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Announcements
• Midterm grade distribution:
• median: 85.5, mean: 84.67, std: 7.3, max: 96
• Solution available on Canvas under Files 

• Assignments 4 grades released 
• Assignments 3, 5 released will be posted this week 
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Announcements
• Assignments 6, 7 released 
• Research paper presentation 
• Research paper critique 

• Paper assignments: https://tinyurl.com/4xjk7duu
• Paper presentation group = project group 
• 20min per group, plus 5min questions 
• First paper presentation: April 3 (next Wed) 
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Recap
● Distributed File System

● MapReduce
○ Map tasks ⇒ group by key ⇒ reduce tasks

● Spark
○ A workflow system
○ Resilient distributed dataset (RDD)
○ Transformations and actions

■ Map, flatmap, filter, reduce, join, groupByKey
○ Lazy evaluation and lineage
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Review: SQL history and motivation
● Initially developed in the early 1970’s
● By 1986, ANSI and ISO standard groups standardize SQL

○ New versions of standard published in 1989, 1992, and 
more up to 2016

● Dark times in 2000s
○ NoSQL for Web 2.0
○ Google’s BigTable, Amazon’s Dynamo
○ Are relational databases dead?

● NewSQL systems in 2010s
○ SQL → No SQL → Not only SQL → NewSQL
○ SQL withstands the test of time and continues to evolve
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The rise of NewSQL
● Online transaction processing (OLTP)

○ Read/write transactions are short-lived
○ Touch a small subset of data using indexes
○ Are repetitive

● Online analytical processing (OLAP)
○ Introduced in the 2000’s as Data Warehouses for analyzing large data
○ Complex read-only queries (aggregations, multi-way joins)

● At some point, OLTP was not fast enough, which led to NoSQL 
systems

● Now we have NewSQL: NoSQL performance for OLTP + ACID
○ Sacrificing ACID for better performance is no longer worth the effort
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Case study: Google Spanner
● State-of-the-art NewSQL database

○ Distributed multiversion database
○ General-purpose transactions (ACID)
○ SQL query language
○ Semi-relational data model
○ Scales to millions of machines across hundreds of data centers and 

trillions of database rows

● Used by Google Ads (has the most valuable database in Google) 
among others

● Available to public through Google Cloud Spanner from 2017
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History of Spanner 
• Cloud Spanner 101: Google's mission-critical relational database 

(Google Cloud Next ‘17)

• Q: Which properties in the CAP theorem do Spanner provide? 
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https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech
https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech


History of Spanner 
● Most of Google’s revenue comes from selling ads
● Previously, Google used sharded MySQL for their Ads database
● At some point, resharding took multiple years

○ Remember: cannot afford to shutdown Ads system, so need to do this 
carefully

● Could not use existing NoSQL databases (BigTable, Megastore) 
because they either did not fully support ACID transactions or were 
too slow

● Took 5 years to develop Spanner, and 5 more years to make it 
available on Cloud
○ These systems are not easy to implement!
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How does it work
• We are going to start by reading the Spanner paper 
• Spanner: Google’s Globally-Distributed Database
• Best Paper award at OSDI 2012

References:
• Spanner talks 1 and 2
• Cloud Spanner documentation
• Eric Brewer’s paper
• Acknowledgements: some slides inspired by above material
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https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf
https://www.youtube.com/watch?v=NthK17nbpYs
https://www.infoq.com/presentations/spanner-distributed-google/
https://cloud.google.com/spanner/docs/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45855.pdf


How to read a paper in depth
The "three-pass” approach [1]
 first pass: a quick scan 
 second pass: with greater care, but ignore the details 
 third pass: re-implementing the paper 

[1] S. Keshav. How to read a paper? http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf



The first pass: a quick scan
Goal: get bird’s-eye view of the paper (5~10 min)

What to read: 
- Title, abstract, introduction and conclusion 
- Section and sub-section headings 
- Main figures 
- Scan of bibliography 

You should be able to answer:
- What type of paper is this?
- What are the main contributions? 



