
CS 4440 A
Emerging Database
Technologies

Lecture 15
03/25/24

Announcements
• Midterm grade distribution:
• median: 85.5, mean: 84.67, std: 7.3, max: 96
• Solution available on Canvas under Files

• Assignments 4 grades released
• Assignments 3, 5 released will be posted this week

2

Announcements
• Assignments 6, 7 released
• Research paper presentation
• Research paper critique

• Paper assignments: https://tinyurl.com/4xjk7duu
• Paper presentation group = project group
• 20min per group, plus 5min questions
• First paper presentation: April 3 (next Wed)

3

https://tinyurl.com/4xjk7duu

Recap
● Distributed File System

● MapReduce
○ Map tasks ⇒ group by key ⇒ reduce tasks

● Spark
○ A workflow system
○ Resilient distributed dataset (RDD)
○ Transformations and actions

■ Map, flatmap, filter, reduce, join, groupByKey
○ Lazy evaluation and lineage

4

Review: SQL history and motivation
● Initially developed in the early 1970’s
● By 1986, ANSI and ISO standard groups standardize SQL

○ New versions of standard published in 1989, 1992, and
more up to 2016

● Dark times in 2000s
○ NoSQL for Web 2.0
○ Google’s BigTable, Amazon’s Dynamo
○ Are relational databases dead?

● NewSQL systems in 2010s
○ SQL → No SQL → Not only SQL → NewSQL
○ SQL withstands the test of time and continues to evolve

5

The rise of NewSQL
● Online transaction processing (OLTP)

○ Read/write transactions are short-lived
○ Touch a small subset of data using indexes
○ Are repetitive

● Online analytical processing (OLAP)
○ Introduced in the 2000’s as Data Warehouses for analyzing large data
○ Complex read-only queries (aggregations, multi-way joins)

● At some point, OLTP was not fast enough, which led to NoSQL
systems

● Now we have NewSQL: NoSQL performance for OLTP + ACID
○ Sacrificing ACID for better performance is no longer worth the effort

6

Case study: Google Spanner
● State-of-the-art NewSQL database

○ Distributed multiversion database
○ General-purpose transactions (ACID)
○ SQL query language
○ Semi-relational data model
○ Scales to millions of machines across hundreds of data centers and

trillions of database rows

● Used by Google Ads (has the most valuable database in Google)
among others

● Available to public through Google Cloud Spanner from 2017

7

History of Spanner
• Cloud Spanner 101: Google's mission-critical relational database

(Google Cloud Next ‘17)

• Q: Which properties in the CAP theorem do Spanner provide?

8

https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech
https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech

History of Spanner
● Most of Google’s revenue comes from selling ads
● Previously, Google used sharded MySQL for their Ads database
● At some point, resharding took multiple years

○ Remember: cannot afford to shutdown Ads system, so need to do this
carefully

● Could not use existing NoSQL databases (BigTable, Megastore)
because they either did not fully support ACID transactions or were
too slow

● Took 5 years to develop Spanner, and 5 more years to make it
available on Cloud
○ These systems are not easy to implement!

9

How does it work
• We are going to start by reading the Spanner paper
• Spanner: Google’s Globally-Distributed Database
• Best Paper award at OSDI 2012

References:
• Spanner talks 1 and 2
• Cloud Spanner documentation
• Eric Brewer’s paper
• Acknowledgements: some slides inspired by above material

10

https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf
https://www.youtube.com/watch?v=NthK17nbpYs
https://www.infoq.com/presentations/spanner-distributed-google/
https://cloud.google.com/spanner/docs/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45855.pdf

How to read a paper in depth
The "three-pass” approach [1]
 first pass: a quick scan
 second pass: with greater care, but ignore the details
 third pass: re-implementing the paper

[1] S. Keshav. How to read a paper? http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf

The first pass: a quick scan
Goal: get bird’s-eye view of the paper (5~10 min)

What to read:
- Title, abstract, introduction and conclusion
- Section and sub-section headings
- Main figures
- Scan of bibliography

You should be able to answer:
- What type of paper is this?
- What are the main contributions?

The second pass: grasp the content
Goal: get a good understanding of the ”meat” of the paper

How to read:
- Look carefully at figures, diagrams and examples
- Take notes of questions, unread references etc.
- Ignore proofs, appendix, extensions etc.

You should be able to:
- Summarize main thrusts of the paper, with supporting
 evidence, to someone else

The third pass: all about the details
Goal: think about what you would have done if you were to
re-implement such an idea

How to read:
- Challenge every assumption
- Compare your version with the actual paper

- Often leads to questions like: why not do it this way?

