CS 4440 A Emerging Database Technologies

Lecture 17 04/15/24

Announcements

- Paper Critique
 - Due Wednesday
- Project Presentation
 - Send your slides to Catherine by 2PM on the day of presentation
- Project Demo
 - April 26, up to 15min per group

Data Curation Challenges in the ML Lifecycle

ML lifecycle in a bird's eye view

"Only a fraction of real-world ML systems is composed of ML code" ^[1]

The machine learning lifecycle is complex and iterative process Humans play an important role in almost all steps of the lifecycle

[1] Sculley, David, et al. "Hidden technical debt in machine learning systems." NeurIPS 2015

Human roles in data analytics

Humans play an important role in almost all steps of the lifecycle

Cleaning Data: Most Time-Consuming, Least Enjoyable Data Science Task Forbes, 2016

- Cleaning & organizing data Collecting data sets
- Mining data for patterns
 Refining algorithms
- Building training sets Others

6

Common Data Errors

Incomplete

Country \$	UN R/P 10% ^[4] \$	UN R/P 20% ^[5] \$	World Bank Gini (%) ^[6]	WB Gini (year) \$	CIA R/P 10% ^[7]	Year	CIA Gini (%) ^[8]	CIA Gini (year)	GPI Gini (%) ^[9] \$
Z Seychelles			65.8	2007					
Comoros			64.3	2004					
Mamibia	106.6	56.1	63.9	2004	129.0	2003	59.7	2010	
South Africa	33.1	17.9	63.1	2009	31.9	2000	65.0	2005	
Botswana	43.0	20.4	61.0	1994			63	1993	
Haiti	54.4	26.6	59.2	2001	68.1	2001	59.2	2001	
Angola			58.6	2000					62.0
Honduras	59.4	17.2	57.0	2009	35.2	2003	57.7	2007	

Common Data Errors

Inaccurate

Common Data Errors

Inconsistent

FlightView

American Airlines Flight Number 119 (AA119)

FLIGHT TRACKER

D

Departure Airport: Scheduled Time: 6:15 PM, Dec 08 Takeoff Time: 6:53 PM, Dec 08 Terminal - Gate: Terminal A - 32

ArrivalStatus: In Air

Airport:	
Scheduled Time: 9:40 PM, Dec 08	Status
9:42 PM, Dec 08	Dis
Estimated Time:	Fare
Track This Flight Live!	Cabin
Time Remaining: 25 min	Depart
Terminal - Gate: Terminal 4 - 42B	Depart
	Arrival

Baggage Claim: 4

	FlightAware	O
N	AAL119 (Track inbound flight) (web site) (all flights)	
	American Airlines "American"	Amer
Aircraft	Boeing 737-800 (twin-jet) (B738/Q - track or photos)	
Origin	Terminal A / Gate 32 / Newark Liberty Intl (KEWR - tra	Leg 1: I
Destination	Terminal 4 / Gate 42B / Los Angeles Intl (KLAX - track	0
	Other flights between these airports	Departs: 1
Route Date	ZIMMZ Q42 BTRIX Q480 AIR J80 VHP J80 MCI J24 SLN J102 ALS J44 RSK J (Decode) 2011年 12月 08日 (Thursday)	Gate: 32
Duration	5 hours 43 minutes	Schedule
Progress	20 minutes left 5 hours 23 minutes	6:22p Dec 8
Status	En Route (2,284 sm down; 168 sm to go)	Arrives: L
Dis	Direct: 2,451 sm Planned: 2,458	Gate: 42B
Fare	\$51.99 to \$3,561.11; average: \$241.96 (airline insight)	
Cabin	First: Dinner / Economy: Food for sale	Schedule