The second pass: grasp the content 
Goal: get a good understanding of the ”meat” of the paper 

How to read: 
- Look carefully at figures, diagrams and examples 
- Take notes of questions, unread references etc. 
- Ignore proofs, appendix, extensions etc. 

You should be able to:
- Summarize main thrusts of the paper, with supporting 
   evidence, to someone else 



The third pass: all about the details 
Goal: think about what you would have done if you were to 
re-implement such an idea 

How to read: 
- Challenge every assumption 
- Compare your version with the actual paper

- Often leads to questions like: why not do it this way? 

You should be able to:
- Identify hidden assumptions/potential design flaws
- Get ideas for future work 



Let’s try the first pass!
1. Category: What type of paper is this? A measurement paper? 
An analysis of an existing system? A description of a research 
prototype? 
2. Context: Which other papers is it related to? 
3. Correctness: Do the assumptions appear to be valid? 
4. Contributions: What are the paper’s main contributions? 
5. Clarity: Is the paper well written?



For research paper presentations 
• Always start with the first pass to get a general impression
• You should be able to give high-level answers to questions like “what 

problem the paper is trying to solve”, “why does it matter”, and “why is 
the problem challenging” after this pass 

• Do a second pass to understand the main technical contributions
• We have prepared a detailed reading guide for each paper that tells you 

which sections to focus on versus which sections to skip 
• No need to do a third pass 
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Spanner: Google’s Globally-
Distributed Database
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Data model
● Not purely relation but pretty similar 
● Create tables using SQL DDL

18Hierarchies



Data model
● Users(uid, email)
● Albums(uid, aid, name)

Tables can be interleaved for better locality
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Data model
● Each directory/shard is a unit of data movement (e.g., place shard 1 in 

Zones 1 and 3)
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Handling replication
● At any time, a Paxos leader runs transactions including locking
● Synchronous replication as long as the majority of replicas is up  
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Serving structure
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Motivating scenario: banking
● Start with $50 in account (consists of checkings and savings 

accounts)
● T1: deposit $150 on savings account
● T2: debit $200 from checkings account
● Say client (i.e., you) issues T1 and then T2
● At the end of the day, any negative balance in one account is 

covered by the other
● Suppose total balance must not be negative at any point

○ That is, Spanner must never run T2 and then T1
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Easy on single-machine database
● Give monotonically-increasing timestamps to T1 and then T2
● If another transaction reads the database, use snapshot with most 

recent timestamp
○ Total balance is never negative
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Not easy if database is distributed
● Suppose database is sharded and replicated in three different data 

centers
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Challenge 1: consistency
● Need to write on replicas as if there was a single transaction running
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Challenge 1: consistency
● Need to write on replicas as if there was a single transaction running
● Use existing distributed database techniques

○ Use Paxos algorithm for synchronizing writes
○ Will not go into details
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Challenge 2: clock uncertainty
● If clock on the right is slower, then T2 may have a smaller 

timestamp than T1
● A transaction that reads after T2 sees a negative total balance!
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Solution: TrueTime
● Global time with bounded uncertainty 
● Guarantees that if T1 commits before T2 starts, then ts(T1) < ts(T2)
● Spanner “waits out” any uncertainty
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Transactions & Concurrency
• Spanner is designed for long-lived transactions 
• E.g., report generation might take a few minutes 

• Therefore optimistic concurrency control performs poorly

• Protocol used: strict 2PL
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Strict Two-Phase Locking 
• Problem of 2PL: Can not avoid cascading aborts 
• Example: rollback of T1 requires rollback of T2
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T1: r1(A), w1(A)                                              Abort

T2:                                   r2(A), w2(A) 



Strict Two-Phase Locking 
• Same as 2PL, except all locks released together when transaction 

completes:
• Transaction has committed (all writes durable), OR
• Transaction has aborted (all writes have been undone) 
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2PL Strict 2PL