You should be able to:
- Identify hidden assumptions/potential design flaws
- Get ideas for future work

Let’s try the first pass!
1. Category: What type of paper is this? A measurement paper?
An analysis of an existing system? A description of a research
prototype?
2. Context: Which other papers is it related to?
3. Correctness: Do the assumptions appear to be valid?
4. Contributions: What are the paper’s main contributions?
5. Clarity: Is the paper well written?

For research paper presentations
• Always start with the first pass to get a general impression
• You should be able to give high-level answers to questions like “what

problem the paper is trying to solve”, “why does it matter”, and “why is
the problem challenging” after this pass

• Do a second pass to understand the main technical contributions
• We have prepared a detailed reading guide for each paper that tells you

which sections to focus on versus which sections to skip
• No need to do a third pass

16

Spanner: Google’s Globally-
Distributed Database

17

Data model
● Not purely relation but pretty similar
● Create tables using SQL DDL

18Hierarchies

Data model
● Users(uid, email)
● Albums(uid, aid, name)

Tables can be interleaved for better locality

19

Data model
● Each directory/shard is a unit of data movement (e.g., place shard 1 in

Zones 1 and 3)

20

Users (1)

Albums (1, 1)

Users (2)

Albums (2, 1)

Albums (2, 2)

Shard 1

Shard 2
Users (3)

...

Zone 1 Zone 2

Zone 3

Shard 1

Shard 1 Shard 2

Shard 2

Handling replication
● At any time, a Paxos leader runs transactions including locking
● Synchronous replication as long as the majority of replicas is up

21
Zone 1 Zone 2 Zone 3

Tablet 1.1 Tablet 1.2 Tablet 1.3

Paxos

Paxos
Leader

Transaction
Manager

Shard 1 replicas:

Serving structure

22
Zone 1 Zone 2 Zone 3

Spanservers

Client

Tablet 1.1

Tablet 2.1

Tablet 5.1

Zonemaster

Motivating scenario: banking
● Start with $50 in account (consists of checkings and savings

accounts)
● T1: deposit $150 on savings account
● T2: debit $200 from checkings account
● Say client (i.e., you) issues T1 and then T2
● At the end of the day, any negative balance in one account is

covered by the other
● Suppose total balance must not be negative at any point

○ That is, Spanner must never run T2 and then T1

23

Easy on single-machine database
● Give monotonically-increasing timestamps to T1 and then T2
● If another transaction reads the database, use snapshot with most

recent timestamp
○ Total balance is never negative

24

T1, T2

3:00pm

T1 T2

$200 $0$50

3:00pm

Total:

3:01pm

Not easy if database is distributed
● Suppose database is sharded and replicated in three different data

centers

25

Savings Checkings

Savings Checkings

Zone 1 Zone 2

Zone 3

Challenge 1: consistency
● Need to write on replicas as if there was a single transaction running

26

T1 +$150 T2-$200

Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Challenge 1: consistency
● Need to write on replicas as if there was a single transaction running
● Use existing distributed database techniques

○ Use Paxos algorithm for synchronizing writes
○ Will not go into details

27

T1

T1

+$150

+$150

T2

T2

-$200

-$200

Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Challenge 2: clock uncertainty
● If clock on the right is slower, then T2 may have a smaller

timestamp than T1
● A transaction that reads after T2 sees a negative total balance!

28

3:00pm

T1

$0$50

T2

-$150

3:00pm 2:59pm

Total:
Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Solution: TrueTime
● Global time with bounded uncertainty
● Guarantees that if T1 commits before T2 starts, then ts(T1) < ts(T2)
● Spanner “waits out” any uncertainty

29

3:00pm

T1

$50

T2

$200 $0

3:00pm ± ε 3:01pm ± ε

Total:
Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Transactions & Concurrency
• Spanner is designed for long-lived transactions
• E.g., report generation might take a few minutes

• Therefore optimistic concurrency control performs poorly

• Protocol used: strict 2PL

30

Strict Two-Phase Locking
• Problem of 2PL: Can not avoid cascading aborts
• Example: rollback of T1 requires rollback of T2

31

T1: r1(A), w1(A) Abort

T2: r2(A), w2(A)

Strict Two-Phase Locking
• Same as 2PL, except all locks released together when transaction

completes:
• Transaction has committed (all writes durable), OR
• Transaction has aborted (all writes have been undone)