Scheduled 7-day Average <u>Actual/Estimated</u> 06:15PM EST 07:08PM EST 06:53PM EST parture 08:33PM PST 09:17PM PST 09:36PM PST

rbitz

ican Airlines # 119

In Transit

Newark (EWR) View real-time airpo

ed Estimated Actual

6:22p		6:32p
Dec 8	-	Dec 8

los Angeles (LAX) View real-time air

ed Estimated Actual

9:54p	9:47p
Dec 8	Dec 8

Adapted from Intro to Data Cleaning lecture from Xu Chu

Common Data Errors Duplicated

 \times Merged citations This "Cited by" count includes citations to the following articles in Scholar. The ones marked * may be different from the article in the profile. Scaling a Declarative Cluster Manager Architecture with Query Optimization 1 * Techniques (Technical Report) K Rong, M Budiu, A Skiadopoulos, L Suresh, A Tai 2022 Scaling a Declarative Cluster Manager Architecture with Query Optimization Techniques K Rong, M Budiu, A Skiadopoulos, L Suresh, A Tai Proceedings of the VLDB Endowment 16 (10), 2618-2631, 2023

Adapted from Intro to Data Cleaning lecture from Xu Chu

Data Quality Rules

	Name	ID	LVL	ZIP	ST	SAL
t_1	Alice	ID1	5	10001	NM	90K
t_2	Bob	ID2	6	87101	NM	80K
t_3	Chris	ID3	4	10001	NY	80K
t_4	Dave	ID4	1	90057	CA	20K
t_5	Frank	ID5		90057	CA	50K

R1: Two persons with the same ZIP live in the same ST

Data Quality Rules

	Name	ID	LVL	ZIP	ST	SAL
t_1	Alice	ID1	5	10001	NM	90K
t_2	Bob	ID2	6	87101	NM	80K
t_3	Chris	ID3	4	10001	NY	80K
t_4	Dave	ID4	1	90057	CA	20K
t_5	Frank	ID5		90057	CA	50K

R2: LVL should not be empty

Data Quality Rules

	Name	ID	LVL	ZIP	ST	SAL
t_1	Alice	ID1	5	10001	NM	90K
t_2	Bob	ID2	6	87101	NM	80K
t_3	Chris	ID3	4	10001	NY	80K
t_4	Dave	ID4	1	90057	CA	20K
t_5	Frank	ID5		90057	CA	50K

R3: People with a higher LVL earn more SAL in the same ST

Name	ZIP	ST
Alice	10001	NM
Bob	87101	NM
Chris	10001	NY

Adapted from Intro to Data Cleaning lecture from Xu Chu

Name	ZIP	ST
Alice	10001	NM
Bob	87101	NM
Chris	10001	NY

Two persons with the same ZIP live in the same ST

Name	ZIP	ST
Alice	10001	NM
Bob	87101	NM
Chris	10001	NY

Two persons with the same ZIP live in the same ST

Name	ZIP	ST
Alice	10001	NY
Bob	87101	NM
Chris	10001	NY

Two persons with the same ZIP live in the same ST

Two tasks in data cleaning

- Detection: A minimal set of cells that cannot coexist together
- Repair: A set of cell updates to resolve the violations

Data cleaning and ML

Data cleaning and ML

Cleaning "before" ML:

- Perform cleaning independently of the downstream ML applications; leverage user-specified signals or data-driven approaches
- Example: <u>HoloClean: Holistic Data Repairs with Probabilistic Inference</u>
 - Also an example of using ML for data cleaning

Reading: From Cleaning Before ML to Cleaning For ML

HoloClean: Holistic Data Repairs with Probabilistic Inference. [VLDB'17]

Input

Output

Proposed Cleaned Dataset												
	DBAName	Address	City	State	Zip							
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608							
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608							
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608							
t4	John Veliotis Sr.	3465 S Morgan ST	465 S organ ST Chicago I		60608							
		Marginal of Cell As	Distributi ssignmen	on ts	Marginal Distribution of Cell Assignments							
	Cell Possible Values Probability											
	Cell	Poss	sible Value	es F	Probability							
		Poss	sible Value 60608	es F	Probability 0.84							
	t2.Zip	Poss	ible Value 60608 60609	es F	Probability 0.84 0.16							
	t2.Zip	Poss	sible Value 60608 60609 Chicago	es F	Probability 0.84 0.16 0.95							
	t2.Zip	Poss	60608 60609 Chicago Cicago	es F	Probability 0.84 0.16 0.95 0.05							
	t2.Zip t4.City	Poss	sible Value 60608 60609 Chicago Cicago	es F	Probability 0.84 0.16 0.95 0.05 0.99							

Probabilistic model that unifies different signals for repairing a dataset.

