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Announcements 
• Research paper presentation starts this Wednesday (Apr 3) 
• P1: Map Reduce
• P2: Big Table
• P3: C-Store 

• If you haven’t yet, start working on your projects! 



Similarity Search
• Finding the most relevant data points in the database when 

compared to a specific query point

Structured and 
unstructured data ML embeddings



Vector Search in LLMs 
(retrieval augmented generation)
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Vector search pyramid

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections



Algorithms: Big players in the field 
● Spotify: ANNOY

● Microsoft (Bing team): DiskANN, SPTAG

● Amazon: KNN based on HNSW in OpenSearch

● Google: ScaNN

● Meta: FAISS, PQ (CPU & GPU)

● Baidu: IPDG (Baidu Cloud)

● Alibaba: NSG (Taobao Search Engine)

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

https://github.com/spotify/annoy
https://github.com/microsoft/DiskANN
https://github.com/google-research/google-research/tree/master/scann
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/


Nearest Neighbor Search (NNS)
• Problem definition: given a query object 𝑞, we search in a 

massive high-dimensional dataset 𝒟 for one or more objects in 𝒟 
that are among the closet to 𝑞 according to some similarity or 
distance metric.

• Common similarity metric:
• Euclidean Distance: ||q − p||!

• Manhattan Distance: ||q − p||"

• Jaccard Similarity: |$	∩	'|
|$	∪	'|

 (q	and p are two arbitrary sets)



One-dimensional Indexes
Recall that B-trees are examples 
of a one-dimensional index 

○ Assume a single search key, 
and they retrieve records that 
match a given search key value.

○ The key can contain multiple 
attributes 
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One-dimensional Indexes + space-filling curves 
• B-trees can be extended to support multiple dimensions using 

space-filling curves such as Z-order

Image source: https://medium.com/@nishant.chandra/z-order-indexing-for-efficient-queries-in-data-lake-48eceaeb2320



Multidimensional Indexes
Multidimensional indexes:
● Specifically designed to partition multi-

dimensional data
● Examples: kd-tree, R-tree
● kd-tree: pick a dimension, find median, 

split data, repeat 

10Image source: https://www.baeldung.com/cs/k-d-trees



Curse of Dimensionality 
• Linear scan takes 𝑂(𝑛)	per query 

• One of the most popular NNS solutions is the search-tree 
algorithms, such as kd-tree or R-tree.

• However, when the dimension 𝑑 is very large, search tree 
performs no better than the linear scan, due to the “curse of 
dimensionality” [C1994]. 

• Example: k-d tree versus linear scan.

[C1994] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the Annual Symposium on 
Computational Geometry, pages 160–164, 1994.



Approximate Nearest Neighbor Search
• Problem Definition: Given a query object 𝑞, we search in a

massive high-dimensional dataset 𝒟 for one or more objects
in 𝒟 that are among the closet to 𝑞 with high probability 
according to some similarity or distance metric.

• ANNS solutions are usually much faster than linear scan with 
negligible accuracy loss. 



Approximate Nearest Neighbor Search

This image is downloaded from: http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html

Exact 

http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html


Popular ANNS Algorithms
• Locality sensitive hashing (LSH)
• Nearest neighbor graph 
• KNN graph 
• Hierarchical Navigable Small Worlds (HNSW) 

• Product Quantization (PQ)

VectorDB ANN library ANN algorithm 
Milvus Custom FAISS PQ
Pinecone Custom FAISS LSH, PQ
Qdrant Custom HNSW NN graph 
Pgvector Custom HNSW NN graph 



Locality sensitive hashing (LSH)
• LSH for Cosine Distance 
• LSH for Jaccard Distance 
• Using LSH for ANNS
• Tuning parameters in LSH



Locality sensitive hashing (LSH)
• A locality sensitive hashing h ⋅ function has the following 

distance-preserving property:
• The collision probability between two items 𝑃𝑟[ℎ(𝑞⃗) = ℎ 𝑥⃗ ] 

monotonically decreases with their distance 𝑞⃗, 𝑥⃗

• When 𝑞⃗, 𝑥⃗ 	 ≤ 𝑟!,  𝑃𝑟[ℎ 𝑞⃗ = ℎ 𝑥⃗ ] ≥ 𝑝!
• When 𝑞⃗, 𝑥⃗ 	 ≥ 𝑟", 𝑃𝑟[ℎ 𝑞⃗ = ℎ 𝑥⃗ ] ≤ 𝑝"

𝑞⃗, 𝑥⃗

1

0
𝑟!

