longer than 100 minutes?
 - Q2: which anime movies are longer than 100 minutes and have a weapon?