Constraints and minimality

Functional dependencies

c1: DBAName \rightarrow Zip

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Bohannon et al., 2005, 2007; Kolahi and Lakshmanan , 2005; Bertossi et al., 2011; Chu et al., 2013; 2015 Fagin et al., 2015

Constraints and minimality

Functional dependencies

c1: DBAName \rightarrow Zip

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Action: Fewer erroneous than correct cells; perform minimum number of changes to satisfy all constraints

Constraints and minimality

c1: DBAName \rightarrow Zip

Functional dependencies

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip	
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	Error;
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	code is
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608	60608

Does not fix errors and introduces new ones.

Adapted from UW Madison CS639 by Theodoros Rekatsinas

p

External Information

Matching dependencies

- m1: $Zip = Ext_Zip \rightarrow City = Ext_City$
- m2: $Zip = Ext_Zip \rightarrow State = Ext_State$
- m3: City = $Ext_City \land State = Ext_State \land$

 $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Fan et al., 2009; Bertossi et al., 2010; Chu et al., 2015

External Information

Matching dependencies $m1: Zip = Ext_Zip \rightarrow City = Ext_City$ $m2: Zip = Ext_Zip \rightarrow State = Ext_State$ $m3: City = Ext_City \land State = Ext_State \land$

 $\wedge \, Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	<mark>60610</mark>

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Action: Map external information to input dataset using matching dependencies and repair disagreements

External Information

 $\begin{array}{l} \textit{Matching dependencies} \\ m1: \ Zip = Ext_Zip \rightarrow City = Ext_City \\ m2: \ Zip = Ext_Zip \rightarrow State = Ext_State \\ m3: \ City = Ext_City \land State = Ext_State \land \\ \land Address = Ext_Address \rightarrow Zip = Ext_Zip \end{array}$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

External dictionaries may have limited coverage or not exist altogether

Quantitative Statistics

Reason about co-occurrence of values across cells in a tuple

Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Example: Chicago co-occurs with IL

Hellerstein, 2008; Mayfield et al., 2010; Yakout et al., 2013

Quantitative Statistics

Reason about co-occurrence of values across cells in a tuple

Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Again, fails to repair the wrong zip code

Combining Everything

Constraints and minimality

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

External data

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	L	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Quantitative statistics

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Different solutions suggest different repairs

HoloClean: a probabilistic model for data repairs Each cell is a random variable State Zip Address City Value co-occurences 3465 S 60608 t1 Chicago IL Morgan ST capture data statistics 3465 S t2 IL 60609 Chicago Morgan ST Constraints introduce c1: Zip \rightarrow City 3465 S correlations t3 Chicago IL 60609 Morgan ST 3465 S Cicago 60608 t4 IL Morgan ST t1.City t1.Zip "Address= 3465 S : Unknown (to be inferred) RV Morgan St" **C1** : Observed (fixed) RV t4.City t4.Zip : Factor (encodes correlations)

HoloClean: Holistic Data Repairs with Probabilistic Inference. [VLDB'17]

Input

Output

	Pro	posed Cle	aned Data	aset	
	DBAName	Address	City	State	Zip
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t4	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
		Marginal of Cell As	Distributi ssignmen	on ts	
	0.01				
10.7		Poss	ible Value	es F	Probability
		Poss	i ble Valu 60608	es F	Probability 0.84
	t2.Zip	Poss	ible Value 60608 60609	es F	Probability 0.84 0.16
	t2.Zip	Poss	60608 60609 60609	es F	Probability 0.84 0.16 0.95
	t2.Zip	Poss (60608 60609 Chicago Cicago	es F	Probability 0.84 0.16 0.95 0.05
	t2.Zip t4.City	Poss (John	sible Value 60608 60609 Chicago Cicago	es F	Probability 0.84 0.16 0.95 0.05 0.99

Probabilistic model that unifies different signals for repairing a dataset.