Image source: https://www.javatpoint.com/dbms-lock-based-protocol



Strict 2PL Transaction protocol
1. Acquire locks
2. Execute reads
3. Pick commit timestamp 
4. Replicate writes using Paxos
5. Ack Commit
6. Apply writes
7. Release locks
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Multi-version concurrency control
● Reading the most current data will block writes on that data, 

which is slow
● To read without blocking writes, a classic technique is to use 

snapshot reads
● A snapshot should contain a prefix of the commit history to make 

it consistent  
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Challenge: pick commit timestamps
Attempt #1: Assign from local (monotonic) clock

1.Acquire locks
2.Execute reads
3.Pick commit timestamp = now()
4.Replicate writes using Paxos
5.Ack Commit
6.Apply writes
7.Release locks
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Example: What goes wrong 
• T1 creates a new ad in the campaign table on US servers 
• Ad serving system notified 
• Ad server in Europe
• User clicks on ad 
• T2 logs clicks in the impressions table on EU servers 
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Desired property: external consistency
Definition: If T1 commits before T2 starts, T1 should be 
serialized before T2. In other words, T2’s commit timestamp 
should be greater than T1’s commit timestamp. 

In Spanner, commit order (= timestamp order) respects global 
wall-time order

○ Same as a traditional database using strict two-phase locking
○ System behaves as if all (conflicting) transactions were executed 

sequentially in one machine
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True Time
Idea: There is a global “true” time t

TT.now() = 𝑡	 ∈	[earliest, latest]
• TT.now().earliest: definitely in the past
• TT.now().latest: definitely in the future 

38Slide Source: https://www.infoq.com/presentations/spanner-distributed-google/



Transaction protocol
1. Acquire locks
2. Execute reads
3. Pick commit timestamp T = TT.now().latest 
4. Replicate writes using Paxos
5. Wait until TT.now().earliest > T
6. Commit
7. Apply write
8. Release locks
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ts(T)ε ε
Commit

ts(T)

Synchronize writes 
using Paxos algorithm

Current read: T = TT.now().latest 



TrueTime implementation
● Use time master machines that have GPS or atomic clocks

○ GPS is precise, but may have connection problems
○ Atomic clocks do not have connections, but may drift
○ The two types complement each other and are not expensive
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TrueTime implementation
● Step 1: periodically poll [earliest, latest] of selected GPS and atomic clock times
● Initially, [earliest, latest] = now ± ε
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TrueTime implementation

● Step 2: reflect local clock drift between polls
● Recall we start from [earliest, latest] = now ± ε
● If X seconds passed, 

○ now += X seconds
○ ε += X * 200μs  (200μs per second is an upper bound 

of clock drift)
● Basically clock becomes more and more uncertain 

until we poll again
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TrueTime reliability
● 6x more reliable than CPU
● That is, if you trust your computers work, you can trust your clocks 

as well
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Other NewSQL systems 
● Novel systems built from ground up

○ Clustrix, CockroachDB, Google Spanner, H-Store, HyPer, MemSQL, 
NuoDB, SAP HANA, VoltDB

● Middleware that re-implements sharding infrastructure
○ AgilData Scalable Cluster, MariaDB MaxScale, ScaleArc, ScaleBase

● Database-as-a-service
○ Amazon Aurora, ClearDB

44Source: https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf
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NewSQL techniques
● Main memory storage

○ Entire database can be stored in memory
● Partitioning/sharding

○ Not a new idea, but now feasible to implement high performance 
distributed DBMS

● Concurrency control
○ Use variants of time-stamping ordering concurrency control

● Secondary indexes
○ Challenge is to implement these on a distributed system

● Replication
○ Most support strongly consistent replication

● Crash recovery
○ Need to perform in a distributed DBMS

45Source: https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf
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NewSQL summary
● Some applications need SQL, ACID transactions, and scalability at 

the same time
● NewSQL systems require significant engineering effort, but are now 

commercialized
○ The individual techniques are not new, but incorporating them into a single 

platform is
● In the future, there will be a convergence of SQL, NoSQL, and 

NewSQL
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