Emerging Database
lechnologies

| ecture 15
03/25/24

Announcements

* Midterm grade distribution:
 median: 85.5, mean: 84.67, std: 7.3, max: 96
e Solution available on Canvas under Files

* Assignments 4 grades released
* Assignments 3, 5 released will be posted this week

Announcements

* Assignments 6, 7 released
« Research paper presentation
« Research paper critique

* Paper assignments: https://tinyurl.com/4xjk7duu
« Paper presentation group = project group
« 20min per group, plus 5min questions
* First paper presentation: April 3 (next Wed)

https://tinyurl.com/4xjk7duu

Recap l 1w

action transformation

DFS: |

l

R1

Distributed File System ‘mydata [<—.

.

\ J

I

transformation

R2

\ 4

\ J

Y

Y

Y

action

i

DFS:
—¥| output

MapReduce
o Map tasks = group by key = reduce tasks

Spark
o A workflow system

- Resilient distributed dataset (RDD)

o [ransformations and actions
= Map, flatmap, filter, reduce, join, groupByKey
o Lazy evaluation and lineage

Review: SQL history and motivation m
) | MySCGlL.
o Initially developed in the early 1970’s

e By 1986, ANSI and ISO standard groups standardize SQL 7
o New versions of standard published in 1989, 1992, and
more up to 2016 = a[a]allf_r]

o Darktimesin 2000s

> NoSQL for Web 2.0

- @Google’s BigTable, Amazon’s Dynamo J\Z

> Are relational databases dead? Spqr’(SQL
o NewSQL systems in 2010s

- SQL — No SQL — Not only SQL — NewSQL

> SQL withstands the test of time and continues to evolve

Google Spanner

5

The rise of NewSQL

Online transaction processing (OLTP)
- Read/write transactions are short-lived
o Touch a small subset of data using indexes
o Are repetitive
Online analytical processing (OLAP)
o Introduced in the 2000’s as Data Warehouses for analyzing large data
- Complex read-only queries (aggregations, multi-way joins)
At some point, OLTP was not fast enough, which led to NoSQL
systems

Now we have NewSQL: NoSQL performance for OLTP + ACID

- Sacrificing ACID for better performance is no longer worth the effort

Case study: Google Spanner

o State-of-the-art NewSQL database
o Distributed multiversion database

General-purpose transactions (ACID)

SQL query language Google Spanner

Semi-relational data model

Scales to millions of machines across hundreds of data centers and

trillions of database rows

@)
@)
@)
@)

« Used by Google Ads (has the most valuable database in Google)

among others
« Available to public through Google Cloud Spanner from 2017

History of Spanner

» Cloud Spanner 101: Google's mission-critical relational database

(Google Cloud Next “17)

* Q: Which properties in the CAP theorem do Spanner provide?

https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech
https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech

History of Spanner

« Most of Google’s revenue comes from selling ads
« Previously, Google used sharded MySQL for their Ads database

« At some point, resharding took multiple years
- Remember: cannot afford to shutdown Ads system, so need to do this
carefully

« Could not use existing NoSQL databases (BigTable, Megastore)
because they either did not fully support ACID transactions or were
too slow

o JOOk 5 years to develop Spanner, and 5 more years to make it

available on Cloud
- These systems are not easy to implement!

How does it work

« \We are going to start by reading the Spanner paper

« Spanner: Google’s Globally-Distributed Database
» Best Paper award at OSDI 2012

References:
« Spanner talks 1 and 2
» Cloud Spanner documentation
 Eric Brewer’s paper
« Acknowledgements: some slides inspired by above material

10

https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf
https://www.youtube.com/watch?v=NthK17nbpYs
https://www.infoq.com/presentations/spanner-distributed-google/
https://cloud.google.com/spanner/docs/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45855.pdf

How to read a paper in depth

The "three-pass” approach [
first pass: a quick scan

second pass: with greater care, but ignore the details
third pass: re-implementing the paper

The]St Pass

The 2 nd Pass

The 3 rd Pass

[1] S. Keshav. How to read a paper? http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf

The first pass: a quick scan

Goal: get bird’s-eye view of the paper (5~10 min)

What to read:
- Title, albstract, introduction and conclusion
- Section and sub-section headings
- Main figures
- Scan of bibliography

You should be able to answer:
- What type of paper is this? The T8 pass
- What are the main contributions?

The second pass: grasp the content

Goal: get a good understanding of the "meat” of the paper

How 1o read:

- Look carefully at figures, diagrams and examples
- Take notes of questions, unread references etc.
- Ignore proofs, appendix, extensions etc.

You should be able to:

- Summarize main thrusts of the paper, with supporting
evidence, to someone else

The 2 nd Pass

The third pass: all about the details

Goal: think about what you would have done if you were to
re-implement such an idea

How 1o read:

- Challenge every assumption

- Compare your version with the actual paper
- Often leads to questions like: why not do it this way?