𝑝!

𝑝"

𝑟"

𝑃𝑟[ℎ(𝑞⃗) = ℎ 𝑥⃗ ]

h ⋅  is (𝑟!, 𝑟", 𝑝!, 𝑝") −sensitive
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LSH for Cosine Distance
• For cosine distance, there is a technique for generating a 
𝑑", 𝑑!, 1 −

)!
"*+

, 1 − )"
"*+

-sensitive family for any 𝑑" and 𝑑!

• Called random hyperplanes.
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Random Hyperplanes

• Pick a random vector v, which determines a hash function hv  with 
two buckets:
• ℎ𝑣(𝑥) 	= 	+1	if 𝑣 4 𝑥	 > 	0
• ℎ𝑣(𝑥) 	= 	−1	if 𝑣 4 𝑥	 < 	0

• LSH-family H = set of all functions derived from any vector.

• Claim: 
• 𝑃𝑟𝑜𝑏 ℎ 𝑥 = ℎ 𝑦 = 1	 − 0

!12 , cos 𝜃 =
345
3 |5|
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Proof of Claim

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplanes
(normal to v )
for which 
h(x) <> h(y)

v

Hyperplanes
for which
h(x) = h(y)

𝑃𝑟𝑜𝑏 ℎ 𝑥 = ℎ 𝑦 = 1	 −
𝜃
180 , cos 𝜃 =

𝑥 4 𝑦
𝑥 |𝑦|



How to use LSH in ANNS?

• Main idea: Only check data points that hash collides with the 
query (instead of the entire dataset)
• Two points are close in the projected space are likely to be close in the 

original space 
Image source: https://randorithms.com/2019/09/19/Visual-LSH.html



• Main idea: Only check data points that hash collides with 
the query (instead of the entire dataset)
• Two points are close in the projected space are likely to be 

close in the original space 

LSH-based ANNS

Hash Table 1

hash bucket ℎ(𝑞) 

• For ANNS to be effective, we hope to capture only the 
true nearest neighbors in	ℎ(𝑞)
• High precision: low false positives
• High recall: low false negatives



LSH-based ANNS

Collision probability reduces to 𝑝,
• Harder for false positives to result in a hash collision 
    => increase precision  
• Q: What about recall?

For ANNS to be effective, we hope to capture only the true 
nearest neighbors in	ℎ(𝑞)

• High precision: low false positives
• High recall: low false negatives

Q: What’s the probability of two vectors being on the same side of 
M random hyperplanes? 

• Suppose that 𝑃[ℎ1(𝑥) = ℎ1(𝑞)] 	= 	𝑝. 
• What is 𝑃[ℎ1(𝑥) = ℎ1(𝑞)&ℎ2(𝑥) = ℎ2(𝑞)&…&ℎ𝑀(𝑥) = ℎ𝑀(𝑞)]?



• How to increase recall: 
• Repeat multiple times. Consider a data point an NN candidate if it hash 

collides with the query in any trial
• Build L hash tables

• Each table generates hash signatures using M random hyperplanes:
h ⋅ ≜ < h% ⋅ , h& ⋅ , ⋯, h' ⋅ >

• Consider the union of h q 	buckets from each table

Hash Table 1

Hash Table 2

Hash Table L

hash bucket ℎ(𝑞)

LSH-based ANNS



Key Parameters in LSH
• M: number of hash functions (in the hash signature)
• Larger M increases precision but lowers recall 

• L: number of hash tables 
• Larger L increases recall 
• Also at the cost of larger storage overhead 

• How to tune these parameters?