Data cleaning and ML

The impact of data cleaning on downstream ML models?

Data cleaning and ML

Cleaning "for" ML:

- Leverage the downstream ML model or application to define cleaning signals that incorporates high-level semantics
- Why is this a good idea?
 - Clean datasets that contain fully correct attributes are rarely available
 - Data cleaning can sometimes negatively impact the performance of ML models
 - <u>CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks</u>
- Example: <u>BoostClean: Automated Error Detection and Repair for Machine</u>
 Learning

Reading: From Cleaning Before ML to Cleaning For ML

Data Labeling

Data is the Bottleneck for ML

 $ML \approx Model + Data$

Model is gradually commoditized

- Out-of-the-box invocation of ML libraries gives decent results
- Transformers for "all" tasks

Data is the bottleneck

OpenAI has hired an army of contractors to do what's called "data labeling"

Sources:

https://www.semafor.com/article/01/27/2023/openai-has-hired-an-army-of-contractors-to-make-basic-coding-obsolete https://www.datanami.com/2023/01/20/openai-outsourced-data-labeling-to-kenyan-workers-earning-less-than-2-per-hour-time-report/

Manual v.s. Programmatic Labeling

Labeling individual data points

Writing Labeling Functions (LFs) where each LF abstracts a supervision source (e.g. heuristics, existing models, external KBs, ...)

@labeling_function()
def lf_contains_link(x):
 # Return a label of SPAM if "http" in comment text, otherwise ABSTAIN
 return SPAM if "http" in x.text.lower() else ABSTAIN

Programmatic Labeling Pipeline Overview

Credit: Snorkel Project

(1) Users write labeling functions to generate noisy labels (2) A label modelcombines noisy labels tobe probabilistic labels

(3) Using the **probabilistic labels to train** an end ML model

(1) Labeling Function


```
def LF_pneumothorax(c):
    if re.search(r'pneumo.*', c.report.text):
        return "ABNORMAL"
```


LFs can be noisy!

Source: https://ajratner.github.io/assets/papers/Snorkel_VLDB_2018_slides.pdf

Other Example LFs: Existing Knowledge

- Knowledge bases
 - Match the text inputs against the knowledge base (e.g., DBPedia) to search for known spouse relationships.
- Pretrained models
 - Pre-trained model with a different label space
- Thirty-party tools
 - <u>TextBlob: Simplified Text Processing</u>

How are LFs developed

- By domain experts
- Generate programmatically
 - Snuba: Automating Weak Supervision to Label Training Data. [VLDB'18]
 - Language Models Enable Simple Systems for Generating Structured <u>Views of Heterogeneous Data Lakes</u>

(2) Label Model

LF2 LF3 LF1 LFX 1 Data point 1 -1 0 ... Data point 2 1 0 0 ... Label model Data point 3 1 -1 1 •• Data point 4 1 1 -1 ... Data point 5 1 1 -1 ... Data point x

positive
 negative
 abstain

Weak label matrix X

Inferred ground-truth labels *y*

y

1

1

-1

1

-1

...

Example label model

Option 1: Majority voting

Q: What if some rules are more reliable than others?

Option 2: Evaluate the accuracy of each labeling function

Example: Dawid and Skene's method

- 1. Assume accuracies θ of each LF
- 2. Learn parameter θ with an Expectation and Maximization algorithm:
 - a. Initialize *y* by majority vote
 - b. Calculate accuracies θ for each LF
 - c. Update y by maximizing $p(X|y,\theta)$