You should be able to:

- |dentify hidden assumptions/potential design flaws The 379 Pass
- Get ideas for future work

Let’s try the first pass!

1. Category: What type of paper is this? A measurement paper?
An analysis of an existing system®? A description of a research
prototype?

2. Context: Which other papers is it related to?

3. Correctness: Do the assumptions appear to be valid?
4. Contributions: What are the paper’s main contributions?
5. Clarity: Is the paper well written?

For research paper presentations

* Always start with the first pass to get a general impression

* You should be able to give high-level answers to questions like “what
problem the paper is trying to solve”, “why does it matter”, and “why is
the problem challenging” after this pass

* Do a second pass to understand the main technical contributions

* \We have prepared a detailed reading guide for each paper that tells you
which sections to focus on versus which sections to skip

* No need to do a third pass

Spanner: Google’s Globally-
Distributed Database

Data model

Not purely relation but pretty similar
Create tables using SQL DDL

CREATE TABLE Users {

uid INT64 NOT NULL, email STRING
} PRIMARY KEY (uid), DIRECTORY;

CREATE TABLE Albums {

uid INT64 NOT NULL, aid INT64 NOT NULL,

name STRING
} PRIMARY KEY (uid, aid),

INTERLEAVE IN PARENT Users

Hierarchies

ON DELETE CASCADE;

18

Data model

o Users(uid, email)
e Albums(uid, aid,

Tables can be interleaved for better locality

name)

Users(1)

Albums(1,1)

Albums(1,2)

Users(2)

Albums(2,1)

Albums(2,2)

19

Data model

Each directory/shard is a unit of data movement (e.g., place shard 1 in

Zones 1 and 3)

Users (1)

Albums (1, 1)

Users (2)

Albums (2, 1)

Albums (2, 2)

Users (3)

L—

L—

Shard 1

Shard 2

20

Handling replication

« At any time, a Paxos leader runs transactions including locking
« Synchronous replication as long as the majority of replicas is up

Transaction
Manager
Paxos
Leader
Paxos
Shard 1 replicas: Tablet 1.1 Tablet 1.2 Tablet 1.3

Zone 1 Zone 2 Zone 3

Serving structure

Client

Spanservers / \

Tablet 1.1 Tablet 5.1

Tablet 2.1

‘\/

Zonemaster

Zone 1 Zone 2 Zone 3

Motivating scenario: banking

o Start with $50 in account (consists of checkings and savings
accounts)

T1: deposit $150 on savings account

T2: debit $200 from checkings account

Say client (i.e., you) issues T1 and then T2

At the end of the day, any negative balance in one account Is
covered by the other

e SUppPose total balance must not be negative at any point
o Thatis, Spanner must never run T2 and then T1

—asy on single-machine database

« Give monotonically-increasing timestamps to T1 and then T2
o If another transaction reads the database, use snapshot with most

recent timestamp
o lotal balance is never negative

3:00pm

o

T1 T2
Total: $50 $200 $0

3:00pm 3:01pm

Not easy If datalbase Is distributed

o Suppose database is sharded and replicated in three different data
centers

Savings Checkings
Zone 1 Zone 2

]

Savings Checkings

Zone 3

Challenge 1: consistency

« Need to write on replicas as if there was a single transaction running

Savings Checkings
< <
Zone 1 Zone 2

]

Savings Checkings

Zone 3

Challenge 1: consistency

« Need to write on replicas as if there was a single transaction running

o Use existing distributed datalbase technigues
o Use Paxos algorithm for synchronizing writes
o Wil not go into details

Savings Checkings
- 3

Z&x fmeZ

Savings Checkings

Zone 3

Challenge 2: clock uncertainty

« If clock on the right is slower, then T2 may have a smaller
timestamp than T1
« A transaction that reads after T2 sees a negative total balance!

3:00pm 2:59pm
Savings Checkings
T2 Tl
Zone 1 Zone 2
Total: $50 -$150 $0

==

Savings Checkings

Zone 3

Solution: TrueTime

o Global time with bounded uncertainty
« Guarantees that if T1 commits before T2 starts, then ts(T1) < ts(T2)
o Spanner “waits out” any uncertainty

3:00pm £ ¢ 3:0lpm* ¢
Savings Checkings
TT T2
Zone 1 Zone 2
Total: $50 $200 $0

o 1

Savings Checkings

Zone 3

Transactions & Concurrency

« Spanner is designed for long-lived transactions
* E.g., report generation might take a few minutes

* Therefore optimistic concurrency control performs poorly

e Protocol used: strict 2PL

Strict Two-Phase Locking

* Problem of 2PL: Can not avoid cascading aborts
« Example: rollback of T1 requires rollback of T2

TI: r(A), wi(A) Abort

T2: ,(A), wy(A)