25

Analysis of LSH – What We Want

Similarity s of two vectors

Probability
of becoming 
a candidate

t

No chance
if s < t

Probability
= 1 if s > t
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Single hash function (one random hyperplane)  

Similarity s of two vectors

t

Remember:
probability of
equal hash-values
= similarity

Probability
of becoming 
a candidate
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M hash functions, L tables 

Similarity s of two vectors

t

s M 

All M hash 
functions 
are equal
(collide in 
one table)

1 -

Does not 
collide in 
a hash 
table

( )L 

No collision in 
any of the L 
tables

1 -

At least
one 
collision

t ~ (1/L)1/M 
Probability

of becoming 
a candidate
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Example: L  = 20; M  = 5

s 1-(1-sM)L

.2 .03

.3 .22

.4 .64

.5 .96

.6 .9996

𝑡	 ≈ 	0.4



• Designed to reduce the space requirements of LSH 

• In LSH, L can be in the hundreds to boost the recall (probability
of finding true nearest neighbors in epicenter buckets).

• Multi-probe LSH [Lv2007] was proposed for reducing L when 
the Gaussian-projection LSH scheme (GP-LSH) is used.

• Main idea: get more information from each hash table

[Lv2007] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multiprobe LSH: efficient indexing for 
high-dimensional similarity search. In PVLDB. 950–961

Multi-probe LSH [VLDB’07]

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/p950-lv.pdf


• In addition to the epicenter bucket, multi-probe LSH also probes 
T nearby buckets whose success probabilities (of finding nearest
neighbor of q) are among the T +1 highest.

Hash Table 1

Hash Table 2

Hash Table L

Epicenter and nearby
Buckets

Significantly reduce L by probing “best” nearby buckets!

Multi-probe LSH [VLDB’07]

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/p950-lv.pdf


Locality sensitive hashing (LSH)
• LSH for Cosine Distance 
• Using LSH for ANNS
• Tuning parameters in LSH
• LSH for Jaccard Distance 



Jaccard Similarity 

Given two sets A and B
𝐽 𝐴, 𝐵 =

|𝐴 ∩ 𝐵|
|A ∪  B|

e.g., disjoint sets have similarity 0,
        J(A, A) = 1

1 – J(A, B) is a metric (satisfying triangle inequality)



Jaccard Similarity 
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

Binary Matrix 
Representation

S1 = {A, B, F, G}
S2 = {C, D, E, F}
S3 = {A, F, G}
S4 = {B, C, D, E}

Q: J(S1, S3)?
S1 ∩ S3= {A, F, G}
S1 ∪ S3= {A, B, F, G}

* data is not actually stored this way 

Document

Q: Where do we use Jaccard?



LSH for Jaccard Similarity 
MinHash:
• Given a universe 𝑈, pick a permutation 𝜋	on 𝑈 uniformly at random 
• Hash each set to the minimum value it contains according to 𝜋

Example using document deduplication: 
• Randomly order all words.
• Represent each document by the earliest appearing word in the random 

ordering that the document contains.

Claim: MinHash forms an LSH for Jaccard Similarity 



Example: Minhash signatures
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

S1 S2 S3 S4
1 A 1 0 1 0

2 C 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 B 1 0 0 1

6 E 0 1 0 1

7 D 0 1 0 1

1 2 1 2

Random 
permutationsInput Matrix Signature 

Matrix

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf



Example: Minhash signatures
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

S1 S2 S3 S4
1 D 0 1 0 1

2 B 1 0 0 1

3 A 1 0 1 0

4 C 0 1 0 1

5 F 1 0 1 0

6 G 1 0 1 0

7 E 0 1 0 1

2 1 3 1

Random 
permutations

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf



Example: Minhash signatures

S1 S2 S3 S4
A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

S1 S2 S3 S4
1 C 0 1 0 1

2 D 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 A 1 0 1 0

6 B 1 0 0 1

7 E 0 1 0 1

3 1 3 1

Random 
permutations

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf

Q: What’s the hash signature of S1?



Example: Minhash signatures
S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

h1 1 2 1 2

h2 2 1 3 1

h3 3 1 3 1

≈

• Sig(S) = vector of hash values 
• e.g., Sig(S2) = [2,1,1]

• Sig(S,i) = value of the i-th hash function for set S
• E.g., Sig(S2,3) = 1

Signature matrix

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf



• The similarity of signatures is the fraction of the hash functions 
in which they agree.