32

2PL Strict 2PL

Image source: https://www.javatpoint.com/dbms-lock-based-protocol

Strict 2PL Transaction protocol
1. Acquire locks
2. Execute reads
3. Pick commit timestamp
4. Replicate writes using Paxos
5. Ack Commit
6. Apply writes
7. Release locks

33
T3 T1 T2

T1

T2

T3

Users (1)

Albums (1, 1)

Users (2)

T1

T2

T3

Source: https://www.infoq.com/presentations/spanner-distributed-google/

Multi-version concurrency control
● Reading the most current data will block writes on that data,

which is slow
● To read without blocking writes, a classic technique is to use

snapshot reads
● A snapshot should contain a prefix of the commit history to make

it consistent

34

T1 T2 T3

A prefix of commit history

Challenge: pick commit timestamps
Attempt #1: Assign from local (monotonic) clock

1.Acquire locks
2.Execute reads
3.Pick commit timestamp = now()
4.Replicate writes using Paxos
5.Ack Commit
6.Apply writes
7.Release locks

35
Source: https://www.infoq.com/presentations/spanner-distributed-google/

Example: What goes wrong
• T1 creates a new ad in the campaign table on US servers
• Ad serving system notified
• Ad server in Europe
• User clicks on ad
• T2 logs clicks in the impressions table on EU servers

36

T1 T2

Any snapshot that contains T2 should also contain T1

US

EU

T1@100

T2@99

Source: https://www.infoq.com/presentations/spanner-distributed-google/

Desired property: external consistency
Definition: If T1 commits before T2 starts, T1 should be
serialized before T2. In other words, T2’s commit timestamp
should be greater than T1’s commit timestamp.

In Spanner, commit order (= timestamp order) respects global
wall-time order

○ Same as a traditional database using strict two-phase locking
○ System behaves as if all (conflicting) transactions were executed

sequentially in one machine

37

True Time
Idea: There is a global “true” time t

TT.now() = 𝑡	 ∈	[earliest, latest]
• TT.now().earliest: definitely in the past
• TT.now().latest: definitely in the future

38Slide Source: https://www.infoq.com/presentations/spanner-distributed-google/

Transaction protocol
1. Acquire locks
2. Execute reads
3. Pick commit timestamp T = TT.now().latest
4. Replicate writes using Paxos
5. Wait until TT.now().earliest > T
6. Commit
7. Apply write
8. Release locks

39

ts(T)ε ε
Commit

ts(T)

Synchronize writes
using Paxos algorithm

Current read: T = TT.now().latest

TrueTime implementation
● Use time master machines that have GPS or atomic clocks

○ GPS is precise, but may have connection problems
○ Atomic clocks do not have connections, but may drift
○ The two types complement each other and are not expensive

40

TrueTime implementation
● Step 1: periodically poll [earliest, latest] of selected GPS and atomic clock times
● Initially, [earliest, latest] = now ± ε

41

GPS time

Atomic time

GPS time

GPS time

GPS time

Client

Data center 1 Data center 2 ...

TrueTime implementation

● Step 2: reflect local clock drift between polls
● Recall we start from [earliest, latest] = now ± ε
● If X seconds passed,

○ now += X seconds
○ ε += X * 200μs (200μs per second is an upper bound

of clock drift)
● Basically clock becomes more and more uncertain

until we poll again

42

Actual
time

Now

Poll
clocks

TrueTime reliability
● 6x more reliable than CPU
● That is, if you trust your computers work, you can trust your clocks

as well

43

Other NewSQL systems
● Novel systems built from ground up

○ Clustrix, CockroachDB, Google Spanner, H-Store, HyPer, MemSQL,
NuoDB, SAP HANA, VoltDB

● Middleware that re-implements sharding infrastructure
○ AgilData Scalable Cluster, MariaDB MaxScale, ScaleArc, ScaleBase

● Database-as-a-service
○ Amazon Aurora, ClearDB

44Source: https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

NewSQL techniques
● Main memory storage

○ Entire database can be stored in memory
● Partitioning/sharding

○ Not a new idea, but now feasible to implement high performance
distributed DBMS

● Concurrency control
○ Use variants of time-stamping ordering concurrency control

● Secondary indexes
○ Challenge is to implement these on a distributed system

● Replication
○ Most support strongly consistent replication

● Crash recovery
○ Need to perform in a distributed DBMS

45Source: https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

NewSQL summary
● Some applications need SQL, ACID transactions, and scalability at

the same time
● NewSQL systems require significant engineering effort, but are now

commercialized
○ The individual techniques are not new, but incorporating them into a single

platform is
● In the future, there will be a convergence of SQL, NoSQL, and

NewSQL

46