31

Strict Two-Phase Locking

« Same as 2PL, except all locks released together when transaction
completes:
» Transaction has committed (all writes durable), OR
 Transaction has aborted (all writes have been undone)

Lock is attaned\// Pks released Lock is attgz Release at commit

T Begin T End Tlme T Begin T End Time
2PL Strict 2PL

32

Strict 2PL Transaction protocol

: T1 U 1
Acquire locks X sers (1)
Execute reads T2 Albums (1, 1)

Pick commit timestamp T3 —> Users (2)

Replicate writes using Paxos
Ack Commit

Apply writes
Release locks

S A R A

@ @ @
T3 T1 T2

Multi-version concurrency control

o Reading the most current data will block writes on that data,

which Is slow
o l0 read without blocking writes, a classic technique is to use

snapshot reads
« A snapshot should contain a prefix of the commit history to make

It consistent

A prefix of commit history

Challenge: pick commit timestamps

Attempt #1: Assign from local (monotonic) clock

1.Acquire locks

2.Execute reads

3.Pick commit timestamp = now()
4.Replicate writes using Paxos
5.Ack Commit

o.Apply writes

/.Release locks

Example: What goes wrong

« T1 creates a new ad in the campaign table on US servers
* Ad serving system notified
* Ad server in Europe
 User clicks on ad

* 12 logs clicks in the impressions table on EU servers .

T1@100 US

T2@99 EU

@ @
T1 T2

Any snapshot that contains T2 should also contain T

Desired property: external consistency

Definition: If T1 commits before 12 starts, T1 should be
serialized before T2. In other words, T2’s commit timestamp

should lbe greater than T1’s commit timestamp.

In Spanner, commit order (= timestamp order) respects global

wall-time order
> Same as a traditional database using strict two-phase locking
- System behaves as if all (conflicting) transactions were executed

seqguentially in one machine

True Time

ldea: There is a global “true” time t

TT.now() =t € [earliest, latest]
« TT.now().earliest: definitely in the past
« TT.now().latest: definitely in the future

Transaction protocol

© N o 0ok~ w b -

Acquire locks
-xecute reads

Commit

Pick commit timestamp T = TT.now().latest ¢ 0 ¢ /
Replicate writes using Paxos | iy |
Wait until TT.now().earliest > T / \
Commit o

: Synchronize writes
Apply write ts(T) using Paxos algorithm
Release locks |

/ \

Current read: T = TT.now().latest

39

TrueTime implementation

« Use time master machines that have GPS or atomic clocks
- GPS is precise, but may have connection problems
- Atomic clocks do not have connections, but may drift
o The two types complement each other and are not expensive

40

TrueTime implementation

o Step 1: periodically poll [earliest, latest] of selected GPS and atomic clock times
o Initially, [earliest, latest] = now + €

GPS time GPS time GPS time
GPS|time Ato/mic/&me/
Client

Data center 1 Data center 2

' ! ' Poll)
TrueTime implementation - P

clocks.
Now
. Step 2: reflect local clock drift between polls .
« Recall we start from [earliest, latest] = now + € ﬂ/ :
« |t X seconds passed, Actual
o Now += X seconds time
o € +=X"*200pus (200us per second is an upper bound

of clock drift)
o Basically clock becomes more and more uncertain
until we poll again

TrueTime reliability

o ©OXx more reliable than CPU
o [hatis, if you trust your computers work, you can trust your clocks

as well

10

8

KEpsilon (ms)

Wi‘l LI _iw_l L] I LI B B | I LI B B) I I l I I
Mar 29 Mar 30 Mar 31 Apr 1 6AM 8AM 10AM 12PM

Date Date (April 13)

Other NewSQL systems

o Novel systems built from ground up
- Clustrix, CockroachDB, Google Spanner, H-Store, HyPer, MemSQL,
NuoDB, SAP HANA, VoltDB

« Middleware that re-implements sharding infrastructure
- AgilData Scalable Cluster, MariaDB MaxScale, ScaleArc, ScaleBase

o Database-as-a-service
o Amazon Aurora, ClearDB

Source:

44

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

NewSQL technigues

« Main memory storage
- Entire database can be stored in memory
« Partitioning/sharding

- Not a new idea, but now feasible to implement high performance
distributed DBMS

« (Concurrency control
o Use variants of time-stamping ordering concurrency control

o Secondary indexes

- Challenge is to implement these on a distributed system
o Replication

o Most support strongly consistent replication
« Crash recovery

> Need to perform in a distributed DBMS

Source:

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

NewSQL summary

o Some applications need SQL, ACID transactions, and scalability at
the same time

« NewSQL systems require significant engineering effort, but are now
commercialized
- The individual techniques are not new, but incorporating them into a single
platform is
« In the future, there will be a convergence of SQL, NoSQL, and
NewSQL