• With multiple signatures we get a good approximation

Zero similarity is preserved
High similarity is well approximated

39

Similarity for Signatures

≈

Actual Sig

(S1, S2) 0 0

(S1, S3) 3/5 2/3

(S1, S4) 1/7 0

(S2, S3) 0 0

(S2, S4) 3/4 1

(S3, S4) 0 0

Signature matrixS1 S2 S3 S4
A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4
h1 1 2 1 2

h2 2 1 3 1

h3 3 1 3 1

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf
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Minhash function property

𝑃 ℎ 𝑆' = ℎ 𝑆( = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆' , 𝑆()

where the probability is over all choices of permutations. 

Why?
• The first row where one of the two sets has value 1 belongs to the union.

• Recall that union contains rows with at least one 1.
• We have equality if both sets have value 1, and this row belongs to the 

intersection
Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf



Minhash Implementation

Consider the naïve implementation using permutations:
• Assume a billion rows
• Hard to pick a random permutation of 1…billion
• Even representing a random permutation requires 1 

billion entries!

• Accessing rows in permuted order leads to thrashing.

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf



Minhash Implementation
• Instead of permuting the rows we will apply a hash function that 

maps the rows to a new (possibly larger) space
• The value of the hash function is the position of the row in the new order 

(permutation).
• Each set is represented by the smallest hash value among the elements 

in the set

• The space of the hash functions should be such that if we select a 
function at random, each element (row) has equal probability to 
have the smallest value
• Min-wise independent hash functions 

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf



Minhash Implementation

For each row r
•  Compute ℎ1(𝑟), ℎ2(𝑟), … , ℎ𝑛(𝑟)
• For each column c do the following:
• If c has 0 in row r, do nothing.
• Otherwise, 𝑆𝑖𝑔 𝑖, 𝑐 = min 𝑆𝑖𝑔 𝑖, 𝑐 , ℎC 𝑟 , 𝑖 = 1, 2, … , 𝑛



Row S1 S2
  B    0  1 
  E    0  1 
  C    1  1
  A    1  0
  D   1  0
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Example
Row S1 S2
  A  1  0
  B  0  1
  C  1  1
  D  1  0
  E  0  1

h1(x) = x+1 mod 5
h2(x) = 2x+3 mod 5

h1(0) = 1  1 -
h2(0) = 3  3 -

h1(1) = 2  1 2
h2(1) = 0  3 0

h1(2) = 3  1 2
h2(2) = 2  2 0

h1(3) = 4  1 2
h2(3) = 4  2 0

h1(4) = 0  1 0
h2(4) = 1  2 0

Sig(S1) Sig(S2)

Row S1 S2
  E    0  1 
  A    1  0
  B    0  1
  C    1  1
  D    1  0
  

x
0
1
2
3
4

h1(Row)
0
1
2
3
4

h2(Row)
0
1
2
3
4

h1(x)
1
2
3
4
0

h2(x)
3
0
2
4
1

Adapted from https://www.cs.bu.edu/~gkollios/cs660f19/Slides/minhashLSH.pdf

S2 does not 
contain A



The same ANNS and parameter tuning 
procedures apply to Minhash 

• M: number of hash functions (in the hash signature)
• Larger M increases precision but lowers recall 

• L: number of hash tables 
• Larger L increases recall 
• Also at the cost of larger storage overhead 



Popular ANNS Algorithms
• Locality sensitive hashing (LSH)
• Nearest neighbor graph 
• KNN graph 
• Hierarchical Navigable Small Worlds (HNSW) 

• Product Quantization (PQ)

VectorDB ANN library ANN algorithm 
Milvus Custom FAISS PQ
Pinecone Custom FAISS LSH, PQ
Qdrant Custom HNSW NN graph 
Pgvector Custom HNSW NN graph 



• KNN Graph: for a set of objects V is a directed graph with 
vertex set V and an edge from each v ∈ V to its K most 
similar objects in V under a given similarity measure. 

• Key intuition: a neighbor of a neighbor is also likely to be a 
neighbor. 

• Triangle inequality:

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic 
similarity measures." Proceedings of the 20th international conference on World wide web. 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


• In the search stage, graph-based algorithms find the 
candidate neighbors of a query point in some way (e.g., 
random selection) and then check the neighbors of these 
candidate neighbors for closer ones iteratively.

• To avoid local optima, we need to traverse over 
thousands of points to find the nearest neighbors of the 
query point .

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic 
similarity measures." Proceedings of the 20th international conference on World wide web. 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


• The size of KNN graph is usually very large and hard to store 
in memory.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


A KNN graph that has both long-range and short-range links; 
inspired by the “small-world” phenomenon

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

Search procedure 
• Start from a pre-defined entry point 

and greedily moves towards the query 
point 

• Stopping condition: find no nearer 
vertices than our current vertex.

Long-range links help ensure the search doesn’t 
get stuck in local minima 

https://www.sciencedirect.com/science/article/pii/S0306437913001300


Two phase: start with low-degree vertices (“zoom out”) then pass 
through higher-degree vertices (“zoom in”).
• More likely to hit a local minimum and stop too early in the zoom-out 

phase

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

• Increasing the average degree of 
vertices would increase search 
complexity – balance between 
recall and search speed 

https://www.sciencedirect.com/science/article/pii/S0306437913001300


Hierarchical Navigable Small Worlds (HNSW)
Among the top-performing indexes for vector similarity search: fast 
search speed and good recall

Probability skip list: building several layers of linked lists. On the 
first layer, we find links that skip many intermediate nodes/vertices. 
As we move down the layers, the number of ‘skips’ by each link is 
decreased.

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)
Search procedure 
• Start from the top layer with the longest ’skips’
• If you overshoot, move down to a lower layer 

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)
Main idea: Combine skip list with NSW
• Top layers have longer links and bottom layers have shorter links
• Top layer: fewer vertexes and higher average degree

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)
Search procedure
• Enter from top layer: long links 

and higher-degree vertices (with 
links separated across multiple 
layers) 
• Starting in the “zoom-in” phase

• Upon finding local minimum, 
move to a lower layer and search 
again 

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Popular ANNS Algorithms
• Locality sensitive hashing (LSH)
• Nearest neighbor graph 
• KNN graph 
• Hierarchical Navigable Small Worlds (HNSW) 

• Product Quantization (PQ)

VectorDB ANN library ANN algorithm 
Milvus Custom FAISS PQ
Pinecone Custom FAISS LSH, PQ
Qdrant Custom HNSW NN graph 
Pgvector Custom HNSW NN graph 



Product Quantization 
Winner in BigANN Competition @ NeurIPS’ 21; a technique for 
compression high-dimensional vectors, therefore speeding up the 
similarity search. 

Vector Quantization: use centroids to represent vectors in clusters. 
• distance(query, vector) ~ distance(query, centroid)

https://big-ann-benchmarks.com/


Dimensionality Reduction vs Quantization

Reducing the dimensionality Reducing the range of values
Source: https://www.pinecone.io/learn/series/faiss/product-quantization/



Vector Quantization 
• Map the original dataset by a vector quantizer with k centroids 

using k-means
• Each code is an integer ranging from 1 to k 
• Codebook: a map from code to the centroid

• Problem: need a large number of clusters to distinguish vectors 



Product Quantizer
• Split a high-dimensional vector into equally sized subvectors
• Assigning each of these subvectors to its nearest centroid
• Replacing these centroid values with unique IDs — each ID 

represents a centroid

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701



https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Each subvector 
space has its 
own set of 
clusters 

Construction



Query
• Approximation: sum up the distances between each subvector 

and its closest centroid.

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701



Comparison of ANN algorithms 
• Benchmarks:
• ANN-benchmarks: https://ann-benchmarks.com/
• Big-ANN benchmarks: http://big-ann-benchmarks.com/neurips23.html

• Approximate Nearest Neighbor Search on High Dimensional Data 
— Experiments, Analyses, and Improvement

https://ann-benchmarks.com/
http://big-ann-benchmarks.com/neurips23.html
https://ieeexplore.ieee.org/document/8681160
https://ieeexplore.ieee.org/document/8681160


Comparison of ANN algorithms 
• LSH-based algorithms are easy to index and update and usually 

have acceptable query performance; not the best fit for high 
dimensional data and high precision requirement

• Graph-based algorithms have very good query performance with 
large indexing cost

• Product quantization algorithms are good for very large datasets 
when memory usage is a concern


